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Abstract. In this paper, a three step iteration process has been introduced
for two multivalued nonexpansive maps in hyperbolic type spaces. Using this
process, common �xed points of the two mappings have been approximated
through �- and strong convergence. A couple of examples have been provided
to validate our main results. Our results generalize many reults of the contem-
porary literature. In particular, the results of [2] are generalized from Banach
to hyperbolic spaces, those of [12] from single-valued to multivalued maps in
hyperbolic space, and those of [27] to three step iterative scheme in hyperbolic
spaces.

1. Introduction

Many of the mathematical models of real-world problems originating from Biol-
ogy, Chemistry, Economics, Engineering and Physics, amongst others are usually
expressed in the form of functional equations. Such equations can be written in
form of �xed point equation

(1.1) Tx = x

where T is an appropriate nonlinear operator and x is an independent variable
describing the physical phenomena. The behavior of the physical phenomena that
this equation describes can be determined by the nature of the solutions to this
�xed point equation. In general, the �xed points of the equation (1:1) are not
easily obtained, hence the need for approximate solutions. In this regard, di¤erent
iterative schemes have been developed and used to approximate �xed points of non-
linear mappings on suitable domains. On the other hand, an iterative process that
approximates the �xed points of a nonlinear �xed point equation in a fewer number
of iterations is preferable to the iterative schemes with more iteration steps. Dif-
ferent types of iterative schemes have been used in the literature. The very famous
Mann iteration scheme is a one-step iteration process while the Ishikawa process is
a two-step iteration scheme among others. In [6], Glowinski and Le Tallec used a
three-step iteration scheme to approximate the solutions of the elastoviscoplasticity
problem in liquid crystal theory and eigenvalue computations. They showed that a
three-step iteration process is better in giving numerical results than a one- or two-
step iteration process. Haubruge et al. [10] applied the Glowinski and Le Tallec
iteration scheme to obtain a new splitting type iterations for solving variational
inequalities, separable convex programming, and minimization of a sum of convex
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functions. They showed also that three-step iteration process leads to a highly par-
alleled iterations under certain conditions. Furthermore, in [2], Abbas and Nazir
introduced a new three-step iteration scheme that is faster than the Agarwal et al.
two-step iteration scheme. Thus studying a three-step iteration process will yield
a better numerical result when applied to real-world problems. In this paper, we
study the three-step iteration scheme (to be de�ned in sequel) introduced by Abbas
and Nazir [2].
The role played by ambient spaces involve in a �xed point equation is also very

important. In this regard, we note that Banach spaces with convex geometric struc-
tures have been studied extensively. Since a Banach space is a vector space, one
can introduce a convex structure on it. However, metric spaces do not naturally
have this convex structure. The notion of convex metric spaces was introduced by
Takahashi [30] who studied the �xed points of nonexpansive mappings in the setting
of convex metric spaces. Over time, di¤erent convex structures have been intro-
duced on metric spaces. Hyperbolic spaces are speci�c examples of convex metric
spaces. Di¤erent de�nitions of hyperbolic spaces can be found in the literature, see
[8, 14, 16, 25], for examples. The Kohlenbach hyperbolic space was introduced by
Kohlenbach [16]. Although the Kohlenbach hyperbolic space is slightly restrictive
than the hyperbolic space introduced in [7], it is, however, more general than the
hyperbolic space introduced in [25]. Moreover, this class of hyperbolic spaces con-
tains the Hadamard manifolds, Hilbert balls equipped with the hyperbolic metric
[8], R-trees and Cartesian products of Hilbert balls as special cases.
The nonlinear mapping T involved in a �xed point equation (1:1) is also very im-
portant. Nonexpansive mappings constitute one of the important class of nonlinear
mappings in �xed point theory.
We recap some necssary ideas as follows. A subsetK of a metric spaceX is proximal
if for each x 2 X; there exists an element k 2 K such that

d(x;K) = inffd(x; y) : y 2 Kg = d(x; k)
Denote by CB(K) the set of closed and bounded subsets ofK; by C(K) the compact
subset of K and by P (K) the set of proximal bounded subsets of K: Let H(A;B)
be the Hausdor¤ metric induced by the metric d of X; that is

H(A;B) = max

�
sup
x2A

d(x;B); sup
y2B

d(y;A)

�
for all A;B 2 CB(X): A multivalued map T : K �! CB(X) is nonexpansive if

H(Tx; Ty) � d(x; y)
for all x; y 2 K: A point x 2 K is a �xed point of T if x 2 Tx: We denote by
F (T ) the set of all �xed ponit of T and PT (x) = fy 2 Tx : d(x; y) = d(x; Tx)g: A
Kohlenbach type hyperbolic space is de�ned as follows:

De�nition 1. A metric space (X; d) is a hyperbolic space if there exists a map
W : X2 � [0; 1] �! X such that

(i) d(u;W (x; y; �)) � (1� �)d(u; x) + �d(u; y)
(ii) d(W (x; y; �);W (x; y; �)) = j�� �jd(x; y)
(iii) W (x; y; �) =W (y; x; (1� �))
(iv) d(W (x; z; �);W (y; w; �)) � (1� �)d(x; y) + �d(z; w)
for all x; y; z; w 2 X and �; � 2 [0; 1]:
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CAT(0) spaces and Banach spaces are important examples of Kohlenbach hyper-
bolic spaces. A Kolenbach hyperbolic space represents a uni�ed approach for both
linear and nonlinear structures simultaneously. There are hyperbolic spaces which
are not imbedded in any Banach space, see for example [27]. If a hyperbolic space
(X; d;W ) satis�es De�nition 1(i) only, then it coincides with the convex metric
space introduced by Takahashi [30].

De�nition 2. A subset K of a hyperbolic space X is called convex if W (x; y; �) 2
K for all x; y 2 K and � 2 [0; 1]: A hyperbolic space (X; d;W ) is said to be strictly
convex if for any x; y 2 X and � 2 [0; 1]; there exists a unique element z 2 X such
that

d(z; x) = �d(x; y) and d(z; y) = (1� �)d(x; y);
while a hyperbolic space (X; d;W ) is uniformly convex [31] if for all u; x; y 2 X; r >
0 and � 2 (0; 2]; there exists a � 2 (0; 1] such that

d(x; u) � r
d(y; u) � r
d(x; y) � �r

9=; =) d(W (x; y;
1

2
); u) � (1� �)r:

A map � : (0;1) � (0; 2] �! (0; 1] which provides such a � = �(r; �) for given
r > 0 and � 2 (0; 2] is called modulus of uniform convexity. The modulus of uniform
convexity � is said to be monotone if it decreases with r; for �xed �: Note that a
uniformly convex hyperbolic space is strictly convex, see [19].
The study of �xed points for multivalued nonexpansive mappings using Hausdor¤

metric was initiated by Markin [22], see also [1],[4],[13],[23]. Shimizu and Takahashi
[31] proved the existence of �xed points for multivalued nonexpansive maps in
convex metric spaces.
There is an increasing and rich �xed point theory for multivalued maps. A

wide range of theory for such maps has been developed and applied to di¤erent
areas of mathematics such as control theory, optimization economics and di¤erential
equations, just to name a few, for example, see [9]. The existence and convergence
of �xed points for multivalued nonexpansive maps in convex metric space has been
discussed, for example, in [1] and the references therein.
In [2], Abbas and Nazir considered the following single-valued three-step iterative

process in Banach spaces:8<: zn = (1� 
n)xn + 
nTxn
yn = (1� �n)Txn + �nTzn
xn+1 = (1� �n)Tyn + �nTzn

where f�ng; f�ng and f
ng are in (0; 1):
Khan [12] translated the above scheme into the language of hyperbolic spaces as

follows:

xn+1 = W (Tyn; T zn; �n) ;

yn = W (Txn; T zn; �n) ;

zn = W (xn; Txn; 
n) ; n 2 N:

Although the results of Khan [12] are interesting, they are single-valued and use
only one mapping. In this paper, we not only extend his results to multivalued case
but also use two mappings to approximate common �xed points.
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Let K be a nonempty convex subset of a hyperbolic space X: Let S; T : K �!
C(K) be two multivalued mappings and PT (x) = fy 2 Tx : d(x; y) = d(x; Tx)g:
Choose x0 2 K and de�ne the sequence fxng as follows:

(1.2)

8><>:
zn =W (xn; vn;


n
�n+�n

)

yn =W (vn; wn;
�n

1��n )

xn+1 =W (un; wn; �n)

where vn 2 PS(xn); un 2 PT (yn) = PT (W (vn; wn; �n
1��n )); wn 2 PT (zn) = PT (W (xn; vn;


n
�n+�n

))

and �n; �n 2 (0; 1) such that 
n 2 (0; 12 ):
We verify that the algorithm (1:2) is well de�ned. Assume that PS and PT are

nonexpansive multivalued mappings on K: It follows from the de�nition of PT that
d(x; Tx) � d(x; PT (x)) for any x in K: Let a self map f : K �! K be de�ned as

f(x) =W (u;w; �1)

for some u 2 PT (y) = PT (W (v; w;
�1

1��1 )); w 2 PT (z) = PT (W (x; v;

1

�1+�1
)) and

v 2 PS(xn):
For any x1; x2 2 K; let v1 2 PS(x1); v2 2 PS(x2) such that d(v1; v2) =

d(v1; Sx2);
w1 2 PT (z1) = PT (W (x0; v1; 
1

�1+�1
)); w2 2 PT (z2) = PT (W (x0; v2; 
1

�1+�1
)) such

that d(w1; w2) = d(w1; T z2);
u1 2 PT (y1) = PT (W (v1; w1; �1

1��1 )); u2 2 PT (y2) = PT (W (v2; w2;
�1

1��1 )) such
that d(u1; u2) = d(u1; T y2):
Using De�nition 1(iv), we have

d(f(x1); f(x2))

= d(W (u1; w1; �1);W (u2; w2; �1))

� (1� �1)d(u1; u2) + �1d(w1; w2)
= (1� �1)d(u1; T y2) + �1d(w1; T z2)

� (1� �1)d(u1; PT (W (v2; w2;
�1

1� �1
))) + �1d(w1; PT (W (x0; v2;


1
�1 + �1

)))

� (1� �1)H(PT (W (v1; w1;
�1

1� �1
)); PT (W (v2; w2;

�1
1� �1

)))

+ �1H(PT (W (x0; v1;

1

�1 + �1
)); PT (W (x0; v2;


1
�1 + �1

)))

� (1� �1)
�
1� �1

1� �1
d(v1; v2) +

�1
1� �1

d(w1; w2)

�
+�1

�

1

�1 + �1
d(v1; v2)

�
= (1� �1 � �1)d(v1; v2) + �1d(w1; w2) + �1

�

1

�1 + �1
d(v1; v2)

�
= (1� �1 � �1)d(v1; Sx2) + �1d(w1; T z2)

+�1

�

1

�1 + �1
d(v1; Sx2)

�
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� (1� �1 � �1)d(v1; PS(x2)) + �1d(w1; PT (z2))

+�1

�

1

�1 + �1
d(v1; PS(x2))

�
� (1� �1 � �1)H(PS(x1); PS(x2))
+ �1H(PT (W (x0; v1;


1
�1 + �1

)); PT (W (x0; v2;

1

�1 + �1
)))

+
�1
1
�1 + �1

H(PS(x1); PS(x2))

� (1� �1 � �1)d(x1; x2) +
�1
1
�1 + �1

d(v1; v2) +
�1
1
�1 + �1

d(x1; x2)

= (1� �1 � �1)d(x1; x2) +
�1
1
�1 + �1

d(v1; Sx2) +
�1
1
�1 + �1

d(x1; x2)

� (1� �1 � �1)d(x1; x2) +
�1
1
�1 + �1

H(PS(x1); PS(x2)) +
�1
1
�1 + �1

d(x1; x2)

� (1� �1 � �1)d(x1; x2) +
�1
1
�1 + �1

d(x1; x2) +
�1
1
�1 + �1

d(x1; x2)

� (1� �1 � �1 + 
1)d(x1; x2)
= 2
1d(x1; x2):

Since 2
1 < 1; the mapping f is therefore a contraction. Hence by the Banach
contraction mapping principle, f has a unique �xed point in K: Thus we have
established the existence of x1: Continuing in this way, the existence of x2; x3; � � �
and thus xn is guaranteed. Hence the above algorithm is well-de�ned.
The concept of �-convergence in a metric space was introduced by Lim [21].

In [16], Kirk and Panyanak applied Lim�s concept to CAT(0) spaces and proved
a number of results involving weak convergence in Banach spaces. Since then the
notion of �-convergence has been widely studied and a number of papers have
been published in this direction, see[8], [9], [17], [18], [22], [24], [29]. In order to
give the de�nition of �-convergence, we �rst recall the notion of asymptotic radius
and asymptotic center. Let fxng be a bounded sequence in a metric space X: For
x 2 X; de�ne a continuous functional r(x; fxng) by

r(x; fxng) = lim sup
n!1

d(x; fxng):

rK(fxng) = inffr(x; fxng) : x 2 Kg is called the asymptotic radius of fxng with
respect to K � X: For any y 2 K; the set

AK(fxng) = fx 2 X : r(x; fxng) � r(y; fxng)g

is called the asymptotic center of fxng with respect to K � X: Asymptotic ra-
dius and asymptotic center taken with respect to X are denoted as r(fxng) and
A(fxng) respectively. The asymptotic center A(fxng) may, in general, be empty or
may contain in�nitely many points. It is well known that a complete uniformly con-
vex space with monotone modulus of convexity enjoys the property that bounded
sequences have unique asymptotic center with respect to closed convex subsets, see,
for example, [20].
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De�nition 3. A sequence fxng in X is said to �-converge to x 2 X if x is the
unique asymptotic center of all subsequence fxnig of fxng: In this case, x is called
the �-limit of fxng:

Lemma 1. [5]
(i) Every bounded sequence in X has a �-convergent subsequence (see [15, p.

3690]).
(ii) If K is a closed convex subset of X and fxng is a bounded sequence in K;

then asymptotic center of fxng is in K (see [26, Proposition 2.1]).
(iii) If K is a closed convex subset of X and f : K �! X is a nonexpansive

mapping, then the conditions, fxng �-converges to x and d(xn; f(xn))! 0; imply
x 2 K and f(x) = x (see [15, Proposition 3.7]).

Lemma 2. [5] If fxng is a bounded sequence in X with A(fxng) = fxg and fung is
a subsequence of fxng with A(fung) = fug and the sequence fd(xn; u)g converges,
then x = u:

The following result is needed in the proof of our main results.

Lemma 3. [11] Let K be a nonempty closed subset of a uniformly convex hy-
perbolic space and fxng a bounded sequence in K such that A(fxng) = fyg: If
fymg is another sequence in K such that limn!1 r(ym; fxng) = r(y; fxng); then
limn!1 ym = y:

Lemma 4. [11] Let (X; d;W ) be a uniformly convex hyperbolic space with a monotone
modulus of uniform convexity �: Let x 2 X and f�ng be a sequence in [a; b] for
some a; b 2 (0; 1): If fxng and fyng are sequences in X such that lim sup

n�!1
d(xn; x) �

r; lim sup
n�!1

d(yn; x) � r and lim
n�!1

d(W (xn; yn; �n); x) = r for some r � 0; then

lim
n�!1

d(xn; yn) = 0:

2. Main Results

The following lemma was proved in [27].

Lemma 5. Let K be a nonempty subset of a metric space X and T : K �! C(K)
be a multivalued mapping. The following are equivalent:

(i) x 2 F (T ); that is x 2 Tx:
(ii) PT (x) = fxg; that is, x = y for each y 2 PT (x):
(iii) x 2 F (PT ); that is x 2 PT (x):
Moreover, F (T ) = F (PT ):

We denote F = F (T )\F (S) the set of all common �xed points of the multivalued
maps T and S:

Lemma 6. Let K be a nonempty closed convex subset of a hyperbolic space X
and let S; T : K �! C(K) be multivalued mappings such that PT ; PS are nonex-
pansive and F 6= �: Then, for the sequence de�ned in (1:2) ; d(xn+1; p) � d(xn; p)
for each p 2 F:
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Proof. Let p 2 F: Then p 2 PT (p) = fpg and p 2 PS(p) = fpg: Using (1:2) and
De�nition 1, we have

d(zn; p) = d(W (xn; vn;

n

�n + �n
); p)

� (1� 
n
�n + �n

)d(xn; p) +

n

�n + �n
d(vn; p)

� (1� 
n
�n + �n

)d(xn; p) +

n

�n + �n
H(PS(xn); PS(p))

� (1� 
n
�n + �n

)d(xn; p) +

n

�n + �n
d(xn; p)

� d(xn; p):

That is,

(2.1) d(zn; p) � d(xn; p):
Next,

d(yn; p) = d(W (vn; wn;
�n

1� �n
); p)

� (1� �n
1� �n

)d(vn; p) +
�n

1� �n
d(wn; p)

� (1� �n
1� �n

)H(PS(xn); PS(p)) +
�n

1� �n
H(PT (zn); PT (p))

� (1� �n
1� �n

)d(xn; p) +
�n

1� �n
d(zn; p)

� (1� �n
1� �n

)d(xn; p) +
�n

1� �n
d(xn; p)

= d(xn; p):

That is,

(2.2) d(yn; p) � d(xn; p):
Therefore,

d(xn+1; p) = d(W (un; wn; �n); p)

� (1� �n)d(un; p) + �nd(wn; p)
� (1� �n)H(PT (yn); PT (p)) + �nH(PT (zn); PT (p))
� (1� �n)d(yn; p) + �nd(zn; p)(2.3)

� (1� �n)d(xn; p) + �nd(xn; p)
= d(xn; p):

That is,
d(xn+1; p) � d(xn; p):

�

The following results are immediate consequence of Lemma 6.

Corollary 1. Let the assumptions of Lemma 6 hold. Then for the sequence fxng
in (1:2) ;we have

(1) lim
n!1

d(xn; p) exists for all p 2 F:
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(2) lim
n!1

d(xn; F (T )) exists.

(3) fxng is bounded.

Lemma 7. Let K be a nonempty closed convex subset of a uniformly convex hy-
perbolic space X and let S; T : K �! C(K) be multivalued maps such that PT ; PS
are nonexpansive maps and F 6= ;: Then for the sequence de�ned in (1:2) ;

lim
n!1

d(xn; PS(xn)) = lim
n!1

d(xn; PT (yn)) = lim
n!1

d(xn; PT (zn)) = 0:

Proof. From Corollary 1, lim
n!1

d(xn; p) exists for all p 2 F; call it c for some c � 0:
We proceed to proof for the case c > 0 as the case c = 0 trivially holds. Now
lim

n�!1
d(xn+1; p) = c means

lim
n�!1

d(W (un; wn; �n); p) = c:

Since PT is nonexpansive, we have

d(un; p) � H(PT (yn); PT (p))

� d(yn; p)

� d(xn; p) by (2:2);

so that
d(un; p) � d(xn; p):

Taking lim sup of both sides, we have

lim sup
n!1

d(un; p) � lim sup
n!1

d(xn; p) = c:

Thus

(2.4) lim sup
n!1

d(un; p) � c:

Similarly,

(2.5) lim sup
n!1

d(vn; p) � c

and

(2.6) lim sup
n!1

d(wn; p) � c:

Furthermore,

d(W (vn; wn;
�n

1� �n
); p) � (1� �n

1� �n
)d(vn; p) +

�n
1� �n

d(wn; p)

� (1� �n
1� �n

)d(xn; p) +
�n

1� �n
d(xn; p)

= d(xn; p):

That is

d(W (vn; wn;
�n

1� �n
); p) � d(xn; p):

Taking lim sup of both sides, we have

(2.7) lim sup
n!1

d(W (vn; wn;
�n

1� �n
); p) � c
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Similarly, one can show that

(2.8) lim sup
n!1

d(W (xn; vn;

n

�n + �n
); p) � c:

Moreover, from (2:3) ; we have

d(xn+1; p)

� (1� �n)d(yn; p) + �nd(zn; p)

� (1� �n)
�
(1� �n

1� �n
)d(xn; p) +

�n
1� �n

d(zn; p)

�
+ �nd(zn; p)

� (1� �n)
�
(1� �n

1� �n
)d(xn; p) +

�n
1� �n

d(W (xn; vn;

n

�n + �n
); p)

�
+ �nd(xn; p)

� (1� �n � �n)d(xn; p) + �nd(W (xn; vn;

n

�n + �n
); p) + �nd(xn; p)

= (1� �n)d(xn; p) + �nd(W (xn; vn;

n

�n + �n
); p):

This gives

�nd(xn+1; p) � (1� �n)d(xn; p)
+ �nd(W (xn; vn;


n
�n + �n

); p)� (1� �n)d(xn+1; p)

� �nd(W (xn; vn;

n

�n + �n
); p)

+(1� �n) [d(xn; p)� d(xn+1; p)]

and so

d(xn+1; p) � d(W (xn; vn;

n

�n + �n
); p) +

(1� �n)
�n

[d(xn; p)� d(xn+1; p)]

� d(W (xn; vn;

n

�n + �n
); p) +

(1� a)
a

[d(xn; p)� d(xn+1; p)] :

That is,

d(xn+1; p) � d(W (xn; vn;

n

�n + �n
); p) +

(1� a)
a

[d(xn; p)� d(xn+1; p)] :

Now taking lim inf of both sides we have

(2.9) c � lim inf
n�!1

d(W (xn; vn;

n

�n + �n
); p):

This implies that

c � lim inf
n�!1

d(W (xn; vn;

n

�n + �n
); p)

� lim sup
n�!1

d(W (xn; vn;

n

�n + �n
); p) � c

and, in turn, we have

lim
n�!1

d(W (xn; vn;

n

�n + �n
); p) = c
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From Lemma 4, (2:5) ; and lim
n�!1

d(xn; p) = c; it follows that

lim
n�!1

d(xn; vn) = 0:

Again, from (2:3) ; we have

d(xn+1; p) � (1� �n)d(yn; p) + �nd(zn; p)

� (1� �n)d(W (vn; wn;
�n

1� �n
); p) + �nd(zn; p)

� (1� �n)d(W (vn; wn;
�n

1� �n
; p) + �nd(xn; p)

(1� �n)d(xn+1; p) � (1� �n)d(W (vn; wn;
�n

1� �n
; p))

+ �n[d(xn; p)� d(xn+1; p)]

d(xn+1; p) � (1� �n)d(W (vn; wn;
�n

1� �n
); p)

+
�n

1� �n
[d(xn; p)� d(xn+1; p)]

d(xn+1; p) � d(W (vn; wn;
�n

1� �n
); p) +

b

1� b [d(xn; p)� d(xn+1; p)] :

That is,

d(xn+1; p) � d(W (vn; wn;
�n

1� �n
); p) +

b

1� b [d(xn; p)� d(xn+1; p)] :

Now taking lim inf of both sides, we have

c � lim inf
n�!1

d(W (vn; wn;
�n

1� �n
); p)

Also by (2:7) ;

lim sup
n�!

d(W (vn; wn;
�n

1� �n
); p) � c

so that,

c � lim inf
n�!1

d(W (vn; wn;
�n

1� �n
); p)

� lim sup
n�!1

d(W (vn; wn;
�n

1� �n
); p) � c

which implies that

lim
n�!1

d(W (vn; wn;
�n

1� �n
); p) = c

From Lemma 4, (??) ; (2:5) and (2:6) ; it follows that

lim
n�!1

d(vn; wn) = 0:

From basic properties of metric d; we have

d(xn; wn) � d(xn; vn) + d(vn; wn)
which implies that

lim
n�!1

d(xn; wn) � d(xn; vn) + d(vn; wn) �! 0:
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Thus

lim
n�!1

d(xn; wn) = 0:

From(1:2) ; we have

d(xn+1; p) = d(W (un; wn; �n); p)

which implies

lim
n�!1

d(W (un; wn; �n); p) = c:

So that from (2:4) ; (2:6) and Lemma 4, we get

lim
n�!1

d(un; wn) = 0:

Thus

d(xn; un) � d(xn; wn) + d(wn; un)

implies that

lim
n�!1

d(xn; un) = 0:

Finally, since d(x; PS(x)) = inf
z2PS(x)

d(x; z); we have

lim
n�!1

d(xn; PS(xn)) � lim
n�!1

d(xn; vn) = 0

which implies that

lim
n�!1

d(xn; PS(xn)) = 0:

Similarly,

lim
n�!1

d(xn; PS(yn)) = 0

and

lim
n�!1

d(x; PS(zn)) = 0:

This completes the proof. �

In what follows, we prove that the sequence fxng given in (1:2) �-converges to
a common �xed point of two multivalued nonexpansive mappings.

Theorem 1. Let K be a nonempty, closed and convex subset of a uniformly convex
hyperbolic space X with monotone modulus of uniform convexity �: Let S; T : K �!
C(K) be multivalued nonexpansive maps such that PT and PS are nonexpansive.
Let fxng be the sequence in (1:2). Then fxng �-converges to a common �xed point
of S and T (or PT and PS):

Proof. Since fxng is bounded by Corollary 1, it follows that fxng has a unique
asymptotic center. That is, A(fxng) = fxg: Let fzng denote any subsequence of
fxng such that A(fzng) = fzg: Then by Lemma 7, we have

lim
n!1

d(zn; PT (zn)) = lim
n!1

d(zn; PS(zn)) = 0:

Claim: z is a common �xed point of PS and PT :
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Proof of claim: Take wm in PT (z): Then

r(wn; fzng) = lim sup
n!1

d(wn; zn)

� lim sup
n!1

fd(wm; PT (zn)) + d(PT (zn); zn)

� lim sup
n!1

H(PT (z); PT (zn))

� lim sup
n!1

d(z; fzng)

= r(z; fzng):
This implies that jr(wn; fzng) � r(z; fzng)j ! 0 as m ! 1: Therefore, from
Lemma 3, we have that limn!1 wm = z: Since PT (K) and PS(K) are closed and
bounded subsets of K; it follows that PT (z) and PS(z) are closed. Consequently,
limn!1 wm = z 2 PT (z) and limn!1 wm = z 2 PS(z): Hence z 2 F (T ) and
z 2 F (S) so that z 2 F:
By the existence of the limit limn!1 d(xn; z) and the uniqueness of asymptotic

centers, we have

lim sup
n!1

d(zn; z) < lim sup
n!1

d(zn; x)

� lim sup
n!1

fd(xn; x)

� lim sup
n!1

d(xn; z)

= lim sup
n!1

d(z; fzng)

= r(z; fzng):
which leads to a contradiction. Hence x = z: Thus A(fzng) = fzg for every
subsequence fzng of fxng which shows that fxng �-converges to a common �xed
point of S and T: �

Next, we give a necessary and su¢ cient condition for the strong convergence of
the iterative scheme (1:2) :

Theorem 2. Let K be a nonempty, closed and convex subset of a complete hy-
perbolic space X: Let S; T : K �! C(K) be multivalued nonexpansive maps such
that PT and PS are nonexpansive. Let fxng be the sequence in (1:2) : Then fxng
converges strongly to a common �xed point of S and T (or PT and PS) if and only
if lim infn!1 d(xn; F ) = 0:

Proof. (=)) Suppose that fxng converges to a common �xed point p of T and
S: Then limn!1 d(xn; p) = 0: Since 0 � d(xn; F ) � d(xn; p); it follows that
limn!1 d(xn; F ) = 0 so that lim infn!1 d(xn; F ) = 0:
((=) Suppose that lim infn!1 d(xn; F ) = 0: Then from Lemma 6, we infer that

d(xn+1; F ) � d(xn+1; F )
so that limn!1 d(xn; F ) exists. Using the hypothesis lim infn!1 d(xn; F ) = 0 and
the existence of limn!1 d(xn; F ), we have

lim
n!1

d(xn; F ) = 0:

We now show that fxng is a Cauchy sequence in K: To see this, let m;n 2 N and
assume m > n: Since from Lemma 6, d(xn+1; p) � d(xn; p) for all p 2 F; it follows
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that
d(xm; p) � d(xn; p) for all p 2 F:

Thus
d(xm; xn) � d(xm; p) + d(xn; p) � 2d(xn; p):

Taking inf on the set F; we have

inf
p2F

d(xm; xn) � inf
p2F

2d(xn; p) = 2d(xn; F ):

This yields
d(xm; xn) � 2d(xn; F ):

On letting m!1; n!1; we have
0 � lim

n!1
d(xm; xn) � lim

n!1
2d(xn; F ) �! 0; as n!1:

Thus
lim
n!1

d(xm; xn) = 0

which implies that fxng is a Cauchy sequence in K:
Since X is complete, the sequence fxng converges to a point, say q 2 X:We now

show that q is a common �xed point of T and S: That is, q 2 F: Indeed,
d(xn; F (PT )) = inf

y2F (PT )
d(xn; y)

implies that for each � > 0; there exists p�n 2 F (PT ) such that

d(xn; p
�
n) < d(xn; F (PT )) +

�

4
:

Taking limit as n!1; we have

lim
n!1

d(xn; p
�
n) < lim

n!1
[d(xn; F (PT )) +

�

4
]

which implies

lim
n!1

d(xn; p
�
n) �

�

4
:

Observe that
d(p�n; q) � d(xn; p�n) + d(xn; q)

so that
lim sup
n!1

d(p�n; q) �
�

4
:

Finally, we have the following inequality.

d(PT (q); q) � d(q; p�n) + d(p
�
n; PT (q))

� d(q; p�n) +H(PT (p
�
n); PT (q))

� d(q; p�n) + d(p
�
n; q)

= 2d(p�n; q):

Taking lim sup, we have

d(PT (q); q) � 2 lim sup
n!1

d(p�n; q) � 2
�

4
=
�

2
< �:

Since � is arbitrary, therefore d(PT (q); q) = 0: In a way similar way, one can show
that d(PS(q); q) = 0: Since F is closed, q 2 F as required. �

We now give some examples to illustrate our results.
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Example 1. Let K = [0; 1] be equipped with the metric d(x; y) = jx � yj: Let
S; T : K �! CB(K) (family of closed and bounded subset of K) be de�ned by
Sx = [0; x4 ] and Tx = [0;

x
2 ]:Then for any x; y 2 K

H(Tx; Ty) = maxf
���x
2
� y
2

��� ; 0g = ���x
2
� y
2

��� = ����x� y2
���� � jx� yj:

Similarly,

H(Sx; Sy) = maxf
���x
4
� y
4

��� ; 0g = ���x
4
� y
4

��� = ����x� y4
���� � jx� yj:

Thus T and S are multivalued nonexpansive maps. Clearly, F (T ) \ F (S) = f0g:
We proceed to show that the sequence fxng de�ned in (1:2) converges to a common
�xed point of T and S: In this regard, we de�ne PT and PS as follows. If x = 0
then PT (x) = PS(x) = f0g: Let x 2 (0; 1]; then

PT (x) = fy 2 Tx : d(x; y) = d(x; Tx)g
= fy 2 Tx : jx� yj = jx� Txjg
= fy 2 Tx : jx� yj = jx� [0; x

2
]jg

= fy 2 Tx : jx� yj = x

2
g

=
n
y =

x

2

o
Similarly,

PS(x) =

�
3x

4

�
We de�ne the map W : R2 � [0; 1] �! R in (1) by

W (x; y; �) = (1� �)x+ �y:

and choose �n = �n = 
n =
1
3 so that the sequence fxng is de�ne as follows8><>:

zn =W (xn; vn;

n

�n+�n
) = 1

2 (xn + vn)

yn =W (vn; wn;
�n

1��n ) =
1
2 (vn + wn)

xn+1 =W (un; wn; �n) =
2
3un +

1
3wn

with vn 2 PS(xn) =
�
3xn
4

	
; that is,

vn =
3xn
4
;

un 2 PT (yn) =
�
yn
2

	
; that is,

un =
yn
2
;

and wn 2 PT (zn) =
�
zn
2

	
; that is,

wn =
zn
2
:

The table below show the result of our computation. Note that only a few iter-
ations are displayed here, the other iterations follow a similar trend and are thus
ignored.
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n xn vn zn wn yn un xn+1
n xn

3xn
4

1
2
(xn + vn)

zn
2

1
2
(vn + wn)

yn
2

2
3
un + 1

3
wn

1 0.5 0.4375 0.375 0.21875 0.296875 0.1484375 0.171875
2 0.171875 0.128906 0.150391 0.075195 0.102051 0.051025 0.059082
3 0.059082 0.044312 0.051697 0.025848 0.035080 0.017540 0.020309
4 0.020309 0.015232 0.017771 0.008885 0.012059 0.006029 0.006981
5 0.006981 0.005236 0.006109 0.003054 0.004145 0.002073 0.002400
6 0.002400 0.001800 0.002100 0.001050 0.001425 0.000712 0.000825
7 0.000825 0.000619 0.000722 0.000361 0.000490 0.000245 0.000284
8 0.000284 0.000213 0.000248 0.000124 0.000168 0.000084 0.000097
9 0.000097 0.000073 0.000085 0.000043 0.000058 0.000029 0.000034
10 0.000034 0.000025 0.000029 0.000015 0.000020 0.000010 0.000012
11 0.000012 0.000009 0.000010 0.000005 0.000007 0.000003 0.000004
12 0.000004 0.000003 0.000003 0.000002 0.000002 0.000001 0.000001
13 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000000
14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

From the table it is clear that as n �! 1; the sequence xn �! 0 2 F: Hence
result follows.

Example 2. Let K = [1;1) be equipped with the metric d(x; y) = jx � yj: Let
S; T : K �! CB(K) (family of closed and bounded subset of K) be de�ned by
Sx = [1; 1 + x

4 ] and Tx = [1; 1 +
x
2 ]: The sets of �xed points of the maps T and S

are F (T ) = [1; 2] and F (S) = [1; 43 ]; respectively. The set of common �xed points
F = [1; 43 ]:

H(Tx; Ty) = max
n���x
2
� y
2

��� ; 0o = ���x
2
� y
2

��� � jx� yj
H(Sx; Sy) = max

n���x
4
� y
4

��� ; 0o = ���x
4
� y
4

��� � jx� yj
We proceed to show that the sequence fxng de�ned in (1:2) converges to a common
�xed point of T and S: In this regard, we de�ne PT and PS as follows.
If x 2 [1; 43 ]; then PT (x) = fxg = PS(x):
If x 2 (2;1);then

PT (x) = fy 2 Tx : d(x; y) = d(x; Tx)g =
�
y =

x+ 2

2

�
:

Similarly,

PS(x) =

�
x+ 4

4

�
:

However, if x 2 ( 43 ; 2] then PT (x) = fxg and PS(x) =
�
x+4
4

	
: We de�ne the map

W : R2 � [0; 1] �! R in (1) by

W (x; y; �) = (1� �)x+ �y:

and choose �n = �n = 
n =
1
3 so that the sequence fxng is de�ne as follows8><>:

zn =W (xn; vn;

n

�n+�n
) = 1

2 (xn + vn)

yn =W (vn; wn;
�n

1��n ) =
1
2 (vn + wn)

xn+1 =W (un; wn; �n) =
2
3un +

1
3wn

with vn 2 PS(xn) =
�
xn+4
4

	
; that is, vn = xn+4

4 ; un 2 PT (yn) =
�
yn+2
2

	
; that is,

un =
yn+2
2 ; and wn 2 PT (zn + 2) =

�
zn+2
2

	
that is, wn = zn+2

2 :
The table below show the result of our computation. Note that only a few iter-

ations are displayed here, the other iterations follow a similar trend and are thus
ignored.
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n xn vn zn wn yn un xn+1

n xn
xn+4
4

1
2
(xn + vn)

zn+2
2

1
2
(vn + wn)

yn+2
2

2
3
un + 1

3
wn

1 3 1.75 2.375 2.1875 1.96875 1.984375 2.052083333
2 2.052083333 1.513020833 1.782552083 0.945638021 1.229329427 1.614664714 1.391655816
3 1.391655816 1.347913954 1.369784885 0.842446221 1.095180088 1.547590044 1.312542103
4 1.312542103 1.328135526 1.320338814 0.830084704 1.079110115 1.539555057 1.303064939
5 1.303064939 1.325766235 1.314415587 0.828603897 1.077185066 1.538592533 1.301929654
6 1.301929654 1.325482414 1.313706034 0.828426508 1.076954461 1.538477231 1.301793656
7 1.301793656 1.325448414 1.313621035 0.828405259 1.076926836 1.538463418 1.301777365
8 1.301777365 1.325444341 1.313610853 0.828402713 1.076923527 1.538461764 1.301775414
9 1.301775414 1.325443853 1.313609633 0.828402408 1.076923131 1.538461565 1.30177518
10 1.30177518 1.325443795 1.313609487 0.828402372 1.076923083 1.538461542 1.301775152
11 1.301775152 1.325443788 1.31360947 0.828402367 1.076923078 1.538461539 1.301775148
12 1.301775148 1.325443787 1.313609468 0.828402367 1.076923077 1.538461539 1.301775148
13 1.301775148 1.325443787 1.313609467 0.828402367 1.076923077 1.538461538 1.301775148

From the table it is clear that as n �!1; the sequence xn �! 1:301775148 2 F:
Hence result follows.

3. Concluding Remarks

The result presented in this paper concern the convergence of the three-step
iteration scheme (1:2) to common �xed point of two multivalued nonexpansive maps
in a hyperbolic space. Our results extend the work of Khan [12] to multivalued
maps in hyperbolic spaces. Furthermore, our results can also be considered as
an extension of the work of Khan et al. [27] to three steps iterative schemes in
hyperbolic space.
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