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Abstract. In this paper, we consider primitive Pythagorean triples
with terms of the generalized Fibonacci and Lucas sequences. We give
families of primitive Pythagorean triples whose coefficient may all be
simply expressed in terms of the generalized Fibonacci and Lucas se-
quences.
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1. Introduction
The second order sequence {W,, (a, b;r, s)} is defined for n > 1 by

Wi (a,b;r,s) = rWy_1 (a,byr, ) — sWy_a (a,b;r, s),
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in which Wy (a, b;r, s) = a, Wi (a, b;r, s) = b, where a, b, r, s are arbitrary
integers. As some special cases of {W,, (a, b;r, s)}, denote W, (0, 1;7r, —1),
Wy (2,r;7m,—1), W, (0,1; R, 1) and W, (2, R; R, 1) by U, V,,, u, and vy,
respectively, where |R| > 2 is an integer. Clearly, when r = 1, U,, = F,,
(nth Fibonacci number) and V,, = L,, (nth Lucas number). The Binet
forms of the sequences {U,}, {V,.}, {un} and {v,} are given by

Un:u’ Vn:an_f_ﬁ”andun:ry —90
a—[0 )

, U ="+ 0",

2_rzx—1=0 and

where «, 8 and 7,9 are the roots of equations z
22 — Rz + 1 = 0, respectively [5].

Pythagoras have a big importance and interest in mathematics, science
and philosophy. He is known by many people because of the Pythagorean
Theorem that is about a property of all triangles with a right-angle(an
angle of 90°). Due to Pythagorean Theorem, Pythagorean triples corre-

spond to right triangles with integer sides.

1. A Pythagorean triple is a triple (a, b, ¢) of positive integers a, b, ¢ such
that a? + b? = 2.

2. A primitive Pythagorean triple is a Pythagorean triple in which
gcd(a,b,c) = 1.

Throughout this paper, we will take primitive Pythagorean triple (a, b, ¢)
such that a = 1(mod2) and b = 0(mod2).

Theorem 1.1. [3] Let e and f be positive coprime integers of opposite
parity with e > f. If a,b, c are integers such that

a=e?—f% b=2ef, and c = e*+ f?, (1)
then (a,b,c) is a primitive Pythagorean triple.

Corollary 1.2. [3] Let ¢’ and f' be odd positive coprime integers with
e > f'. If a,b, c are integers such that

1 1
a = e/f/7 b= 5(6/2 - f/2)7 and ¢ = 5(6/2 +f/2)7 (2)

then (a,b,c) is a primitive Pythagorean triple.
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Let II be a set as follows: for Pythagorean triple (a, b, ¢),

II = {(a,b,c)pa + gb+rc =t,a = 1(mod2),b = 0(mod2), ged(a,b,c) = 1}. (3)

In [4], let m and n be fixed coprime integers and let ¢ be an arbitrary
fixed integer. Terr gave some definitions regarding families of primi-
tive Pythagorean triple as follows: for m < n, the families of primitive
Pythagorean triples

I(x,m,n | t) = {(a,b,c) € II: mc—nb=1t},

II(m,*,n|t) ={(a,b,c) € Il : mc —na =t},

and for any integers n, m, familiy of primitive Pythagorean triple
II(m,n,* | t) = {(a,b,c) € Il : mb—na =t},
and the primitive Pythagorean triple family parametrizations

P(x,m,n|t)= {(e,f) :m(e2—|—f2) —2nef:t},

P (x,m,n|t) = {(.f):m(e?+ f?) —n(e” - f?)=2t}. (4)

Similarly, primitive Pythagorean triple family parametrizations
P(m,*,n|t), P(m,n,*|t) and P’ (m,*,n|t), P (m,n,*|t),

are defined.

The author investigate families of primitive Pyhagorean triples of the
form (a, b, c), where mec —nb = t, me — na =t or mb — na =t for some
fixed positive coprime integers m and n, and a fixed nonzero integer t.
A few of these cases are especially interesting since the solutions may be
simply written in terms of Fibonacci and Lucas numbers.

In this paper, inspiring by the work in [4], we consider some interesting
results of primitive Pythagorean triples with terms of the generalized Fi-
bonacci and Lucas sequences. We give families of primitive Pythagorean
triples whose coefficient may all be simply expressed in terms of these
sequences.
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2. Families of Primitive Pythagorean Triples In-
volving Terms Of Generalized Fibonacci And
Lucas Sequences

Throughout this section, we denote 72 4+ 4 and R*> — 4 by A and D,
respectively. We will give some results related to the sequences {U,},
{Va}, {un} and {v,} for further steps.

Theorem 2.1. [2] The integer solutions of x> — Ay? = 4 are precisely
the pairs (£Va;, £Us;) .
Corollary 2.2. The integer solutions of

22— Ay? =1, (5)
are precisely the pairs (:l:%, :t%) .

Proof. Let X, Y be 2x and 2y, respectively. Then X and Y satisfy
equation

X2 - AY?=4

if and only if x and y satisfy equation (5). From Theorem 2.1, we have
X =4V, and Y = 4+Us; for some nonnegative integer . Now X and Y
are both even precisely when ¢ is a multiple of 3, i.e. ¢ = 35 for some
nonnegative integer 5. [

Now, integer solutions of the other Pell equations (2) are given by Table
1 as follows:
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Table 1: Integer solutions of some Pell equations

‘ Pell equations

‘ Integer solutions of them ‘

L[ 22— Ay?=—4 (£Voj+1, £Usj41)
2. | 22— A2=—1 i%,i%
3. 2 — Ay2 = —4A (:l:AUQj, :‘:VQj)
4| 2= A=A (a5 =)
5. | 22— Ay =4A (AU 41, V2511)
6. a? — Ay* = A (iA%v i@
7. T2 — Dy2 =4 (:I:Uj, :I:Uj)

2 2 kE TR
8. | 2Dy =1 (=55 +5)
9. |2 — Dy*=—4D (£Duy, +v;)

We will look at various types of primitive Pythagorean triple families
whose coefficient involving terms of the sequences {U,}, {V,}, {u,} and
{vn}. From now on, we will take odd numbers r and R.

For m = (A —1)/2 and n = (A +1)/2, we will investigate families of
primitive Pythagorean triples of the form IT (x, (A — 1)/2, (A +1)/2 | t)
for some integer ¢. These families of primitive Pythagorean triples cor-
respond to families of right triangles asymptotically similar to one with
legs of length /A and (A — 1)/2 and hypotenuse of length (A +1)/2.

For odd number r, we get 21 VA, 2 | (A—1)/2 and ged(*, (A—1)/2, (A+
1)/2) = 1. Thus a primitive Pythagorean triple (a, b, c) belongs to
IM(x,(A=1)/2,(A+1)/2]1)
if and only if (A —1)c— (A + 1) b = 2¢, which holds if and only if
(A=1)(?+ f?) = (A+1) (%~ f?) = 4t,

where e’ and f’ are the parameters (2).
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Lemma 2.3.

P (x,(A-1)/2,(A+1)/2] -2)
= {(Vok+a: Usk+a) : k € N} U{(Vor+2, Us+2) : k € N},
P (x,(A=1)/2,(A+1)/2|2)
= {(Vere1, Ug1) : k € Z*} U
{(Vﬁk,g,, Ush_s) :forr > 1, k€ Z* and for r = 1,k € Z*\ {1}} )

Proof. Using (4) and the parametrization in (2), we have
(¢, f) € P/ (s, (A = 1)/2,(A+1)/2| £2) =

(A=1)(?+ ) —(A+1)(? - f?) =48

or
e? — Af? =+4.

Now we take ¢ — Af? = 4. From Table 1 we write
6,2—Af,2 :4<:>€/:V2j,f/:U2j. (7)

For being valid the parametrization in (2), e; = V; and f; = Uz; must
be odd, which is true if and only if j is not divisible by 3. If we take
j=0in (7), j =0 is not valid since ej; = Vp =2 and fj =Uy=0¢ Z*.
When j = 1 in (7), we have ¢} = Vo = r> + 2 and f] = Us = r. Thus
j = 1is valid. It is easy to see that j(j = 3k+1, j = 3k + 2) correspond
to elements (e, f7) of P’ (x, (A —1)/2,(A+1)/2 ] -2).

Similarly, it is seen that j(j = 3k — 1, j = 3k — 3) correspond to
elements (e}, f;) of P'(x,(A—1)/2,(A+1)/2|2). Thus, the proof is
completed. [

Theorem 2.4.

(e, (5= 1)/2,(A+1)/2] 2) = 5 %
{(2AU 1262, (A = 1) Vige—g = 2(A + 1), (A + 1)Vigp —2(A - 1)) : k€ Z* } U
(2AU126-10, (A = 1) Vigg—10 — 2(A + 1), (A + 1)Vigp—10 — 2(A = 1)) :
forr>1,k€Z" and for r =1,k € Z*\ {1}} ’
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(e, (A= 1)/2, (A4 1)/2| -2) = o %

{(2AU12k+8, (A - 1) V12k+8 + 2(A + 1), (A + 1)V12k+8 +2 (A - 1)) ke N} U
{(2AU12]€+4, (A - 1) V12k+4 + Q(A + 1), (A + 1) V12k+4 +2 (A — 1)) ke N} .

Proof. From (2), we have

a; = 6/'f3/' = U2j,
by = (€] )/2 = (V} -U})/2,
¢ = (ej j)/2:(VjZ+Uj2)/ :

By Binet formulas of the sequences {U;} and {V}}, we get

aj = Ugj, (8)
b, = ((A—=1)Vy +2(-1)/(A+1)) /24, 9)
¢i = ((A+1)Vo+2(-1)/ (A —1)) /2A. (10)

Thus, using equations (8)-(10), from Lemma 2.3, the proof is com-
plete. 0O

For example, if we take r = 1 in Theorem 2.4, we write as [4]
0 (%,2,3 | 2)

{<F12k 2, = (L12g—2 — 3),

5 (3L12k_2 — 4)) ke Z+} U

{<F12k 10 = (Li2k—10 — 3) , 5

! (3L12k-10 — 4)) ke Zt\ {1}} :
and
(2,3 | —2)
<F121<;+4, (L12k+a +3), B (3L12k+4 + 4)) ke N} U
)

:kEN}.

{ <F12k+87 (Liok+8 +3) (3L12k+8 +4)
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Taking ¢ = £2A in (6) and using Table 1, the proofs of Lemma 2.5
and Theorem 2.6 are obtained similar to the proofs of Lemma 2.3 and
Theorem 2.4, respectively.

Lemma 2.5.
P (%, (A—=1)/2,(A+1)/2|2A)
= {(AUsk+4, Vor+a) : k € N} U{(AUsk+2, Vort2) : k € N},
P (x,(A=1)/2,(A+1)/2| —247)
= {(AUsk+1,Vor+1) : k € N} U{(AUsk+s, Vorss) : k € N}

Theorem 2.6.

I(x,(A-1)/2,(A+1)/2| —24) = -
((2AU 9059, (A — 1) Viggss + 2(A + 1), (A +1)Vigera + 2(A— 1)) k € N} U
{2AU 2k 410, (A = 1) Vigks10 + 2(A 4+ 1), (A + 1)Vigg10 +2(A = 1)) : k € N},

O(x,(A=1)/2,(A+1)/2]2A) =
{(2AU12k+8: (A = 1) Viggss — 2(A + 1), (A + D)Vigpys —2(A = 1)) : k €N} U
{(2AU12k+4, (A — 1) V12k+4 - 2<A + 1), (A + 1) Viok+a — 2 (A - 1)) k€ N} .

Now, for m = (D—1)/2 and n = (D+1)/2, we will investigate families of
primitive Pythagorean triples of the form II (x, (D — 1)/2,(D +1)/2 | t)
for some small integer t. For odd number R, we get 21 v/D,2 | (D —1)/2
and ged(x, (D—1)/2,(D+1)/2) = 1. Thus primitive Pythagorean triple
(a,b,c) belongs to

I (x, (D —=1)/2,(D+1)/2[1)
if and only if (D — 1) ¢ — (D + 1) b = 2t, which holds if and only if
(D =1)(”+ f2) = (D +1) (” — f?) = 4, (11)

where ¢’ and f’ are the parameters (2).
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Taking t = —2 and 2D in (11) and using Table 1, the proofs of Lemmas
2.7 and 2.9 and Theorems 2.8 and 2.10 are obtained similar to the proofs
of Lemma 2.3 and Theorem 2.4, respectively.

Lemma 2.7.

P’ (*, (D — 1)/2, (D + 1)/2 | —2)
= {(ver—s5,u6r—5) : k € Z"} U {(ver—1,uer—1) : k € Z*} U
{(ver—2, uge—2) : k € Z*} U {(vek—a, usp—a) : k € Z*} .

Theorem 2.8.

(s, (D—l)/2 (D+1)/2]-2) = = x

2D
{(2Durgg—2, (D = 1) v195—2 + 2(D + 1), (D + L)v1op—o+2 (D — 1)) : k € Z* } U
{(2Duy1-10, ( —1)v12k 10+2(D + 1), (D + Dvigg_10+2(D = 1)) : k€ Z* } U
{(2Duyop—s,(D = D) vigg—s +2(D +1),(D+ Dvigp_s +2(D—1)) : k€ ZT} U
{(2Durgg—a, (D = D) v1gj—a + 2(D +1),(D + 1) vigp—a +2(D = 1)) : k € Z"} .

Lemma 2.9.

P’ (x,(D—-1)/2,(D+1)/2|2D)
= {(Dugr—1,v66-4) : k € Z*} U{(Duey—2,v6t—2) : k € Z*}
U {(-Duﬁk—lav6k—1) ke ZJr} U {(Du6k—577)6k—5) ke ZJr} .

Theorem 2.10.
1
O(x,(D-1)/2,(D+1)/2|2D) = 2 X
2Du12k,2, (D — 1) 1}12]6,2—2(D + 1), (D + 1)”12k72 -2 (D — 1)) . ]{7 € Z+} U
2Du19k-10, (D — 1) V12k—10 — 2(D + 1)7 (D + 1)”121@—10 -2 (D - 1)) ke Z+} U

2Du12k,4, (D — 1) V12k—4 — 2(D + 1), (D + 1)1}12]6,4 -2 (D — 1)) ke Z+} U
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For m = (A —1)/2 and n = (A + 1)/2, we will investigate families of
primitive Pythagorean triples of the form

IM((A-1)/2,%,(A4+1)/2]|1),

for some small integer ¢. These families of primitive Pythagorean triples
correspond to families of right triangles asymptotically similar to one
with legs of length v/A and (A—1)/2 and hypotenuse of length (A+1) /2.
For odd number r, we get 24 VA, 2 | (A—1)/2 and ged((A—1)/2, %, (A+
1)/2) = 1. Thus primitive Pythagorean triple (a, b, c) belongs to

if and only if (A —1)c— (A + 1) a = 2t, which holds if and only if
(A=) (E@+ )= (A+1) (e~ f) =2t (12)

where e and f are the parameters (1).

Using t = £1 and £A in (12) and Table 1, the proofs of the following
Lemmas and Theorems are similar to the proofs of Lemma 2.3 and
Theorem 2.4.

Lemma 2.11.

P((A=1)/2,%(A+1)/2] -1) = {(Vor/2,Us/2) : k € Z¥),
P((A=1)/2,%,(A+1)/2]1) = {(Vorsa/2 Usira/2) : k € N}

Theorem 2.12
TH((A = 1)/2,% (A+1)/2 | —1) = i %

{((A = 1) Vigg + 2(A +1),2AU19, (A + 1)Vigg +2(A = 1)) : k € Z},
TH((A = 1)/2,% (A+1)/2] 1) = i %

{((A=1) Vigkye — 2(A + 1), 2AU12k16, (A + 1)Viggs6 — 2(A — 1)) : k € N}.

Lemma 2.13
P =1)/25(A+1)/2]8) = {(AUg/2,Vee/2) s b€ ZH,
P ((A=1)/2,x(A+1)/2| =A) = {(AUsk+3/2, Vor+3/2) : k € N}.
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Theorem 2.14.

I((A—1)/2,% (A+1)/2|A) =
{((A = 1) Vigr, — 2(A + 1), 2AU19, (A + 1) Vi, —2(A = 1)) 1 k€ ZT}
IL((A—1)/2,% (A+1)/2] —=A)

= {((A + 1)V12k -2 (A — 1) ,2AU12k+6, (A + 1)V12]€+6 +2 (A — 1)) ke N} .

=

Now, form = (D—1)/2 and n = (D+1)/2, we will investigate families of
primitive Pythagorean triples of the form IT (D —1)/2,*, (D +1)/2 | t)
for some small integer . Since R is odd number, we get 21+/D,2 | (D —
1)/2 and ged((D —1)/2,%,(D +1)/2) = 1. Thus primitive Pythagorean
triple (a, b, ¢) belongs to

IM((D—-1)/2,%,(D+1)/2|1)

if and only if
(D—-1)c—(D+1)a=2t,
which holds if and only if

(D—=1)(e2+ f2) — (D +1) (2 — f?) =2, (13)

where e and f are the parameters (1).

Using t = —1 and D in (13) and Table 1, respectively, the proofs of the
following Lemmas and Theorems are obtained.

Lemma 2.15

P((D-1)/2,%x,(D+1)/2|-1)
= {(ver/2,uer/2) : k € Z} U{(vor+3/2, uer+3/2) : k € N}.

Theorem 2.16.

(D~ 1)/2,%, (D4 1)/2 | ~1) = 75 %

{((D = 1)v1g + 2(D + 1), 2Duygk, (D + Nvigr, +2(D — 1)) : k € ZT}
U{((D = 1) v12k16+2(D + 1), 2Dusggt6, (D + Dviggse+2 (D — 1)) - k € N}
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Lemma 2.17.
P((D—-1)/2,%,(D+1)/2|D)
= {(Dugr/2,v6x/2) : k € ZT} U {(Dugkr3/2, Dvgr13/2) : k € N}.

Theorem 2.18.

1
O(D-1)/2,%,(D+1)/2| D)= 1 X
{((D=1)vigk = 2(D +1),2Dugo, (D + 1)vip —2(D - 1)) : k € Z*}
U {((D — 1) V192k+6 — 2(D + 1), 2Duy9 46, (D + 1)”121@—)—6 -2 (D — 1)) ke N} .
For m = r and n = 2, the families of primitive Pythagorean triples
correspond to families of right triangles asymptotically similar to one
with legs of length r and 2 and hypotenuse of length v/A.
Consider the families of primitive Pythagorean triples of the form II (r, 2, % | t),
where t is a small integer. From the parametrization in (1), every primi-
tive Pythagorean triple (a,b,c) in II (r, 2, % | t) satisfy the equation b —
2a = t, which implies that the parameters e and f satisfies the equation

22 + 2ref — 2e* =t. (14)

Since the left side is even, the right side must also be even. Hence,
considering ¢t = +2 and +2A in (14), respectively, the following desired
results are given.

Lemma 2.19.

P(Ta 27 * | _2) =
{(Usk—3,Usk—4) : k€Z"}yU{(Usks1,Usk): k € Z"},
P(r,2,+ | 2)=

{(Usg—2,Us—3) : k€ ZJr} U{(Usk,Ugi—1) : k € Z+}.

Theorem 2.20.
IM(r,2,%|-2) = —x

{(rVigk—7 +4,2(Vigh—7 — 1), AUrok—7) : keZ'}U
{(rVigks1 +4,2(Viggs1 — 1), AUsogy1) @ k€ZT},
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1
IM(r,2,%|2) = N

{(rVigk—5 — 4,2(Vigg—s + 1), AUro—5) : keZ}U
{(Viak—1 —4,2(Vigk—1 +7), AUsp 1) = keZ}

Lemma 2.21.

P(r,2,+ | 2A) ={(Vop_3,Ver_4) : k € ZT}
U{(Veks1,Ver) : forr>1, k€ Nandforr=1kecZ"},
P(r,2,* ‘ —2A) = {(V(;k_g,%k_g) ke Z+} U {(Vﬁk, Vek—1) : k € Z+}.

Theorem 2.22.

(r,2,[28) = {(rVior—7 = 4,2(Vigk—7 +7),7Vio—7 + 2Vigpg) : k € ZT}
UL Vigks1 — 4, 2(Vigkyr +7),7Vigkgr +2Vigg) -
forr > 1, k€ Nand for r =1, k:EZ"’},

O(r,2,*| —2A) =
{(rVigk—s + 4,2(Vigg—s5 — 1), Vigk—s5 + 2Vig—¢) : k € Z*}
U{(rVigk—1 +4,2(Vigg—1 — 1), rVigk—1 + 2Vigk—2) : k€ Z'}

For m = 2 and n = r, we consider the families of primitive Pythagorean
triples of the form II(2,r, x| t), where ¢ is a small integer. From (2),
every primitive Pythagorean triple (a,b,c) in II (2,7, * | t) satisfies the
equation 2b—ra = t, which implies that the parameters ¢’ and f’ satisfies

the equation
e —ref — 2 =t. (15)

Multiplying (15) by 4 and completing the square yields
(2 —rf?)? — Af? = 4. (16)

If we take w' = 2¢’ —rf" and t = +1, £A in (16), respectively, the proofs
of Lemmas 2.23 and 2.25 and Theorems 2.24 and 2.26 are completed.
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Lemma 2.23

P'(2,r,%| 1) = (Ugspyo,Ugy1):forr > 1,k € Nand for r = 1,k € Z'},
P’ (2,r, x| 1) = {(Usg-1,Ugk—2): k € Z+}.

Theorem 2.24.

1
II(2,r,*|—1) = A % {2WVigkg3 + 1), 7Viggss — 4, AUjgp43)

for r > 1, k€eN and for r =1, k€Z+} ,

1
II (2,7", * | 1) = E{(2(V12k_3 - T),Tvlgk_g + 4, AUlgk_g) ke Z+}.

Lemma 2.25.

P (2,r,%|A) = {(Vert2, Vort1) : k € N},
P 2,r,%| -A) = {(Vop_1,Ver_2): k€ Z}.

Theorem 2.26.

1
IL(2,rx|A) = 3 % {(2(Vigk+3 — 1), Vigkes + 4,7 Vigkss 4+ 2Vigk42) : kEN},
I(2,r | —A) = {(2(Vigg—3 +7),mVigk—3 — 4,7Viok_3 + 2Vi9p—4) : k € Z}.
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