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Abstract. Let R be a 2-torsion free semiprime ring and 7' : R — R be
a Jordan left centralizer associated with a l-semi Hochschild 2-cocycle
a:RXR — R. Then, T is a left centralizer associated with . Applying
this main result, we prove that every Jordan generalized derivation on
a 2-torsion free semiprime ring is a generalized derivation.
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1. Introduction

Throughout this paper, R denotes an associative ring with the center
Z(R), T is considered as an additive map on R and « is a biadditive
map from R x R into R. Given an integer n > 2, a ring R is said to be
n-torsion free, if for z € R, nx = 0 implies that z = 0. We denote by
[, y], the commutator zy — yx, for all x,y € R. Recall that a ring R is
prime if for z,y € R, 2Ry = {0} implies that either z = 0 or y = 0, and
is semiprime in the case that xRz = {0} implies that z = 0. An additive
map D : R — R is called a derivation if D(zy) = D(z)y + xD(y) holds
for all z,y € R and is called a Jordan derivation in the case that D(z?) =
D(z)x + xzD(x) is fulfilled for all z € R. Obviously, every derivation is
a Jordan derivation, but the converse is not true, in general. A well-
known result of Herstein [8] states that in the case that R is a prime
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ring of characteristic not 2, then every Jordan derivation D : R — R is a
derivation. A brief proof of this result has been presented in [5]. Cusack
[6] has extended Herstein’s result to 2-torsion free semiprime rings (see
also [4] for an alternative proof). An additive map 7' : R — R is called
a left (resp. right) centralizer if T'(zy) = T'(x)y (resp. T'(zy) = 2T (y))
holds for all z,y € R. We call T' a centralizer whenever T is both a left
and a right centralizer. An additive map 7' : R — R is called a Jordan
left (right) centralizer when T'(z?) = T'(z)z (resp. T'(x?) = 2T(x)) holds
for all z € R. Following some ideas from [4], Zalar [11] proved that any
left (resp. right) Jordan centralizer on a 2-torsion free semiprime ring
is a left (resp. right) centralizer. By using the main results of [4] and
[11], Vukman [10] proved that every Jordan generalized derivation on a
2-torsion free semiprime ring is a generalized derivation. By using the
main result of this paper, we offer an alternative proof for this result of
Vukman.

A bi-additive map « : R x R — R is said to be a [-semi Hochschild
2-cocycle if

Oé(l‘y, Z) - a(ajjyz) + OZ(CC, y)Z =0,

for all x,y,z € R. A l-semi Hochschild 2-cocycle o is said to be symmet-
ric (resp. anti symmetric) if a(z,y) = a(y, x) (resp. a(z,y) = —a(y, z))
for all z,y € R. We say that an additive map T : R — R is a left central-
izer associated with «, if there exists a bi-additive map a: R X R = R
such that T'(zy) = T(z)y + a(x,y) holds for all z,y € R. Clearly, in
this case we have

alzy,z) — a(z,yz) + a(z,y)z = T'(zyz) — T(xy)z — T(xyz)+
T(x)yz +T(xy)z — T(z)yz =0,

for all z,y, z € R. It means that « is a l-semi Hochschild 2-cocycle. Let
a: R xR — R be a l-semi Hochschild 2-cocycle. An additive map
T : R — R is said to be a Jordan left centralizer associated with «,
whenever T'(z?) = T(x)x + a(x,z) for all x € R. A bi-additive map
A: R xR — R is called a r-semi Hochschild 2-cocycle if \(z,zy) —
Azz,y) + zA(z,y) = 0 for all z,y,z € R. An additive map T: R — R
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is said to be a right centralizer associated with A, if there exists a bi-
additive map A : R x R — R such that T'(zy) = 2T (y) + A(z,y) for all
xz,y € R. Obviously, A is a r-semi Hochschild 2-cocycle.

Let T(z%) = T(xz)x + a(z,x) for all z € R (1). Replacing « by = +y
in (1), we get T'(zy + yx) = T(x)y + T(y)z + a(z,y) + a(y,x) for all
xz,y € R (2). Note that if R is a 2-torsion free ring, then (1) and (2)
are equivalent. Some authors define a Jordan left centralizer as follows:
An additive map T : R — R is called a Jordan left centralizer if
T(xy + yz) = T(z)y + T(y)x holds for all z,y € R. With this hy-
pothesis, we have T'(zxy) — T'(z)y = —(T(yzx) — T'(y)x) (3). If we de-
fine a(x,y) = T(xy) — T(z)y (z,y € R), then it follows from (3) that
a(z,y) = —a(y,x) and it means that « is anti symmetric. Suppose
that T : R — R is a left centralizer associated with «, i.e. T'(zy) =
T(z)y + a(x,y) for all z,y € R. If « is anti symmetric, then we have
T(zy) — T(x)y = —T(yx) + T(y)z and consequently, T(zy + yz) =
T(x)y+T(y)x for all z,y € R. It means that T is a Jordan left central-
izer. Therefore, If & : R x R — R defined by a(z,y) = T'(zy) — T(z)y
is anti symmetric, then T is a Jordan left centralizer if and only if T is
a left centralizer associated with the [-semi Hochschild 2-cocycle a.

Similar to the approach presented in [11], we prove the following main
result:

Let R be a 2-torsion free semiprime ring and 7' : R — R be a Jordan
left centralizer associated with «, where « is a l-semi Hochschild 2-
cocycle. Then, T is a left centralizer associated with a.

In this paper, we show that derivations, generalized derivations, o-
derivations, generalized o-derivations, (o, 7)-derivations and 6-centralizers
are left centralizer associated with a suitable I-semi Hochschild 2-cocycle.
This means that the aforementioned concepts can be unified and in-
tegrated together. By reviewing some papers ( [1], [2], [3], and refer-
ences therein) about Jordan left (0, ¢)-derivations, (6, ¢)-derivations, 7-
centralizers and a-centralizers on 2-torsion free semiprime rings, it is
observed that the maps like 6, ¢, and 7 are supposed as homomor-
phism and automorphism. We believe this assumption can reduce the
generality of the topic. In this paper, therefore, we are going to present
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some results about Jordan o-derivations, Jordan (o, 7)-derivations, Jor-
dan generalized derivations and Jordan generalized o-derivations based
on the new type of left centralizers, while 7, o and 6 are not supposed ho-
momorphism, necessarily. It is one of the reasons that obviously proves
performance and application of this type of centralizers.

2. Centralizer Associated with Semi Hochschild
2-Cocycle

Definition 2.1. A biadditive map o« : R x R — R is said to be a I-
semi Hochschild 2-cocycle if a(zy,z) — a(x,yz) + a(z,y)z = 0 for all
r,Yy,2 €R.

Definition 2.2. For a biadditive map o : R Xx R — R, an additive
map T : R — R is said to be a left centralizer associated with o if
T(xy) =T(x)y + a(z,y) for all z,y € R.

As we mentioned in the introduction, such « is a l-semi Hochschild 2-
cocycle.

Example 2.3. Every derivation D : R — R is a left centralizer associ-
ated with @ : RXxR — R defined by a(z,y) = xD(y) for all x,y € R. We
have

a(zry, z) — a(z,yz) + a(x,y)z = xyD(z) — xD(yz) + D(y)z
=zyD(z) —2yD(z) — 2D(y)z + 2D(y)z
= 0.

Hence, D(zy) = D(z)y + xD(y) = D(x)y + a(z,y) is a left centralizer
associated with a.

Example 2.4. Suppose D : R — R is a derivation. Then, every D-
derivation f : R — R is a left centralizer associated with «, if « is
defined as above.

Example 2.5. Suppose § : R — R is an endomorphism. Then, h =
0 — id, where id is the identity mapping on R , is a (0, id) — derivation
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as following:

h(zy) = 0(xy) — xy = 0(z)0(y) — O(x)y + O(x)y — xy = h(x)y + 0(x)h(y).

If we define a(z,y) = O(x)h(y) for all z,y € R, then « is a l-semi
Hochschild 2-cocycle. It means that h is a left centralizer associated with
Q.

Furthermore, suppose that T : R — R is a left 6 — centralizer, i.e. T
is additive and T'(xy) = T'(z)f(y) holds for all z,y € R. Considering
h =60 — id, we have

T(xy) = T(2)0(y) = T(x)(h +id)(y) = T(x)(h(y) +y)
=T(z)y + T (2)h(y).

Defining a(x,y) = T'(z)h(y) for all z,y € R, we conclude that « is
a l-semi Hochschild 2-cocycle. Hence, T is a left centralizer associated
with .

Example 2.6. Let 0,7 : R — R be two endomorphisms and d : R — R
be a o-derivation.

(i) Every (o, 7)-derivation F' : R — R is a left centralizer associated
with «, if a is defined by a(x,y) = F(x)(o — id)(y) + 7(x) F(y).

(ii) Suppose § : R — R is a generalized o-derivation. Put a(z,y) =
d(z)(c —id)(y) + o(x)d(y), where d : R — R is a o-derivation, so ¢ is
a left centralizer associated with a. Let T': R — R be a Jordan left

centralizer associated with «, and define 1) : R x R — R by ¥(z,y) =
T(zy) — T(z)y — a(z,y) for all ,y € R. The following proposition
demonstrates several properties of .

Proposition 2.7. Let ¥, a and T be as above. The bi-additive map ¢
satisfies the following:

(1) ¥ is anti symmetric, i.e. ¥(z,y) = —P(y,x),

(2) ¢ is a l-semi Hochschild 2-cocycle,

(3) 26(wy, 2) +(r,9)2 — V(g ) + V(2 2)y = O,

(4) If R is a 2-torsion free ring, then (xy,z) + ¥(xz,y) =0,

(5) If R is a 2-torsion free ring, then ([x,y], z) = —(z,y)z,

(6) If R is a 2-torsion free ring, then (x,y)[z, w] + ¥(z,w
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(7) If R is a 2-torsion free ring, then ¥ ([z,y]z,w) =0,
(8) If R is a 2-torsion free ring, then ¥ (x,y)[z, w]r =0,
forall z,y,z,7 € R.

Proof. (1) and (2) are straightforward.
For proving (3), we have

20(zy, z) + ¥(x,y)z — Yy, 2)x + (2, 2)y = 2¢¥(zy, 2) + ¥(x,y)z + (2, 9)z

+(z,2)y =T(xyz) — T(xy)z — afzy, 2) — alzy, 2) — T(z)yz — a(z,y)z

+T(zy)z = T(2)yz — a(z,y)z + T(z2)y — T(2)zy — oz, 2)y + T(zyz)

= —T(zzy) + T(2)zy + oz, zy) — a(zy, z) + T(yz)z — T(yzz) + a(yz, z)
+ ax,yz) — a(z,y)z + T(zy)r — T(2)yx — a(z,y)x + T(zx)y — T(2)zy
(27 z)y =T(yzz) — T(y)zz — aly, zz) — a(zz,y) + alz, zy) — a(zy, 2)
T(yz)x — T(yzx) + a(yz,x) + ax,yz) — oz, y)z + T(zy)z — T(2)yx

(z,y)z — alz,z)y

= [T(yz) = T(y)z — aly, 2) + T(zy) = T(2)y — oz, )]z

= la(za,y) — a(z, 2y) + oz, 2)y] — [(zy, 2) — a(z,yz) + a(z,y)?]

=0.

(4): By using (3), we get ¢(zy,2) = —¢(z,y)z + ¥ (y, 2)x — (2, 2)y —
B(zy, 2) and Y(z2,y) = (@, )y + (2 ¥)7 — By, 2)z — B(z2,y). Ap-
plying the previous two equations with the fact that 4 is anti symmetric,
we have $(zy, 2) + ¥(22,9) = —(ay, 2) — P(z2,y), Le. 2At(zy,?) +
Y(xz,y)) = 0. Since R is a 2-torsion free ring, ¥ (zy, z) + ¥ (xz,y) = 0.
(5): This part is achieved from (1), (2) and (4), immediately.
6): This part is obtained from (1) and (5).
7): By using (2) and (5) our aim is achieved.
8): We have (z, y)[z, wlr = —¢(zy, [z, w]r) + ¥ (x, y[z, w]r)

U([z, wlr, zy)+id(z, [yz, wir=[y, w]zr) = 0=([yz, w]r, 2)+([y, w]zr, z)
0 (see (7). O

— N

The following lemma has been proved by Zalar [11]. Now, we provide
another proof for it.

Lemma 2.8. Let R be a semiprime ring and a € R be a fized element.
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Then alx,y] = 0 for all x,y € R if and only if there exists an ideal T of
R contained in Z(R) such that a € T.

Proof. First, note that [zy, z] = [z, 2]y + 2|y, 2] and [z, yz] = [z, y]z +
ylx, z] for all z,y, z € R. Let a[z,y] = 0 for some fixed element a and for

all z,y of R. We have [a, z]y[a, z] = ([ay, x| — aly, z])]a, x] = [ay, x][a, x]
and further, [ay[a, z], 2] = |ay, z][a, ] + ay[[a, =], z] for all z,y € R. So,
[a, 2]yla, 2] = [ay, z][a, z]
= layla, z], 2] — ay[[a, 2], 2]
= la(lya, =] = ly, z]a), 2] — a(lyla, x], 2] — [y, z][a, x])

= [alya, z] — aly, x]a, z] — aly[a, z], z] + aly, z][a, x]
= 0.

Since R is semiprime, [a,z] = 0 for all x € R, i.e. a € Z(R). Suppose
7T = < a > denotes the ideal generated by a . Hence, we have I =
{ra + as + na + X" r;as; | r,s,ri,s; € R, n € Z,i = 1,2,...,m}.
Therefore, [ra + as + na + X" r;as;, ] = 0 and thus, a € Z C Z(R).
Conversely, assume that a € Z C Z(R), where Z is a bi-ideal of R. We
will show that a[x,y] = 0 for all z,y € R. Note that (a[z,y])z(alz,y]) =
([az,y] — [a,y]z)z(Jax,y] — [a,y]x) = [az,y]z[az,y] = 0. Since R is
semiprime, alz,y] = 0 for all z,y € R and our purpose is achieved. O

We are now ready for the following main result.

Theorem 2.9. Let R be a 2-torsion free semiprime ring and T : R — R
be a Jordan left centralizer associated with a l-semi Hochschild 2-cocycle
a:RXR—R. Then, T is a left centralizer associated with o.

Proof. By hypothesis,
T(z%) = T(x)x + oz, z) for all z € R. (1)

Replacing = by z + vy in (1), we get T(z?) + T'(zy + yz) + T(y?) =
T(x)x+T(x)y+T(y)z +T(y)y + alz,z) + az,y) + aly, z) + a(y,y).
This equation together with (1) imply that

T(zy+yzx) =T(x)y+T(y)z + a(z,y) + a(y,z) for all x,y € R. (2)
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We replace y by xy + yx in (2) to get

T(x(zy + yx) + (zy + yx)z) = T(2)zy + T(x)yz + T(x)yx + T(y)z*+

a(z,y)z +aly, )z + a(z, vy) + oz, yr) + a(ry, z) + a(yr, ). (3)
But this can also be calculated in a different way.

T(22y + yz?) + 2T (zyx) = T(x)zy + a(z, z)y + T(y)z? + a(z?, y)
+a(y, 2?) + 2T (zyx) = T(2)zy + oz, )y
+T(y)a* + a(z,zy) — a(z,2)y + alyz, z)
+ oy, z)x + 2T (xyx).

It means that

T(x?y + yz?) 4 2T (zyz) = T(x)zy + a(z, z)y + T(y)z* + a(z, zy)

—a(z, )y + alyz, ) + aly, v)z + 2T (zyz). (4)

Comparing (3) and (4), it is obtained that 27'(z)yz+o(z, y)r+a(z, yx)+
a(zy,z) = 2T (zyx). Hence, 2T (x)yz + oz, y)z + a(x, yx) + a(z, yx) —
a(z,y)r = 2T (zyx). It means that

T(ayz) = T(x)yz + alz,yo). (5)
Putting x4+ z for z in (5), we have T'(z)yx + T (z)yz+ T (2)yx+ T (2)yz+
a(z, yx)+a(x, yz)+a(z, yx)+al(z,yz) = T(eyx)+T (xyz+zyz)+T (2y2).
The last equation together with (5) imply that

T(xyz + zyx) = T(z)yz + T'(2)yx + a(z,yz) + a(z, yzx). (6)

Put m = T(zyzyzr + yxzzy). We compute m in two different methods.
Using (5), we have

m = T(z)yzyz + oz, yzyz) + T(y)zzay + a(y, zzzy) (7)
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and by applying (6), we have
m = T(zy)zyz + T(yx)zay + a(vy, 2yz) + o(yz, zzy). (8)
So,
0=m—m=T(zy)zyz + T(yz)zzy + a(zy, zyx) + a(yx, zzy)
T(x)yzyz — oz, yzyz) — T(y)zzey — aly, vzry)
= T(xy)zyx + T(yx)zzy + a(xy, zyzr) + o(yz, 22y)
T(x)yzyzr — T(y)zzzy — alzy, 2yz) — alz, y)zyz
a(yz, zry) — aly, x)zzy.

Hence, (T'(zy) —T(z)y —a(z,y))zyz+(T(yz) - T(y)z — a(y, z))zzy = 0.
By the last equation and introducing a bilinear map ¢ (z,y) = T'(zy) —
T(z)y — a(x,y), it can be achieved that

Pz, y)zye + ¢y, x)zey = 0. (9)

It follows from (2) that i (z,y) = —¢(y, x). Using this fact and equality
(9), we obtain

(x,y)z[x,y] =0 for all x,y,z € R. (10)
Replacing = by = + w in (10), we get
0=1v(x+u,y)zlx+ u,y]
= (V(z,y) + ¥(u,y)z([z, y] + [u, y])

= (z,y)z[z, y] + (@, y)2z[u, y] + P (u, y)z[2, y] + (v, y)2[u, y]
=0+ ¥(x,y)z[u, y] + ¥ (u,y)z[z,y] + 0.

Therefore,
V(x,y)zu,y| + Y(u,y)z[z,y] =0 for all z,y,z,u € R. (11)
Using (10) and (11), we find
(W(z, y)z[u, yhw((z, y)z[u, y]) = (@, y) (z[u, ylwi(z,y)2)[u, y]

= —(u,y)z[u, ylwi(z, y)z[z, y]
= 0.
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Since R is semiprime, we obtain
Y(z,y)zlu,y] =0 for all z,y,z,u € R. (12)
Replacing y by y + v in (12), we arrive at

(@, y)zlu, y] + (2, y)z[u, v] + (2, v)2[u, y] + (2, v)2[u, v] = 0,

this equation together with (12) imply that

From (13) and the fact that ¢ (x,y)z[u,y] = 0, it can be concluded that

(W2, y)2[u, v)w (2, y)zlu, o)) = Pz, y) (2w, v]wip(z, y) 2)[u, V]
= = (x, v)z[u, v]wip(x, y)z[u, y]
=0.

Now, we have

V(z,y)z[u, v]wy (2, y)2[u, v] = 111( u, v|wp(z, y)2)[u, v]
u, vlw(z,y)z)[u,y] (see 13)
Y(z,v)z[u, v]w((z, y)z[u, y])

=0. (see 12)

—~~ —
N

Reusing the fact that R is semiprime, it seen that
Y(z,y)zlu,v] =0 for all z,y,z,u,v € R. (14)
Hence,
(), o]z, y) s o] = (@, y) (fu, vz, ), o] =0, (see 14)
and it follows from semiprimeness of R that
Y(x,y)u,v] =0 for all z,y,u,v € R. (15)

Now, let  and y be two fixed elements of R and for convenience write
¥ instead of ¥(z,y). Using Lemma 1 we get the existence of an ideal Z
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such that ¢» € Z C Z(R). In particular, yi, vy € Z(R) for all y € R.
This gives us

wap?y =Py = y’a =y’ (16)

and so, 4T (z.1%y) = 4T (y.4p*>z). Both sides of this equality will be
computed using (2) and (16). Indeed, we have

AT (z.4p%y) = AT (y.4%x).
= 2T (xp%y + wa:L‘) = 2T (yp%x + way).

=27 (2)¢%y + 2a(x, p%y) + 2T (V%y)x + 2a(hy, x)
= 2T () z + 2a(y, ¥*z) + 2T (Y *2)y + 2a(P*z, ).

=27 (x)yp*y + 20z, *y) + T(V%y + y*)x + 20(¢y, v)
= 2T (y)¢°z + 2a(y, ¥’z) + T(V*x + 29y + 2a(P’z, y).

=2T(2)y%y + 2a(z,¥?y) + T(W?)yz + a(?, y)x + T(y)*z + a(y, v*)z
+20(vy, ) = 2T (y)v’x + 2a(y, °z) + T(P)ay + a(, )y
+ a(@? 2)y + T(2)¢*y + alz, ¥?)y + 2a(¥*z, y).

=T (2)Y%y + 2a(z, ¥*y) + T(¥)yr + a(¥, ¥)yz + a(@?, y)z + aly, ¥*)z
+2a(P?y, ) = T(y)y*z + 2a(y, ¥*x) + T(W)vay + a(y,¥)zy
+a(@? 2)y + az, )y + 2a(¥’z, y).

Since Yyx = xy = Yy, we obtain

T(2)e?y +2a(z, %) + o, Y)yr + a(¥? y)z + aly, v*)e + 2a(V?y,z) =

T(y)ye +2a(y, v*x) + oy, ¥)zy + a(¥?,2)y + alz, ¥y + 2a(y?z,y).
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Rearranging (17) we get

T(y)zy® = T(x))*y + 20z, ¥°y) + a(, ¥)yx + a(¥?, y)z + oy, v*)z+

2a(¢?y, z) — 2a(y,¢*z) — a(y,¥)ry — a(V?, 2)y — a(z,¥?)y — 20Uz, y).

(18)
On the other hand, we also have

AT (wyy®) = AT (z1h.y))
= 2T (zyp? + p?xy) = 2T (xyt) + yhxa))

=27 (zy)y? + 2T (V*)zy + 202y, ¥?) + 20(4p*, )
= 2T (a )y + 2T (by)p + 2a(Pz, Yy) + 2a(y, Px)

=27 (xy)y” + 2T (Y)pary + 2a(, P)ay + 2a(zy, ) + 2a(P?, 2y)
= 2T (yz)py + 2T (Yy)px + 2a(vz, vy) + 2a(vy, Px)

=2T(zy)¢® + 2T (Y)zy + 20(h, ¥)zy + 2a(xy, ¥?) + 2a (¥, zy)
=T (x4 )y + T(yy + vy)v + 20(vpz, vy) + 20(tby, )

=2T (zy)¢” + 2T (Y)Yzy + 2a (P, ¥)zy + 20wy, ©*) + 20(4p%, zy)
=T(@)0%y + alz, )y + a(, 2)y + T(V)pay + T(y)P e
+ aly, V)x + T()Yry + (v, y)x
+ 2a(Yz, Yy) + 2a(py, P)

=2T (zy)¥* + 2a(¥, ¥)zy + 2a(zy, ¥°) + 2a(¢?, 2y) = T(2)y%y + alz, ¥)vy

+a(, 2y + T(y)ay® + aly, ¥)vz + a(v, y)vr + 2a(dz, by) + 2a(dy, Pz)
(19)
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Using (18) and (19), we have

2T (zy)* + 20, ¥)zy + 2a(ay, ¥*) + 20y, zy) = T(2)0*y + alz,¥)vy
+ a(, )by + aly, Y)vx + a(, y)vr + 2a(pz, hy) + 2a(Yy, Yr)
+ T ()Y + 2a(z, ¥y) + (v, ¥)yz + a(y®, y)z + aly, )z
+2a(y?y, x) — 2a(y, ¥*x) — a(, Y)zy — a(y?, 2)y
— oz, )y — 2a(¢’z,y)

Hence,

2T (zy)yp® — 2T (x)yp* = oz, )y + a(yh, 2)vy + aly, )z + a(P, y)e
+ 20(¢, Yy) + 20(Py, ) + 2a(z,y)
+a(y, Y)yz + a(®?, y)z + aly, v*)z + 20y, o)
— 2a(y, v*z) — a(, P)zy — a(V?, )y — alz, )y
—20(¢*x,y) — 2a (b, )zy — 20(zy, ¥°)
—2a(? 2y) (%)

Our next task is to prove the equation bellow:
2(T(zy) — T(w)y — a(x,y))Y* =0

In order to prove the previous equation we need the following relations:

a(Y, z)hy = a(y, 2¥)y — alr, )y = a(Y, )y — a(z, )y
= a(P?, 2)y + (i, ¥)zy — oz, )y (i)

2a(Yx,py) = a(x 4+ 2, ¢y) = a(z,Py) + a(zy, Yy)
a(¥’z,y) + a(Vz, ¥)y + alz, vy)
«

W’z y) + alz, ¥*)y — oz, ¥)py + a(zy, vy) (i)

(Y, y)x = a(P, yhx) — a(yy,vr) = a(Y,Yry) — a(y, Yr)
a(¥?, zy) + (¥, ¥)zy — a(iy, ) (i71)
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2a(Py, va) = 20(y, Ya) = 2a(y, ¥°z) — 2a(y, ) (iv)

a(i, dyr) — a(y®,yx) = a(v, Yay) — a(P?, y)
a(¢27 xy) + 0‘(1/’7 Tﬁ)xy - a(¢27 y.fl?)
a(? zy) + oy, ¥)zy — oy, x) — a(® y)z (v)

(Y, )y

a(?ﬁny l’) = Oé(y¢2, l‘) = Oé(y, ¢2$) - Oé(y, ¢2)$ (UZ)
—20&($y, ¢2) = _205(*7:7 y¢2) + 20‘(1:’ y)¢2 (UZ’L)
—a(yr,y) = —a(z, Py) + a(dz, )y (viii)

By using the above eight relations, the equation (x) turns into

2(T(zy) — T(x)y — a(z,y))$* = 0.

Since R is a 2-torsion free ring, the above equation reduces to (T'(zy) —
T(z)y — a(z,y))y? = 0, and this means that ¢ = 0. Hence, ¥?*Ry)? =
PR = 3R = {0}. Thus, the semiprimeness of R implies that )2 = 0.
Furthermore, we have ¥Rv¢ = >R = {0}. Reusing the fact that R is a
semiprime ring, it is concluded that ¢ = 0. This is exactly what we had
to prove. [

The Previous theorem implies the following corollaries.

Corollary 2.10. Let R be a 2-torsion free semiprime ring and o,T :
R — R be additive maps such that T(x?) = T(x)o(x) for all z € R. If
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T(zy)o(z) — T(xy)z — T(z)o(yz) + T(x)o(y)z = 0 for all z,y,z € R,
then T'(zy) = T (x)o(y) for all z,y € R.

Proof. Note that T'(z?) = T(x)o(x) = T(z)(z + o(z) — x) = T(z)x +
T(z)(o(x) — x) for all z € R. By defining a(z,y) = T(x)(c(y) — y) and
using the hypothesis, we have

a(ry, 2) — a(r,y2) + a(r,y)z = T(zy)(o(2) — 2) = T(z)(o(y2) — y2)

+T(z)(o(y) —y)z

= T(zy)o(2) — T(xy)z — T(x)o(yz)
+T(2)yz + T(z)o(y)z — T(z)yz

=T(xy)o(z) — T(xy)z — T(x)o(yz) + T(z)o(y)z

=0.

It means that « is a I-semi Hochschild 2-cocycle. By using Theorem 2.9,
it is obtained that

T(zy) = T(x)y + a(z,y) = T(x)y + T(x)(o(y) — y)
=T(x)y + T(x)a(y) — T(x)y
=T(z)o(y)
forall z,y e R. 0O
Corollary 2.11. Let R be a 2-torsion free semiprime ring and 6 : R —
R be a Jordan generalized o-derivation, i.e. 6(z%) = 6(z)o(z)+o(x)d(x)

for each x € R and some o-derivation d on R. Assume that T = —d
has the following property:

T(zy)o(z) —T(xy)z —T(z)o(yz) + T(z)o(y)z =0 for all z,y,z € R.
Then, § is a generalized o-derivation.

Proof. We have
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for all z € R. According to the previous corollary, T'(zy) = T'(x)o(y)
for all z,y € R. Hence,

6(zy) = T'(zy) + d(zy) = T(x)o(y) + d(z)o(y) + o(x)d(y)
= d(x)o(y) + o(x)d(y)

for all z,y € R.

The following corollary has been proved by Vukman in [10]. Now, we
present an alternative proof for it.

Corollary 2.12. Let R be a 2-torsion free semiprime ring and
0 : R — R be a Jordan generalized derivation. In this case § is a
generalized derivation.

Proof. We have the relation 6(22) = 6(z)z +xd(z) for all z € R, where
d is a Jordan derivation of R. It follows from Theorem 1 of [4] that d is

a derivation. The proof is completed by substituting ¢ = id in Corollary
2.11. O
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