Journal of Mathematical Extension Vol. 10, No. 3, (2016), 119-135

ISSN: 1735-8299

URL: http://www.ijmex.com

A General Characterization of Additive Maps on Semiprime Rings

A. Hosseini

Kashmar Higher Education Institute

Abstract. Let \mathcal{R} be a 2-torsion free semiprime ring and $T: \mathcal{R} \to \mathcal{R}$ be a Jordan left centralizer associated with a *l-semi Hochschild 2-cocycle* $\alpha: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$. Then, T is a left centralizer associated with α . Applying this main result, we prove that every Jordan generalized derivation on a 2-torsion free semiprime ring is a generalized derivation.

AMS Subject Classification: 47B47; 17B40; 16N60 Keywords and Phrases: Jordan derivation, jordan centralizer, l-semi hochschild 2-cocycle, 2-torsion free semiprime ring

1. Introduction

Throughout this paper, \mathcal{R} denotes an associative ring with the center $Z(\mathcal{R})$, T is considered as an additive map on \mathcal{R} and α is a biadditive map from $\mathcal{R} \times \mathcal{R}$ into \mathcal{R} . Given an integer $n \geq 2$, a ring \mathcal{R} is said to be n-torsion free, if for $x \in \mathcal{R}$, nx = 0 implies that x = 0. We denote by [x,y], the commutator xy - yx, for all $x,y \in \mathcal{R}$. Recall that a ring \mathcal{R} is prime if for $x,y \in \mathcal{R}$, $x\mathcal{R}y = \{0\}$ implies that either x = 0 or y = 0, and is semiprime in the case that $x\mathcal{R}x = \{0\}$ implies that x = 0. An additive map $D: \mathcal{R} \to \mathcal{R}$ is called a derivation if D(xy) = D(x)y + xD(y) holds for all $x,y \in \mathcal{R}$ and is called a Jordan derivation in the case that $D(x^2) = D(x)x + xD(x)$ is fulfilled for all $x \in \mathcal{R}$. Obviously, every derivation is a Jordan derivation, but the converse is not true, in general. A well-known result of Herstein [8] states that in the case that \mathcal{R} is a prime

Received: December 2015; Accepted: March 2016

ring of characteristic not 2, then every Jordan derivation $D: \mathcal{R} \to \mathcal{R}$ is a derivation. A brief proof of this result has been presented in [5]. Cusack [6] has extended Herstein's result to 2-torsion free semiprime rings (see also [4] for an alternative proof). An additive map $T: \mathcal{R} \to \mathcal{R}$ is called a left (resp. right) centralizer if T(xy) = T(x)y (resp. T(xy) = xT(y)) holds for all $x, y \in \mathcal{R}$. We call T a centralizer whenever T is both a left and a right centralizer. An additive map $T: \mathcal{R} \to \mathcal{R}$ is called a Jordan left (right) centralizer when $T(x^2) = T(x)x$ (resp. $T(x^2) = xT(x)$) holds for all $x \in \mathcal{R}$. Following some ideas from [4], Zalar [11] proved that any left (resp. right) Jordan centralizer on a 2-torsion free semiprime ring is a left (resp. right) centralizer. By using the main results of [4] and [11], Vukman [10] proved that every Jordan generalized derivation on a 2-torsion free semiprime ring is a generalized derivation. By using the main result of this paper, we offer an alternative proof for this result of Vukman.

A bi-additive map $\alpha: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is said to be a *l-semi Hochschild* 2-cocycle if

$$\alpha(xy, z) - \alpha(x, yz) + \alpha(x, y)z = 0,$$

for all $x, y, z \in \mathcal{R}$. A *l-semi Hochschild 2-cocycle* α is said to be symmetric (resp. anti symmetric) if $\alpha(x,y) = \alpha(y,x)$ (resp. $\alpha(x,y) = -\alpha(y,x)$) for all $x,y \in \mathcal{R}$. We say that an additive map $T: \mathcal{R} \to \mathcal{R}$ is a left centralizer associated with α , if there exists a bi-additive map $\alpha: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ such that $T(xy) = T(x)y + \alpha(x,y)$ holds for all $x,y \in \mathcal{R}$. Clearly, in this case we have

$$\alpha(xy,z) - \alpha(x,yz) + \alpha(x,y)z = T(xyz) - T(xy)z - T(xyz) + T(x)yz + T(xy)z - T(x)yz = 0,$$

for all $x, y, z \in \mathcal{R}$. It means that α is a *l-semi Hochschild 2-cocycle*. Let $\alpha : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a *l-semi Hochschild 2-cocycle*. An additive map $T : \mathcal{R} \to \mathcal{R}$ is said to be a Jordan left centralizer associated with α , whenever $T(x^2) = T(x)x + \alpha(x,x)$ for all $x \in \mathcal{R}$. A bi-additive map $\lambda : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is called a *r-semi Hochschild 2-cocycle* if $\lambda(z, xy) - \lambda(zx, y) + z\lambda(x, y) = 0$ for all $x, y, z \in \mathcal{R}$. An additive map $T : \mathcal{R} \to \mathcal{R}$

is said to be a right centralizer associated with λ , if there exists a biadditive map $\lambda : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ such that $T(xy) = xT(y) + \lambda(x,y)$ for all $x, y \in \mathcal{R}$. Obviously, λ is a r-semi Hochschild 2-cocycle.

Let $T(x^2) = T(x)x + \alpha(x,x)$ for all $x \in \mathcal{R}$ (1). Replacing x by x + yin (1), we get $T(xy + yx) = T(x)y + T(y)x + \alpha(x,y) + \alpha(y,x)$ for all $x,y \in \mathcal{R}$ (2). Note that if \mathcal{R} is a 2-torsion free ring, then (1) and (2) are equivalent. Some authors define a Jordan left centralizer as follows: An additive map $T: \mathcal{R} \to \mathcal{R}$ is called a Jordan left centralizer if T(xy + yx) = T(x)y + T(y)x holds for all $x, y \in \mathcal{R}$. With this hypothesis, we have T(xy) - T(x)y = -(T(yx) - T(y)x) (3). If we define $\alpha(x,y) = T(xy) - T(x)y$ $(x,y \in \mathcal{R})$, then it follows from (3) that $\alpha(x,y) = -\alpha(y,x)$ and it means that α is anti symmetric. Suppose that $T: \mathcal{R} \to \mathcal{R}$ is a left centralizer associated with α , i.e. T(xy) = $T(x)y + \alpha(x,y)$ for all $x,y \in \mathcal{R}$. If α is anti-symmetric, then we have T(xy) - T(x)y = -T(yx) + T(y)x and consequently, T(xy + yx) =T(x)y + T(y)x for all $x, y \in \mathcal{R}$. It means that T is a Jordan left centralizer. Therefore, If $\alpha: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ defined by $\alpha(x,y) = T(xy) - T(x)y$ is anti symmetric, then T is a Jordan left centralizer if and only if T is a left centralizer associated with the *l-semi Hochschild 2-cocycle* α .

Similar to the approach presented in [11], we prove the following main result:

Let \mathcal{R} be a 2-torsion free semiprime ring and $T: \mathcal{R} \to \mathcal{R}$ be a Jordan left centralizer associated with α , where α is a *l-semi Hochschild 2-cocycle*. Then, T is a left centralizer associated with α .

In this paper, we show that derivations, generalized derivations, σ -derivations, generalized σ -derivations, (σ, τ) -derivations and θ -centralizers are left centralizer associated with a suitable l-semi Hochschild 2-cocycle. This means that the aforementioned concepts can be unified and integrated together. By reviewing some papers ([1], [2], [3], and references therein) about Jordan left (θ, ϕ) -derivations, (θ, ϕ) -derivations, τ -centralizers and α -centralizers on 2-torsion free semiprime rings, it is observed that the maps like θ , ϕ , and τ are supposed as homomorphism and automorphism. We believe this assumption can reduce the generality of the topic. In this paper, therefore, we are going to present

some results about Jordan σ -derivations, Jordan (σ, τ) -derivations, Jordan generalized derivations and Jordan generalized σ -derivations based on the new type of left centralizers, while τ , σ and θ are not supposed homomorphism, necessarily. It is one of the reasons that obviously proves performance and application of this type of centralizers.

2. Centralizer Associated with Semi Hochschild 2-Cocycle

Definition 2.1. A biadditive map $\alpha : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is said to be a 1-semi Hochschild 2-cocycle if $\alpha(xy,z) - \alpha(x,yz) + \alpha(x,y)z = 0$ for all $x,y,z \in \mathcal{R}$.

Definition 2.2. For a biadditive map $\alpha : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$, an additive map $T : \mathcal{R} \to \mathcal{R}$ is said to be a left centralizer associated with α if $T(xy) = T(x)y + \alpha(x,y)$ for all $x, y \in \mathcal{R}$.

As we mentioned in the introduction, such α is a l-semi Hochschild 2-cocycle.

Example 2.3. Every derivation $D: \mathcal{R} \to \mathcal{R}$ is a left centralizer associated with $\alpha: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ defined by $\alpha(x,y) = xD(y)$ for all $x,y \in \mathcal{R}$. We have

$$\alpha(xy,z) - \alpha(x,yz) + \alpha(x,y)z = xyD(z) - xD(yz) + xD(y)z$$

$$= xyD(z) - xyD(z) - xD(y)z + xD(y)z$$

$$= 0.$$

Hence, $D(xy) = D(x)y + xD(y) = D(x)y + \alpha(x,y)$ is a left centralizer associated with α .

Example 2.4. Suppose $D: \mathcal{R} \to \mathcal{R}$ is a derivation. Then, every D-derivation $f: \mathcal{R} \to \mathcal{R}$ is a left centralizer associated with α , if α is defined as above.

Example 2.5. Suppose $\theta : \mathcal{R} \to \mathcal{R}$ is an endomorphism. Then, $h = \theta - id$, where id is the identity mapping on \mathcal{R} , is a $(\theta, id) - derivation$

as following:

$$h(xy) = \theta(xy) - xy = \theta(x)\theta(y) - \theta(x)y + \theta(x)y - xy = h(x)y + \theta(x)h(y).$$

If we define $\alpha(x,y) = \theta(x)h(y)$ for all $x,y \in \mathcal{R}$, then α is a *l-semi Hochschild 2-cocycle*. It means that h is a left centralizer associated with α .

Furthermore, suppose that $T: \mathcal{R} \to \mathcal{R}$ is a left θ - centralizer, i.e. T is additive and $T(xy) = T(x)\theta(y)$ holds for all $x, y \in \mathcal{R}$. Considering $h = \theta - id$, we have

$$T(xy) = T(x)\theta(y) = T(x)(h+id)(y) = T(x)(h(y) + y)$$

= $T(x)y + T(x)h(y)$.

Defining $\alpha(x,y) = T(x)h(y)$ for all $x,y \in \mathcal{R}$, we conclude that α is a *l-semi Hochschild 2-cocycle*. Hence, T is a left centralizer associated with α .

Example 2.6. Let $\sigma, \tau : \mathcal{R} \to \mathcal{R}$ be two endomorphisms and $d : \mathcal{R} \to \mathcal{R}$ be a σ -derivation.

- (i) Every (σ, τ) -derivation $F : \mathcal{R} \to \mathcal{R}$ is a left centralizer associated with α , if α is defined by $\alpha(x, y) = F(x)(\sigma id)(y) + \tau(x)F(y)$.
- (ii) Suppose $\delta: \mathcal{R} \to \mathcal{R}$ is a generalized σ -derivation. Put $\alpha(x,y) = \delta(x)(\sigma id)(y) + \sigma(x)d(y)$, where $d: \mathcal{R} \to \mathcal{R}$ is a σ -derivation, so δ is a left centralizer associated with α . Let $T: \mathcal{R} \to \mathcal{R}$ be a Jordan left centralizer associated with α , and define $\psi: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ by $\psi(x,y) = T(xy) T(x)y \alpha(x,y)$ for all $x,y \in \mathcal{R}$. The following proposition demonstrates several properties of ψ .

Proposition 2.7. Let ψ , α and T be as above. The bi-additive map ψ satisfies the following:

- (1) ψ is anti symmetric, i.e. $\psi(x,y) = -\psi(y,x)$,
- (2) ψ is a l-semi Hochschild 2-cocycle,
- (3) $2\psi(xy,z) + \psi(x,y)z \psi(y,z)x + \psi(z,x)y = 0$,
- (4) If R is a 2-torsion free ring, then $\psi(xy,z) + \psi(xz,y) = 0$,
- (5) If \mathcal{R} is a 2-torsion free ring, then $\psi([x,y],z) = -\psi(x,y)z$,
- (6) If \mathcal{R} is a 2-torsion free ring, then $\psi(x,y)[z,w] + \psi(z,w)[x,y] = 0$,

- (7) If \mathcal{R} is a 2-torsion free ring, then $\psi([x,y]z,w)=0$, (8) If \mathcal{R} is a 2-torsion free ring, then $\psi(x,y)[z,w]r=0$, for all $x,y,z,r\in\mathcal{R}$.
- **Proof.** (1) and (2) are straightforward. For proving (3), we have

$$\begin{aligned} & 2\psi(xy,z) + \psi(x,y)z - \psi(y,z)x + \psi(z,x)y = 2\psi(xy,z) + \psi(x,y)z + \psi(z,y)x \\ & + \psi(z,x)y = T(xyz) - T(xy)z - \alpha(xy,z) - \alpha(xy,z) - T(x)yz - \alpha(x,y)z \\ & + T(zy)x - T(z)yx - \alpha(z,y)x + T(zx)y - T(z)xy - \alpha(z,x)y + T(xyz) \\ & = -T(zxy) + T(z)xy + \alpha(z,xy) - \alpha(xy,z) + T(yz)x - T(yzx) + \alpha(yz,x) \\ & + \alpha(x,yz) - \alpha(x,y)z + T(zy)x - T(z)yx - \alpha(z,y)x + T(zx)y - T(z)xy \\ & - \alpha(z,x)y = T(yzx) - T(y)zx - \alpha(y,zx) - \alpha(zx,y) + \alpha(z,xy) - \alpha(xy,z) \\ & + T(yz)x - T(yzx) + \alpha(yz,x) + \alpha(x,yz) - \alpha(x,y)z + T(zy)x - T(z)yx \\ & - \alpha(z,y)x - \alpha(z,x)y \\ & = [T(yz) - T(y)z - \alpha(y,z) + T(zy) - T(z)y - \alpha(z,y)]x \\ & - [\alpha(zx,y) - \alpha(z,xy) + \alpha(z,x)y] - [\alpha(xy,z) - \alpha(x,yz) + \alpha(x,yz)] \\ & = 0. \end{aligned}$$

(4): By using (3), we get $\psi(xy,z) = -\psi(x,y)z + \psi(y,z)x - \psi(z,x)y - \psi(xy,z)$ and $\psi(xz,y) = -\psi(x,z)y + \psi(z,y)x - \psi(y,x)z - \psi(xz,y)$. Applying the previous two equations with the fact that ψ is anti symmetric, we have $\psi(xy,z) + \psi(xz,y) = -\psi(xy,z) - \psi(xz,y)$, i.e. $2(\psi(xy,z) + \psi(xz,y)) = 0$. Since \mathcal{R} is a 2-torsion free ring, $\psi(xy,z) + \psi(xz,y) = 0$.

(5): This part is achieved from (1), (2) and (4), immediately.

- (6): This part is obtained from (1) and (5).
- (7): By using (2) and (5) our aim is achieved.
- (8): We have $\psi(x,y)[z,w]r = -\psi(xy,[z,w]r) + \psi(x,y[z,w]r)$ = $\psi([z,w]r,xy) + \psi(x,[yz,w]r - [y,w]zr) = 0 - \psi([yz,w]r,x) + \psi([y,w]zr,x)$ = 0 (see (7)). \square

The following lemma has been proved by Zalar [11]. Now, we provide another proof for it.

Lemma 2.8. Let \mathcal{R} be a semiprime ring and $a \in \mathcal{R}$ be a fixed element.

Then a[x,y] = 0 for all $x,y \in \mathcal{R}$ if and only if there exists an ideal \mathcal{I} of \mathcal{R} contained in $Z(\mathcal{R})$ such that $a \in \mathcal{I}$.

Proof. First, note that [xy, z] = [x, z]y + x[y, z] and [x, yz] = [x, y]z + y[x, z] for all $x, y, z \in \mathcal{R}$. Let a[x, y] = 0 for some fixed element a and for all x, y of \mathcal{R} . We have [a, x]y[a, x] = ([ay, x] - a[y, x])[a, x] = [ay, x][a, x] and further, [ay[a, x], x] = [ay, x][a, x] + ay[[a, x], x] for all $x, y \in \mathcal{R}$. So,

$$\begin{split} [a,x]y[a,x] &= [ay,x][a,x] \\ &= [ay[a,x],x] - ay[[a,x],x] \\ &= [a([ya,x] - [y,x]a),x] - a([y[a,x],x] - [y,x][a,x]) \\ &= [a[ya,x] - a[y,x]a,x] - a[y[a,x],x] + a[y,x][a,x] \\ &= 0. \end{split}$$

Since \mathcal{R} is semiprime, [a,x]=0 for all $x\in\mathcal{R}$, i.e. $a\in Z(\mathcal{R})$. Suppose $\mathcal{I}=< a>$ denotes the ideal generated by a. Hence, we have $I=\{ra+as+na+\sum_{i=1}^m r_ias_i\mid r,s,r_i,s_i\in\mathcal{R},\ n\in\mathbb{Z},i=1,2,...,m\}$. Therefore, $[ra+as+na+\sum_{i=1}^m r_ias_i,x]=0$ and thus, $a\in\mathcal{I}\subseteq Z(\mathcal{R})$. Conversely, assume that $a\in\mathcal{I}\subseteq Z(\mathcal{R})$, where \mathcal{I} is a bi-ideal of \mathcal{R} . We will show that a[x,y]=0 for all $x,y\in\mathcal{R}$. Note that (a[x,y])z(a[x,y])=([ax,y]-[a,y]x)z([ax,y]-[a,y]x)=(ax,y]z[ax,y]=0. Since \mathcal{R} is semiprime, a[x,y]=0 for all $x,y\in\mathcal{R}$ and our purpose is achieved. \square

Theorem 2.9. Let \mathcal{R} be a 2-torsion free semiprime ring and $T: \mathcal{R} \to \mathcal{R}$ be a Jordan left centralizer associated with a l-semi Hochschild 2-cocycle $\alpha: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$. Then, T is a left centralizer associated with α .

Proof. By hypothesis,

$$T(x^2) = T(x)x + \alpha(x, x) \text{ for all } x \in \mathcal{R}.$$
 (1)

Replacing x by x + y in (1), we get $T(x^2) + T(xy + yx) + T(y^2) = T(x)x + T(x)y + T(y)x + T(y)y + \alpha(x,x) + \alpha(x,y) + \alpha(y,x) + \alpha(y,y)$. This equation together with (1) imply that

$$T(xy + yx) = T(x)y + T(y)x + \alpha(x,y) + \alpha(y,x) \text{ for all } x, y \in \mathcal{R}.$$
 (2)

We replace y by xy + yx in (2) to get

$$T(x(xy + yx) + (xy + yx)x) = T(x)xy + T(x)yx + T(x)yx + T(y)x^{2} +$$

$$\alpha(x,y)x + \alpha(y,x)x + \alpha(x,xy) + \alpha(x,yx) + \alpha(xy,x) + \alpha(yx,x).$$
 (3)

But this can also be calculated in a different way.

$$T(x^{2}y + yx^{2}) + 2T(xyx) = T(x)xy + \alpha(x, x)y + T(y)x^{2} + \alpha(x^{2}, y)$$
$$+ \alpha(y, x^{2}) + 2T(xyx) = T(x)xy + \alpha(x, x)y$$
$$+ T(y)x^{2} + \alpha(x, xy) - \alpha(x, x)y + \alpha(yx, x)$$
$$+ \alpha(y, x)x + 2T(xyx).$$

It means that

$$T(x^2y + yx^2) + 2T(xyx) = T(x)xy + \alpha(x, x)y + T(y)x^2 + \alpha(x, xy)$$

$$-\alpha(x,x)y + \alpha(yx,x) + \alpha(y,x)x + 2T(xyx). \tag{4}$$

Comparing (3) and (4), it is obtained that $2T(x)yx + \alpha(x,y)x + \alpha(x,yx) + \alpha(xy,x) = 2T(xyx)$. Hence, $2T(x)yx + \alpha(x,y)x + \alpha(x,yx) + \alpha(x,yx) - \alpha(x,y)x = 2T(xyx)$. It means that

$$T(xyx) = T(x)yx + \alpha(x, yx). \tag{5}$$

Putting x+z for x in (5), we have T(x)yx+T(x)yz+T(z)yx+T(z)yz+ $\alpha(x,yx)+\alpha(x,yz)+\alpha(z,yx)+\alpha(z,yz)=T(xyx)+T(xyz+zyx)+T(zyz).$ The last equation together with (5) imply that

$$T(xyz + zyx) = T(x)yz + T(z)yx + \alpha(x, yz) + \alpha(z, yx).$$
 (6)

Put m = T(xyzyx + yxzxy). We compute m in two different methods. Using (5), we have

$$m = T(x)yzyx + \alpha(x, yzyx) + T(y)xzxy + \alpha(y, xzxy)$$
 (7)

and by applying (6), we have

$$m = T(xy)zyx + T(yx)zxy + \alpha(xy, zyx) + \alpha(yx, zxy). \tag{8}$$

So.

$$0 = m - m = T(xy)zyx + T(yx)zxy + \alpha(xy, zyx) + \alpha(yx, zxy)$$
$$- T(x)yzyx - \alpha(x, yzyx) - T(y)xzxy - \alpha(y, xzxy)$$
$$= T(xy)zyx + T(yx)zxy + \alpha(xy, zyx) + \alpha(yx, zxy)$$
$$- T(x)yzyx - T(y)xzxy - \alpha(xy, zyx) - \alpha(x, y)zyx$$
$$- \alpha(yx, zxy) - \alpha(y, x)zxy.$$

Hence, $(T(xy) - T(x)y - \alpha(x,y))zyx + (T(yx) - T(y)x - \alpha(y,x))zxy = 0$. By the last equation and introducing a bilinear map $\psi(x,y) = T(xy) - T(x)y - \alpha(x,y)$, it can be achieved that

$$\psi(x,y)zyx + \psi(y,x)zxy = 0. \tag{9}$$

It follows from (2) that $\psi(x,y) = -\psi(y,x)$. Using this fact and equality (9), we obtain

$$\psi(x,y)z[x,y] = 0 \text{ for all } x,y,z \in \mathcal{R}.$$
 (10)

Replacing x by x + u in (10), we get

$$\begin{split} 0 &= \psi(x+u,y)z[x+u,y] \\ &= (\psi(x,y) + \psi(u,y))z([x,y] + [u,y]) \\ &= \psi(x,y)z[x,y] + \psi(x,y)z[u,y] + \psi(u,y)z[x,y] + \psi(u,y)z[u,y] \\ &= 0 + \psi(x,y)z[u,y] + \psi(u,y)z[x,y] + 0. \end{split}$$

Therefore,

$$\psi(x,y)z[u,y] + \psi(u,y)z[x,y] = 0 \text{ for all } x,y,z,u \in \mathcal{R}.$$
 (11)

Using (10) and (11), we find

$$\begin{split} (\psi(x,y)z[u,y])\omega(\psi(x,y)z[u,y]) &= \psi(x,y)(z[u,y]\omega\psi(x,y)z)[u,y] \\ &= -\psi(u,y)z[u,y]\omega\psi(x,y)z[x,y] \\ &= 0. \end{split}$$

Since \mathcal{R} is semiprime, we obtain

$$\psi(x,y)z[u,y] = 0 \text{ for all } x,y,z,u \in \mathcal{R}.$$
 (12)

Replacing y by y + v in (12), we arrive at

$$\psi(x, y)z[u, y] + \psi(x, y)z[u, v] + \psi(x, v)z[u, y] + \psi(x, v)z[u, v] = 0,$$

this equation together with (12) imply that

$$\psi(x,y)z[u,v] = -\psi(x,v)z[u,y] \text{ for all } x,y,z,u,v \in \mathcal{R}.$$
 (13)

From (13) and the fact that $\psi(x,y)z[u,y]=0$, it can be concluded that

$$\begin{split} (\psi(x,y)z[u,v])\omega(\psi(x,y)z[u,v]) &= \psi(x,y)(z[u,v]\omega\psi(x,y)z)[u,v] \\ &= -\psi(x,v)z[u,v]\omega\psi(x,y)z[u,y] \\ &= 0. \end{split}$$

Now, we have

$$\psi(x,y)z[u,v]\omega\psi(x,y)z[u,v] = \psi(x,y)(z[u,v]\omega\psi(x,y)z)[u,v]$$

$$= -\psi(x,v)(z[u,v]\omega\psi(x,y)z)[u,y] \quad (see 13)$$

$$= -\psi(x,v)z[u,v]\omega(\psi(x,y)z[u,y])$$

$$= 0. \quad (see 12)$$

Reusing the fact that \mathcal{R} is semiprime, it seen that

$$\psi(x,y)z[u,v] = 0 \text{ for all } x,y,z,u,v \in \mathcal{R}.$$
(14)

Hence,

$$\psi(x,y)[u,v]z\psi(x,y)[u,v] = \psi(x,y)([u,v]z\psi(x,y))[u,v] = 0, \quad (see 14)$$

and it follows from semiprimeness of \mathcal{R} that

$$\psi(x,y)[u,v] = 0 \text{ for all } x,y,u,v \in \mathcal{R}.$$
 (15)

Now, let x and y be two fixed elements of \mathcal{R} and for convenience write ψ instead of $\psi(x,y)$. Using Lemma 1 we get the existence of an ideal \mathcal{I}

such that $\psi \in \mathcal{I} \subseteq Z(\mathcal{R})$. In particular, $y\psi, \psi y \in Z(\mathcal{R})$ for all $y \in \mathcal{R}$. This gives us

$$x.\psi^{2}y = \psi^{2}y.x = y\psi^{2}.x = y.\psi^{2}x \tag{16}$$

and so, $4T(x.\psi^2 y) = 4T(y.\psi^2 x)$. Both sides of this equality will be computed using (2) and (16). Indeed, we have

$$4T(x.\psi^2 y) = 4T(y.\psi^2 x).$$

$$\Rightarrow 2T(x\psi^2y + \psi^2yx) = 2T(y\psi^2x + \psi^2xy).$$

$$\Rightarrow 2T(x)\psi^{2}y + 2\alpha(x,\psi^{2}y) + 2T(\psi^{2}y)x + 2\alpha(\psi^{2}y,x)$$
$$= 2T(y)\psi^{2}x + 2\alpha(y,\psi^{2}x) + 2T(\psi^{2}x)y + 2\alpha(\psi^{2}x,y).$$

$$\Rightarrow 2T(x)\psi^{2}y + 2\alpha(x,\psi^{2}y) + T(\psi^{2}y + y\psi^{2})x + 2\alpha(\psi^{2}y,x)$$
$$= 2T(y)\psi^{2}x + 2\alpha(y,\psi^{2}x) + T(\psi^{2}x + x\psi^{2})y + 2\alpha(\psi^{2}x,y).$$

$$\begin{split} \Rightarrow & 2T(x)\psi^2y + 2\alpha(x,\psi^2y) + T(\psi^2)yx + \alpha(\psi^2,y)x + T(y)\psi^2x + \alpha(y,\psi^2)x \\ & + 2\alpha(\psi^2y,x) = 2T(y)\psi^2x + 2\alpha(y,\psi^2x) + T(\psi)\psi xy + \alpha(\psi,\psi)xy \\ & + \alpha(\psi^2,x)y + T(x)\psi^2y + \alpha(x,\psi^2)y + 2\alpha(\psi^2x,y). \end{split}$$

$$\begin{split} \Rightarrow & T(x)\psi^2y + 2\alpha(x,\psi^2y) + T(\psi)\psi yx + \alpha(\psi,\psi)yx + \alpha(\psi^2,y)x + \alpha(y,\psi^2)x \\ & + 2\alpha(\psi^2y,x) = T(y)\psi^2x + 2\alpha(y,\psi^2x) + T(\psi)\psi xy + \alpha(\psi,\psi)xy \\ & + \alpha(\psi^2,x)y + \alpha(x,\psi^2)y + 2\alpha(\psi^2x,y). \end{split}$$

Since $\psi yx = x\psi y = \psi xy$, we obtain

$$T(x)\psi^2y + 2\alpha(x,\psi^2y) + \alpha(\psi,\psi)yx + \alpha(\psi^2,y)x + \alpha(y,\psi^2)x + 2\alpha(\psi^2y,x) = 0$$

$$T(y)\psi^2x + 2\alpha(y,\psi^2x) + \alpha(\psi,\psi)xy + \alpha(\psi^2,x)y + \alpha(x,\psi^2)y + 2\alpha(\psi^2x,y).$$
(17)

Rearranging (17) we get

$$T(y)x\psi^{2} = T(x)\psi^{2}y + 2\alpha(x,\psi^{2}y) + \alpha(\psi,\psi)yx + \alpha(\psi^{2},y)x + \alpha(y,\psi^{2})x + 2\alpha(\psi^{2}y,x) - 2\alpha(y,\psi^{2}x) - \alpha(\psi,\psi)xy - \alpha(\psi^{2},x)y - \alpha(x,\psi^{2})y - 2\alpha(\psi^{2}x,y).$$

(18)

On the other hand, we also have

$$4T(xy\psi^2) = 4T(x\psi.y\psi)$$

$$\Rightarrow 2T(xy\psi^2 + \psi^2xy) = 2T(x\psi y\psi + y\psi x\psi)$$

$$\Rightarrow 2T(xy)\psi^2 + 2T(\psi^2)xy + 2\alpha(xy,\psi^2) + 2\alpha(\psi^2,xy)$$
$$= 2T(\psi x)\psi y + 2T(\psi y)\psi x + 2\alpha(\psi x,\psi y) + 2\alpha(\psi y,\psi x)$$

$$\Rightarrow 2T(xy)\psi^2 + 2T(\psi)\psi xy + 2\alpha(\psi,\psi)xy + 2\alpha(xy,\psi^2) + 2\alpha(\psi^2,xy)$$
$$= 2T(\psi x)\psi y + 2T(\psi y)\psi x + 2\alpha(\psi x,\psi y) + 2\alpha(\psi y,\psi x)$$

$$\Rightarrow 2T(xy)\psi^2 + 2T(\psi)\psi xy + 2\alpha(\psi,\psi)xy + 2\alpha(xy,\psi^2) + 2\alpha(\psi^2,xy)$$
$$= T(\psi x + x\psi)\psi y + T(y\psi + \psi y)\psi x + 2\alpha(\psi x,\psi y) + 2\alpha(\psi y,\psi x)$$

$$\begin{split} \Rightarrow & 2T(xy)\psi^2 + 2T(\psi)\psi xy + 2\alpha(\psi,\psi)xy + 2\alpha(xy,\psi^2) + 2\alpha(\psi^2,xy) \\ & = T(x)\psi^2 y + \alpha(x,\psi)\psi y + \alpha(\psi,x)\psi y + T(\psi)\psi xy + T(y)\psi^2 x \\ & \quad + \alpha(y,\psi)\psi x + T(\psi)\psi xy + \alpha(\psi,y)\psi x \\ & \quad + 2\alpha(\psi x,\psi y) + 2\alpha(\psi y,\psi x) \end{split}$$

$$\Rightarrow 2T(xy)\psi^2 + 2\alpha(\psi, \psi)xy + 2\alpha(xy, \psi^2) + 2\alpha(\psi^2, xy) = T(x)\psi^2y + \alpha(x, \psi)\psi y$$
$$+\alpha(\psi, x)\psi y + T(y)x\psi^2 + \alpha(y, \psi)\psi x + \alpha(\psi, y)\psi x + 2\alpha(\psi x, \psi y) + 2\alpha(\psi y, \psi x)$$
(19)

Using (18) and (19), we have

$$\begin{split} 2T(xy)\psi^{2} + 2\alpha(\psi,\psi)xy + 2\alpha(xy,\psi^{2}) + 2\alpha(\psi^{2},xy) &= T(x)\psi^{2}y + \alpha(x,\psi)\psi y \\ + \alpha(\psi,x)\psi y + \alpha(y,\psi)\psi x + \alpha(\psi,y)\psi x + 2\alpha(\psi x,\psi y) + 2\alpha(\psi y,\psi x) \\ + T(x)\psi^{2}y + 2\alpha(x,\psi^{2}y) + \alpha(\psi,\psi)yx + \alpha(\psi^{2},y)x + \alpha(y,\psi^{2})x \\ + 2\alpha(\psi^{2}y,x) - 2\alpha(y,\psi^{2}x) - \alpha(\psi,\psi)xy - \alpha(\psi^{2},x)y \\ - \alpha(x,\psi^{2})y - 2\alpha(\psi^{2}x,y) \end{split}$$

Hence,

$$\begin{split} 2T(xy)\psi^2 - 2T(x)y\psi^2 &= \alpha(x,\psi)\psi y + \alpha(\psi,x)\psi y + \alpha(y,\psi)\psi x + \alpha(\psi,y)\psi x \\ &\quad + 2\alpha(\psi x,\psi y) + 2\alpha(\psi y,\psi x) + 2\alpha(x,\psi^2 y) \\ &\quad + \alpha(\psi,\psi)y x + \alpha(\psi^2,y) x + \alpha(y,\psi^2) x + 2\alpha(\psi^2 y,x) \\ &\quad - 2\alpha(y,\psi^2 x) - \alpha(\psi,\psi) x y - \alpha(\psi^2,x) y - \alpha(x,\psi^2) y \\ &\quad - 2\alpha(\psi^2 x,y) - 2\alpha(\psi,\psi) x y - 2\alpha(xy,\psi^2) \\ &\quad - 2\alpha(\psi^2,xy) \qquad (\star) \end{split}$$

Our next task is to prove the equation bellow:

$$2(T(xy) - T(x)y - \alpha(x,y))\psi^2 = 0$$

In order to prove the previous equation we need the following relations:

$$\alpha(\psi, x)\psi y = \alpha(\psi, x\psi)y - \alpha(\psi x, \psi)y = \alpha(\psi, \psi x)y - \alpha(\psi x, \psi)y$$
$$= \alpha(\psi^2, x)y + \alpha(\psi, \psi)xy - \alpha(\psi x, \psi)y$$
(i)

$$2\alpha(\psi x, \psi y) = \alpha(\psi x + x\psi, \psi y) = \alpha(\psi x, \psi y) + \alpha(x\psi, \psi y)$$

$$= \alpha(\psi^2 x, y) + \alpha(\psi x, \psi)y + \alpha(x\psi, \psi y)$$

$$= \alpha(\psi^2 x, y) + \alpha(x, \psi^2)y - \alpha(x, \psi)\psi y + \alpha(x\psi, \psi y)$$
 (ii)

 $\alpha(\psi, y)\psi x = \alpha(\psi, y\psi x) - \alpha(\psi y, \psi x) = \alpha(\psi, \psi xy) - \alpha(\psi y, \psi x)$ $= \alpha(\psi^{2}, xy) + \alpha(\psi, \psi)xy - \alpha(\psi y, \psi x)$ (iii)

$$2\alpha(\psi y, \psi x) = 2\alpha(y\psi, \psi x) = 2\alpha(y, \psi^2 x) - 2\alpha(y, \psi)\psi x \tag{iv}$$

$$\alpha(\psi, \psi)yx = \alpha(\psi, \psi yx) - \alpha(\psi^2, yx) = \alpha(\psi, \psi xy) - \alpha(\psi^2, yx)$$

$$= \alpha(\psi^2, xy) + \alpha(\psi, \psi)xy - \alpha(\psi^2, yx)$$

$$= \alpha(\psi^2, xy) + \alpha(\psi, \psi)xy - \alpha(\psi^2y, x) - \alpha(\psi^2, y)x \qquad (v)$$

$$\alpha(\psi^2 y, x) = \alpha(y\psi^2, x) = \alpha(y, \psi^2 x) - \alpha(y, \psi^2) x \tag{vi}$$

$$-2\alpha(xy,\psi^2) = -2\alpha(x,y\psi^2) + 2\alpha(x,y)\psi^2 \tag{vii}$$

$$-\alpha(\psi^2 x, y) = -\alpha(\psi x, \psi y) + \alpha(\psi x, \psi)y \tag{viii}$$

By using the above eight relations, the equation (\star) turns into

$$2(T(xy) - T(x)y - \alpha(x,y))\psi^2 = 0.$$

Since \mathcal{R} is a 2-torsion free ring, the above equation reduces to $(T(xy) - T(x)y - \alpha(x,y))\psi^2 = 0$, and this means that $\psi^3 = 0$. Hence, $\psi^2 \mathcal{R} \psi^2 = \psi^4 \mathcal{R} = \psi \psi^3 \mathcal{R} = \{0\}$. Thus, the semiprimeness of \mathcal{R} implies that $\psi^2 = 0$. Furthermore, we have $\psi \mathcal{R} \psi = \psi^2 \mathcal{R} = \{0\}$. Reusing the fact that \mathcal{R} is a semiprime ring, it is concluded that $\psi = 0$. This is exactly what we had to prove. \square

The Previous theorem implies the following corollaries.

Corollary 2.10. Let \mathcal{R} be a 2-torsion free semiprime ring and σ, T : $\mathcal{R} \to \mathcal{R}$ be additive maps such that $T(x^2) = T(x)\sigma(x)$ for all $x \in \mathcal{R}$. If

 $T(xy)\sigma(z) - T(xy)z - T(x)\sigma(yz) + T(x)\sigma(y)z = 0$ for all $x, y, z \in \mathcal{R}$, then $T(xy) = T(x)\sigma(y)$ for all $x, y \in \mathcal{R}$.

Proof. Note that $T(x^2) = T(x)\sigma(x) = T(x)(x + \sigma(x) - x) = T(x)x + T(x)(\sigma(x) - x)$ for all $x \in \mathcal{R}$. By defining $\alpha(x, y) = T(x)(\sigma(y) - y)$ and using the hypothesis, we have

$$\begin{split} \alpha(xy,z) - \alpha(x,yz) + \alpha(x,y)z &= T(xy)(\sigma(z)-z) - T(x)(\sigma(yz)-yz) \\ &+ T(x)(\sigma(y)-y)z \\ &= T(xy)\sigma(z) - T(xy)z - T(x)\sigma(yz) \\ &+ T(x)yz + T(x)\sigma(y)z - T(x)yz \\ &= T(xy)\sigma(z) - T(xy)z - T(x)\sigma(yz) + T(x)\sigma(y)z \\ &= 0. \end{split}$$

It means that α is a *l-semi Hochschild 2-cocycle*. By using Theorem 2.9, it is obtained that

$$T(xy) = T(x)y + \alpha(x,y) = T(x)y + T(x)(\sigma(y) - y)$$
$$= T(x)y + T(x)\sigma(y) - T(x)y$$
$$= T(x)\sigma(y)$$

for all $x, y \in \mathcal{R}$. \square

Corollary 2.11. Let \mathcal{R} be a 2-torsion free semiprime ring and $\delta: \mathcal{R} \to \mathcal{R}$ be a Jordan generalized σ -derivation, i.e. $\delta(x^2) = \delta(x)\sigma(x) + \sigma(x)d(x)$ for each $x \in \mathcal{R}$ and some σ -derivation d on \mathcal{R} . Assume that $T = \delta - d$ has the following property:

$$T(xy)\sigma(z) - T(xy)z - T(x)\sigma(yz) + T(x)\sigma(y)z = 0 \text{ for all } x, y, z \in \mathcal{R}.$$

Then, δ is a generalized σ -derivation.

Proof. We have

$$T(x^2) = \delta(x^2) - d(x^2)$$

$$= \delta(x)\sigma(x) + \sigma(x)d(x) - d(x)\sigma(x) - \sigma(x)d(x)$$

$$= (\delta(x) - d(x))\sigma(x)$$

$$= T(x)\sigma(x)$$

for all $x \in \mathcal{R}$. According to the previous corollary, $T(xy) = T(x)\sigma(y)$ for all $x, y \in \mathcal{R}$. Hence,

$$\delta(xy) = T(xy) + d(xy) = T(x)\sigma(y) + d(x)\sigma(y) + \sigma(x)d(y)$$
$$= \delta(x)\sigma(y) + \sigma(x)d(y)$$

for all $x, y \in \mathcal{R}$.

The following corollary has been proved by Vukman in [10]. Now, we present an alternative proof for it.

Corollary 2.12. Let \mathcal{R} be a 2-torsion free semiprime ring and $\delta: \mathcal{R} \to \mathcal{R}$ be a Jordan generalized derivation. In this case δ is a generalized derivation.

Proof. We have the relation $\delta(x^2) = \delta(x)x + xd(x)$ for all $x \in \mathcal{R}$, where d is a Jordan derivation of \mathcal{R} . It follows from Theorem 1 of [4] that d is a derivation. The proof is completed by substituting $\sigma = id$ in Corollary 2.11. \square

Acknowledgements

The author is greatly indebted to the referee(s) for his/her valuable suggestions and careful reading of the paper.

References

- [1] S. Ali and C. Haetinger, Jordan α -centralizers in rings and some applications, *Bol. Soc. Paran. Mat.*, 26 (2008), 71-80.
- [2] M. Ashraf, N. Rehman, Sh. Ali, and M. R. Mozumder, On generalized (θ,ϕ) -derivations in semiprime rings with involution, *Math. Slovaca*, 62 (3) (2012), 451-460.
- [3] M. Ashraf, On left (θ, φ) -derivations of prime rings, Archivum Mathematicum, 41 (2) (2005), 157-166.
- [4] M. Brešar, Jordan derivations on semiprime rings, *Proc. Amer. Math. Soc*, 140 (4) (1988), 1003-1006.

- [5] M. Brešar and J. Vukman, Jordan derivations on prime rings, *Bull. Austral. Math. Soc*, 3 (1988), 321-322.
- [6] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 1104-1110.
- [7] G. Dales, et al., Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge University press, 2002.
- [8] I. N. Herstein, Jordan derivations of prime rings, *Proc. Amer. Math. Soc.*, 8 (1957), 1104-1110.
- [9] J. Vukman and I. Kosi-Ulbl, Centralizers on rings and algebras, *Bull. Austral. Math. Soc.*, 71 (2005), 225-234.
- [10] J. Vukman, A note on generalized derivations of semiprime rings, *Taiwanese Journal of Mathematics*, 11 (2) (2007), 367-370.
- [11] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin, 32 (4) (1991), 609-614.

Amin Hosseini

Department of Mathematics Assistant Professor of Mathematics Kashmar Higher Education Institute Kashmar, Iran

E-mail: A.Hosseini@mshdiau.ac.ir