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Introduction

A bounded linear operator 7' : X — X on a seperable Banach space X
is hypercyclic if it has a vector with dense orbit. That is, if there exists
a vector x € X such that its orbit {T™z :n > 0} is dense in X. We
denote the orbit of z under T by Orb(T,x). An operator T' on a Banach
space X is said to be supercyclic if there is a vector x € X such that
{cI"™z :n > 0,c € C} is dense in X. Many fundamental results regard-
ing the theory of hypercyclic and supercyclic operators were established
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by C. Kitai [12]. She showed, for an operator to be hypercyclic, every
connected component of its spectrum must intersect the unit circle. Her-
rero in [9] has shown that for any supercyclic operator (on a complex
Hilbert space) there is some r > 0 such that every connected compo-
nent of its spectrum meets the circle |z| = r. Examples of hypercyclic
and supercylic operators arise in the classes of backward weighted shifts
[15], adjoints of multiplication operator on spaces of analytic functions
[11], composition operators [5], and adjoints of hyponormal operators
[7]. Feldman, Miller and Miller in [7] have shown that cohyponormal
operator can be hypercyclic. Bourden in [2] proved that no paranormal
operator is supercyclic. In this paper we prove that transaloid and con-
dition G1 operators can also be hypercyclic. Also absolute k-paranormal
operator and k-quasi paranormal operator which are the superclasses of
paranormal operator are proved as not supercyclic in different methods.

2. Preliminaries

An operator 1" on a Hilbert space H is called hyponormal if T*T >
TT* and cohyponormal if T* is hyponormal, that is, if T7* > T*T
[11]. An operator T is called paranormal if ||Tx||?> < ||T?%z||||z|| for all
x € H. Paranormal operators have been studied by many authors [8],
[9] and [14]. Furuta, Ito and Yamazaki [9] have introduced the class of
absolute-k-paranormal operators for £k > 0 as generalization of para-
normal operators. An operator T is said to be absolute k-paranormal
if [|T/*Txz| > ||Tz|*+" for every unit vector x € H. S. Mecheri [13]
has studied k-quasi paranormal operator as a generalization of quasi
paranormal operator. 7T is said to be k-quasi paranormal if || T%+12[|? <
|T*+22||||T*2|| where k is a natural number and = € H. Furuta in [8] has
introduced convexoid, condition Gy and transaloid operator as general-
izations of hyponormal operator. An operator T is said to be a convexoid
if W(T) = coo(T) where W(T) = {(Tx,z) : ||z|| = 1} is the numerical
range of T, coo(T) means the convex hull of the spectrum o(7T) of an
operator 1" on a Hilbert space H. An operator T is said to be a condition
G operator if m = (T — )7t for all u ¢ o(T) and T is said
to be a transaloid operator if 7' — p is normaloid for any 4 € C. An



HYPERCYCLIC OPERATORS ON BANACH SPACES 37

operator T is said to be a normaloid if r(T") = ||T'|| and T is said to be
spectraloid if w(T) = r(T') where w(T) = sup{|\|: A € W(T)} is the
numerical radius and r(T') = sup {|\| : A € o(T)} is the spectral radius
of an operator T' [10].

3. Classes of Hypercyclic Operators on Hilbert
Spaces

We begin this section by showing some general properties of a cohy-
ponormal operator.

Theorem 3.1. Let T be a cohyponormal operator. Then
(i) (T — p) is also cohyponormal for any p € C.

(ii) T is a transaloid operator.

(iii) T~ is also cohyponormal operator if T~ ewists.
(iv) T is a condition Gy operator.

Proof. (i) Since TT* > T*T', we have
(T = )T = ) — (T — )" (T — p) = TT* — T°T > 0.

This shows (T' — u) is cohyponormal for any p € C.

(ii) By (i), (T'—p) is cohyponormal for any p € C, showing that (7'— p)*
is hyponormal.

Since every hyponormal operator is normaloid it then follows (T — u)*
is normaloid.

Since an operator is normaloid if and only if its adjont is normaloid,
showing that (7" — p) is a normaloid.

Hence T is a transaloid.

(iii) Since T'T* > T*T implies

Tt > 1
thus
A0 B e

-1

1
' T* "T7' and so T~ is cohyponormal.

T

VoWV
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(iv) We have

1

T iy ¢ — )71 for a o
d(p, o(T)) (T = p)™7)) for all p ¢ o(T), (1)

T* is hyponormal implies

I(T* = )Y = r(T* - p)~! [For normaloid operator #(T) = ||T|]
But [T = ||IT7||and »(T') = r(T") shows
T =™ = (T =™ (2)

By (1) and (2) |(T — p)7 Y| = m and so T is a condition G
operator. [

Remark 3.2. Transaloid operator and condition G1 operator can be
hypercyclic.

Proof. Cohyponormal operators belong to transaloid class of operators
and convexoid operators. But cohyponormal operators can be hyper-
cyclic under certain conditions, by theorem 4.3 [7]. Hence the proof. O

4. Classes of Non-Hypercyclic Operators on Ba-
nach Spaces

Obviously the defining condition for absolute k-paranormal operator is
not specific to Hilbert space only. This leads us to general Banach
spaces.

Theorem 4.1. Absolute k-paranormal operator on a Banach space X
18 not hypercyclic.

Proof. Suppose T is absolute k-paranormal operator on a Banach space
X for some k > 1 and # € X then ||Tz|**! < |||T|*Tz| for every unit
vector x € X. We may assume ||T|| = 1, without loss of generality. Now,
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|T|*t < T T
< NTEYINT T
< HTza:H and so
Tz < || T[] (3)

Put z =T"z in (3) to get
1T M+ < T+ 2| T |

implies
1T BT ]| < (|77 22| T ]|

Suppose for some n > 0, ||[T"z| > || T"z| then

|72z [
[ v ’

Hence, the orbit of any x € X is either decreasing in norm, or strictly in-
creasing in norm from some index n. So, no orbit can be dense. Therefore
T is not hypercyclic. O

Remark 4.2. Suppose that f € X is such that ||Tf|| = || f|| for the ab-
solute k-paranormal operator T : X — X then (||T™ f|]) is an increasing
sequence.

Theorem 4.3. Absolute k-paranormal operator on a Banach space X
s not supercyclic.

Proof. Suppose T is supercyclic, then T" cannot be isometry, since isome-
tries cannot be supercyclic in a Banach space setting [1]. Since T' is
absolute k-paranormal, we may assume ||T'|| = 1 without loss of gener-
ality. Then there exists a vector € X such that ||Tz| < |||

Let « be a scalar of modulus > 1 such that ||aTz| < ||z|. Set S = aT,
so that S is absolute k-paranormal, supercyclic and has norm > 1 with
ISz < ljz].
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Since [|S|| > 1 and the set of supercyclic vectors for S is dense in X,
there exists a supercyclic f € X such that ||Sf|| > ||f]|. Now f is super-
cyclic means there is a subsequence (n;) of the sequence of non negative
integers and a sequence (c;) of scalars such that (¢;S™ f) — .

By continuity we have, (¢;S"™+! f) — Sx.

Since S is absolute k-paranormal and ||Sf|| > ||f]| by Remark 4.2, we
have ||S™i+1 f|| > ||S™ f]| for every j. Thus

1Szl = limylle;S™+ [
limg|e;S™ £

]I,

WV

which is a contradiction. Hence T is not supercyclic. [

Remark 4.4. Similar to Theorem 4.8 we observe that k-Quasi paranor-
mal operator on a Banach space X is not supercyclic.

Remark 4.5. The diagram shows the inclusion relations among the
classes of operators discussed in this paper. The results proved in this
paper are marked as x.
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Figure 1. Inclusion relations among various classes of operators
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