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Abstract 

The new class of weighted exponential (WE) distributions obtained by Gupta and Kundu 

(2009) by applying Azzalini’s method to the exponential distribution. Kharazmi et al. (2015) 

extended the WE distribution to the generalized weighted exponential (GWE) distribution 

and studied its different properties. In this study, we generalize the weibull distribution to a 

new class referred to as the generalized weighted weibull (GWW) distribution with one scale 

parameter and two shape parameters. The GWW model is constructed in a way that is similar 

to the way in which the GWE is constructed. It is investigated that the new model has 

increasing, decreasing and upside-down bathtub shaped hazard. Several statistical and 

reliability properties of this new class of distribution are obtained. Estimation, Simulation and 

inference procedure for distribution parameters are investigated. Finally, we show that the 

proposed model can provide better fit than some recent classes of the extended weibull by 

using two real data examples. 

Keywords: Weighted weibull distribution, Hazard function, Mean residual life time, 

Stochastic orders, Maximum likelihood estimates. 

 



1. Introduction 

   Motivated by engineering applications, Weibull (1939), a Swedish physicist, suggested a 

distribution that has proved to be of seminal importance in reliability. The corresponding 

survival function is given by the equation 

  ̅( )     (    )        

with parameters        . The weibull distribution is a very popular model, and has been 

extensively used over the past decades for modelling data in reliability, engineering and 

biological studies. However, the weibull distribution does not exhibit a bathtub or upside-

down bathtub shaped hazard rate function and thus it cannot be used to model the complex 

lifetime of a system. Hence a number of extensions of the weibull distribution are introduced 

to overcome this shortage. For example, Almalki and Nadarajah (2012) reviewed and 

provided a comprehensive description of modifications of the weibull distribution.  

Some recent developments in distribution theory have proposed new techniques for 

building distributions. Among these, the Azzalini’s novel method (1985) has received a lot of 

attention. In the statistical literature, this technique has been used to construct new skewed 

distribution from a given symmetric distribution. However there is little work on the use of 

Azzalini's method for skewed distribution.  

The now widely known skew-normal distribution is just one special case belonging to the 

family of distributions introduced by Azzalini (1985). For the first time Azzalini (1985) 

introduced a shape parameter to a normal distribution. Afterwards extensive work on 

introducing shape parameters for other symmetric distributions have been defined and several 

properties and their inference procedures have been discussed by Several authors, see for 

example Balakrishnan(2002), Genton (2004), Arnold and Beaver (2000a) and Nadarajah 

(2009).  

Recently some authors effort to implement Azzalini’s idea for skewed distributions, the 

new class of weighted exponential (WE) distribution obtained by Gupta and Kundu (2009) by 

implementing Azzalini’s method to the exponential distribution. Shakhatreh (2012) 

generalized the WE distribution to the two-parameter weighted exponential distributions 

(TWE). Kharazmi et al. (2015) extended weighted exponential distribution to the generalized 

weighted exponential (GWE) distribution and studied its different properties. Several 

interesting properties of this distribution have been established by authors. The GWE  

distribution contains the above mentioned  distributions as its sub-models. It was observed 

that the GWE distribution can provide a better fit for survival time data relative to other 

common distributions such as weighted exponential (WE), two parameter weighted 

exponential (TWE), gamma, weibull and generalized exponential (GE) distribution. 

The main aim of this paper is to introduce the class of generalized weighted weibull 

(GWW) distribution in a way that is similar to the way in which the GWE model is proposed. 

In fact this way is a modification of Azzalini’s method. It is investigated that the new model 

has increasing, decreasing and upside-down bathtub shaped hazard. We provide a 

comprehensive description of some mathematical properties of the GWW distribution with 

the hope that it will attract wider applications in reliability, engineering and in other areas of 

research. The proposed GWW distribution provides the GWE, WE and TWE distributions as 



Its sub-models. Also, many well-known distributions can be obtained as special cases of 

this model. 

The paper is organized as follows. In Section 2 we briefly review the WE, TWE, GWE 

distributions and then we define the proposed GWW distribution. Section 3 provides different 

representation for construction of the GWW distribution. Section 4 presents some basic 

statistical and reliability properties of the proposed GWW family. Section 5 gives some 

important theorems about the GWW distribution and related results. In Section 6, we 

compare the GWW and WW distributions with respect to stochastic orders information. 

Finally in Section 7, we discuss and study the MLEs, fisher information, simulation 

performance and two applications to real data for proposed model. Concluding remarks are 

provided in Section 8. 

 

2. Definition and basic properties 

The weighted exponential distribution was introduced in the seminal paper by Gupta and 

Kundu (2009). A random variable   is said to have weighted exponential distribution, 

denoted by   (   ), if its probability density function (PDF) is given as 

  (     )  
   

 
     (       )                                                (1) 

Where            and      . Here   and   are the shape and scale parameters, 

respectively. The main properties and different interpretations of this density are established 

by authors. A particular property that has received considerable attention is the generalized 

form of all life time distribution. The    distribution was generalized to the two-parameter 

weighted exponential distributions    (     ) by Shakhatreh (2012) with the following 

PDF, 

 

  (     )  
(   )(    )

        (       )
 
                                 (2) 

Where            and     . Here   and   are the shape and scale parameters, 

respectively. 

Recently, Kharazmi et al. (2015). generalized WE distribution to the generalized weighted 

exponential distribution    (     ) with the following PDF   

  (       )  
 

 (  ⁄     )
     (       )  .                               (3) 

Where the beta function is defined in the usual way as  (   )  ∫     (   )     
 

 
  and    

                   .  

The aim of this paper is to provide a similar generalization to weibull distributions for 

more flexibility to fitting survival data in the real application. Here, we introduce the 

definitions of the weighted weibull and generalized weighted weibull distribution denoted by 

   (     ) and   (       ), respectively. 



Definition 1. A random variable   is said to have weighted weibull distribution, denoted 

by   (     ), if its probability density function (PDF) is given as 

  (       )  
    

  
           

.     (  ) /                                    (4) 

Where                  and      . Here      and   are the shape and scale 

parameters, respectively.  

Definition 2. A random variable X  is said to have generalized weighted weibull distribution 

   (       ) with integer    , shape parameters     and scale parameter  , if the PDF 

of    is given as following 

  (         )  
  

 (   ⁄     )
           

(     (  ) )   .                 (5) 

Where the beta function is defined in the usual way as  (   )  ∫     (   )     
 

 
  and    

                     Fig. 1 shows the shapes of    (             ) for 

        and  . 

 
Fig. 1. Plots of the    (             ) for different values of   . 

 In the following, it is seen that the     (     ),    (   ),    (     ) and 

  (      )  are special cases of    (       ). 

Case 1. When    , then     (         )     (     ). 

Case 2. When    , then    (           )    (   ). 



Case 3. When    , then     (           )     (     ). 

Case 4. When    , then    (         )    (     ). 

To investigate the effect of integer parameter   on the GWW distribution we plotted the 

   (       ) density for different values of   and               in Fig. 1. 

 

3. Methods of Construction 

There are different ways to construct the GWW distribution especially, the ones which are 

provided for the WE distribution by Gupta and Kundu (2009). 

Selection Model ( Modification of Azzalini’s method): 

The GWW distribution is constructed based on weibull distribution with scale parameter   

and shape parameter    , with density  

 ( )           (    )                                                      (6) 

Where            and    . We use Balakrishnan’s idea, about generalized skew-

normal distribution, to construct GWW model, see Balakrishnan(2002), Arnold and Beaver 

(2002). Let              be a random sample of size     from the wiebull distribution 

with scale parameter   and shape parameter     , then  

     (           )          (       ).                          (7) 

This method of construction is known as a selection model. Arellano et al. (2006). In fact (7) 

is a modification of Azzalini's method. 

Weighted Distribution: 

The concept of weighted distributions is important in a wide range of statistical 

applications. A density function g is said to be a weighted density function corresponding to 

density function   with weight     . 

 ( )  
 ( ) ( )

 , ( )-
                                                             (8) 

where    , ( )-   . Patil and Rao (1977, 1978). The GWW distribution can be 

obtained as a special form of the weighted distribution by taking weighted function 

 (         )  ,     (      )- . 

Beta Family Distribution: 

Form (5) can be obtained from the beta family distributions proposed by Eugene et al. 

(2002). Let  ̅( ) be a survival function of a random variable with weibull distribution with 

parameters   and  , then form (5) has the following distribution 



 (     )  
 

 (   )
∫     (   )     
 

 ̅( )
 
 

 .                                (9) 

Where       ⁄  and      .  

Hidden Truncation Model: 

The GWW distribution can be obtained as a hidden truncation model proposed by Arnold 

and Beaver (2002). Suppose Z and Y are two dependent random variables with the following 

joint density function 

    (   )                      (    )(         
)                    (10) 

where   is a non-negative integer. It can be shown that the conditionally random variable 

      has the GWW distribution. 

Additive of Independent Random Variables: 

Suppose random variables                 be independent and         ( (     )) 

then   (∑     )
 
   

 

  has PDF with form (5).This method will be study as a main theorem to 

generate data from the GWW distribution in section 7. 

Marshall and Olkin Semi-Parametric Family: 

 Another way of obtaining the GWW distribution is the way that introduced by Marshall 

and Olkin (2007), for the semi-parametric family distributions. By composing two CDF such 

as  ̅(     )   ( ̅(   )  ), where  (   )  ,   (   ⁄     ⁄ )- ∫ (     
)   

 

 
 be a 

continuous CDF supported by [0,1] and  ̅(   )       
 represents underlying survival 

function. 

 

 

 
 

 

 



  
 

Fig. 2. 3D-Plots of the    (           ) for different values of  . 

 

4. Statistical and reliability properties 

In this section we study the several statistical and reliability properties of the GWW 

distribution, such as the distribution function (CDF), survival function (SF), conditional 

survival function (CSF), failure rate (or hazard) function (FR), moment generating function 

(MGF), mean residual life (MRL) time and  th moment. Firstly, we review the following 

lemma and theorem Kharazmi et al. (2015) in order to prove our main results. 

Lemma 4.1 The following relation is fulfilled for a non-negative integer        and     
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                                      (11) 

 

Theorem 4.1.  The following relation is fulfilled for a non-negative integer       and 

   , 

∏ (      ) 
    

    

∑
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                                                 (12) 

Result 4.1. After replacing     in theorem 4.1 we have, 
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Result 4.2. After replacing     instead of   in theorem 4.1 we have, 
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4.1. Distribution function, survival, conditional reliability and failure rate function 

By using the result 4.2 the CDF of (5) can be written as 

  (         )    
  

 .
 

      /
∑

(  ) .  /

     

 
      (     )  

                     (15) 

Also, survival function and conditional reliability are given by 

 ̅ (         )  
  

 .
 

      /
∑

(  ) .  /

     

 
      (     )  

                              (16) 

and 

 ̅ (           )  
 ̅ (           )

 ̅ (           )
 

∑
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∑
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  .     /  
                   (17) 

respectively. Conditional survival function plays an important role in classifying life time 

distributions. From (5) and (16) it is easy to verify that the failure rate function is given by 

 (         )  
           (     (  ) ) 

∑
(  ) .  /

     

 
    

  .     /  
                                      (18) 

The failure rate is a key notion in reliability and survival analysis for measuring the ageing 

process. Understanding the shape of the failure rate is important in reliability theory, risk 

analysis and other disciplines. The concepts of increasing ,decreasing ,  bathtub shaped(first 

decreasing and then increasing ) and upside-down bathtub shaped(first increasing and then 

decreasing ) failure rates for univariate distributions have been found very useful in reliability 

theory. The classes of distributions having these ageing properties are designated as the IFR , 

DFR ,BUT and UBT distributions, respectively. It is investigated that   (         ) is 

increasing for     and is decreasing or uni-modal (upside-down bathtub shaped) for    . 

 

 

4.2. On the hazard function shape 

 

Here, we discuss the shapes of the hazard function of GWW distribution. We initially 

consider the pdf (5). Fig (1)  indicate that GWW distribution is uni-modal and  

 

   
   

  (         )          
   

  (         )       

 

 The hazard rate function in equation (18) is very complex. For    , we conclude 

straightforwardly that the hazard rate function is increasing. For       the shapes of the 

hazard function were obtained numerically. Indeed, it was verified numerically, considering 

the R software and the conditions of Glaser’s theorem (1980). We considered several points 



within each region of the parametric space that characterize the shape of the hazard rate 

function and studied numerically their properties.  

Theorem 4.2 Assume that     , then    GWW distribution is  IFR. 

Proof: 

(a) Let      and  ( )  
 

 (         )
 ∫ .

 

 
/
   

   (     )(
     (  ) 

     (  ) 
)   

 

 
, now by 

changing variable          we have 

 

 ( )  
 

     
∫     (

       (    )

         
)   

 

 

 

 Sinc  ( ) is written as multiplicative two non-negative and decreasing function as following  

 ( )   ( ) ( )  

Where  ( )  
 

      and  ( )  ∫     (
       (    )

         
)   

 

 
. So,  ( ) is decreasing and 

proof is completed.  

        Now we discuss the hazard rate shape for     . Define  ( )   
  

  
(         )

  (         )
  where 

  
  
(         ) is the first derivative of the density function (5) is. Hence, 

 

 ( )         
   

 
 

         

      
  

 

 

The first derivate of   ( ) is given by 

 

  ( )   (   )      
   

   
  (   )       

        
 

   (   )       (   )

(        ) 
. 

 

To verify that the failure rate function can be decreasing, for instance, we consider one-point 

parametric space (     )  (        )  We verify the condition   ( )    for    . From 

Glaser (1980), we conclude that the failure rate function is decreasing (DFR). To verify that 

the failure rate function can be uni-modal, we consider the one point parametric 

space (     )  (          ), and we obtain        , such that   (  )      ( )    

for   (    ) and   ( )     for   (    )  Further,         (         )   . From 

Glaser’s theorem we conclude that the hazard rate function is uni-modal (UBT). Fig. 3 shows 

some failure rate function shapes for some values of   ,  , when     and    .  



 
 

                                                                                             

 
                                                                                         

 

 

 
                                                                                        

 

 

Fig. 3. Hazard function of the GWW distribution for different values of   ,   ,      and 

   . 

 



4.3. Moment generating function and mean residual life time 

Now let us consider different moments of the GWW(       ) distribution. Some of the 

most important features and characteristics of a distribution can be studied through its 

moments, such as moment generating function, the  th moment and interested reliability 

properties such as mean residual life time. 

The moment generating function of form (5) is immediately written as 

  ( )  
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                (19) 

Where    *      ( )    +    

The  th moment and  th central moment of the GWW distribution can be derived as 

    (  )  
   (

 

 
  )

 
 
  (   ⁄     )

∑
(  ) .  /

(     )
 
 
  

 
                                    (20) 

 

             (    )
  

  

 (   ⁄     )
∑ ∑ (  )   .

 
 
/ .

 
 /

 
   

 
   

   .
   

 
  /

 
   
 (     )

   
 

  
              (21) 

      

In particular, the mean and variance are given, by 

    ( )  
   (
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and  

    ( )      (    )
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.   (23)                                       

Respectively. One of the well-known properties of the life time distribution is mean 

residual life time. For the GWW distribution it can be written as 

 ( )   (       )  
∑

(  ) .
 
 /

(     )

 
   ∫    (     )   

   

∑
(  ) .  /

     

 
    

  .     /  
                        (24) 

By considering the behavior of hazard rate function, for      ( )  is DFR and for 

    ,  ( ) can be IFR or BUT. 

4.4. Median   

We can find the median (  ) of GWW by solving the following equation. 

  (         )  
 

 
                                                             (25) 



Therefore, by using form (15) we have 

  

 .
 

  
    /

∑
(  ) .  /

     

 
      (     )  

 
 

 
                                    (26) 

There is no explicit solution for this equation, so the median    cannot be given explicitly. 

5. Main results 

In this section, we proposed main results about the GWW family distribution. 

Theorem 5.1. The following properties are satisfied for the family of GWW distribution:  

1.         , then the GWW random variable is degenerated at point 0.  

2.          , then    (           ) converges to      (     ).  

3.  If    , then   (         ) converges to  (   ) 

4. Let            be a sample from exponential distribution with mean   ⁄ . 

Then    (          )     (           ). 

5. Let                be a sample from weibull distribution with scale parameter   and 

shape parameter   , then 

     (           )          ( 
 

          )    ( 
 

      ). 

6. Let    (   )  and      (         )be independent random variable.Then 

conditionally random variable   (    )       (       ). 

Proof: The proofs of all cases are straightforward. 

Theorem 5.2 (Relation between GWE and GWW distributions). Suppose the random 

variables                 be independent and         ( (     ) , then 

(a) the random variable    ∑     
 
    follows the    (      )  

(b) the random variable    ( ∑     
 
    )

 

   follows  the    (       ) distribution. 

 

Proof: 

(a) See Kharazmi et al. (2015). 

(b)  It is straightforward 

6. Stochastic orders 

     In this section, we are interested in comparing the    and     distributions with 

respect to stochastic ordering information, See shaked and Shanthikumar (2007). The 

comparison of two random variables is very important in reliability theory, risk analysis and 

other disciplines. There are many possibilities to compare random variables or their 

distributions, respectively, with each other. One of the most important orderings among 

stochastic orderings is the Likelihood ratio ordering which compares lifetimes of systems 

with respect to their Likelihood information. In this section we give a basic theorem for 

comparing the    (       ) and   ( 
 

      ) distributions. Now let us to give a 

quick review of required definitions of stochastic orders and notation which are used in the 



following theorem. Let   and   be two random variables with distribution functions   and  , 

survival functions  ̅      and  ̅      and density functions  and  . It is said that   is 

smaller than   in the following expression. 

1. Likelihood ratio order (     ) if  ( )  ( )⁄  is increasing in  . 

2. Hazard rate order (     )if  ̅( )  ̅( )⁄  is increasing in  . 

3. Usual stochastic order (     ) if  ̅( )   ̅( ). 

4. Mean residual life order (      )if  (       )   (       ). 

The following implications hold among these stochastic orders.             

    (   )  . For further results see shaked and Shanthikumar (2007). 

Theorem 6.1. Let      (       ) and     ( 
 

      ), then      . 

Proof: 

 It is sufficient to show that the ratio   
  ( )

  ( )
 

  

 (
 

  
    )

           (     (  ) ) 

     

              (      (  ) )
 is increasing in 

x. By direct calculation we have   

 

  
.
  ( )

  ( )
/  

  

 (
 

  
    )

     

   

         (     (  ) )   ,   (  ) .      (  ) /     (  ) (     (  ) ) -

(      (  ) ) 
  , 

so the proof is complete. 

 

Result 6.1.                 (   )  . 

 

7. Estimation , Fisher Information Matrix , Simulation and Application 

      In this section, first, we discuss the maximum likelihood estimation, fisher information 

matrix and simulation performance for the GWW distribution and then we show that the 

proposed model can provide better fit than some recent classes of extended weibull by using 

two real data examples. Section7.1 gives procedures for maximum-likelihood estimation of 

the GWW distribution. Section7.2 devoted to the computing of the fisher information matrix. 

Section7.3 assesses the performance of the MLEs in terms of biases, mean-squared errors, 

coverage probabilities, and coverage lengths by means of a simulation study. Finally in 

section 7.4 we discuss the application of GWW distribution. 

7.1. Maximum likelihood estimation 

Let            be a random sample from the distribution with density (5). The 

likelihood function based on observed values            is given by 
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Therefore, the log-likelihood function is written as 
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(28) 

The associated gradients are found as follows 
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Due to the non-linearity of these equations the MLEs of parameters can be obtained 

numerically. In this paper we use the optim function from the statistical software R (R 

Development Core Team, 2011) to solve these equations. The default method for optim is a 

derivative-free optimization routine called the Nelder-Mead simplex algorithm (Nelder and 

Mead, 1965). This algorithm requires initial values. For some functions, particularly 

functions with many minimums or maximums, the initial values have a great impact on the 

converged point. Here we use the Method of Moment Estimation (MME) to specify initial 

values. 

7.2. Fisher Information Matrix 

To obtain the asymptotic variance and covariance of  the maximum likelihood estimators, 

the local Fisher information matrix must be found. The second partial derivatives of (27) are 

given below: 
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 So the Fisher information matrix is given by 
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Therefore, 
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It can be shown that the GWW family satisfies the regularity conditions.  Hence, the MLE 

vector ( ̂  ̂  ̂)  is consistent and √ ( ̂     ̂     ̂   )   is asymptotically normal with 

mean vector   and the variance- covariance matrix      ; 

√ ( ̂     ̂     ̂   ) 
 
   (   

  ). 

 

7.3 Simulation 

  Here, we assess the performance of the maximum likelihood estimates given by (28) 

(under the case   is known) with respect to sample size   for the    (           ) 

distribution. The assessment of the performance is based on a simulation study by using the 

Monte Carlo as follows: 

1. generate ten thousand samples of size   for the    (           ) 

distribution by using theorem 5.2; 

2. compute the maximum likelihood estimates for the ten thousand samples, say   ̂ and 

  ̂ for                

3. Compute     ̂ , the (   ) element of     (  ̂   ̂ ) ,      ̂ and the (   ) element of  

   (  ̂   ̂ ) for the ten thousand samples; 

4. compute the biases, mean squared errors, coverage probabilities and coverage lengths 

given by 
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Where  *  + denotes the indicator function. 

We repeated these steps for                    and      so computing above 

quantities. Figs. 4–7 show how the biases, the mean squared errors, the coverage probabilities 

and the coverage lengths vary with respect to  . Figure 4 shows how the two biases vary 

with respect to  . The biases for each parameter decrease to zero as      Figure 5 shows 

how the two mean-squared errors vary with respect to  . The mean-squared errors for each 

parameter decrease to zero as       Figure 6 shows how the two coverage probabilities 

vary with respect to  . The red line corresponds to the nominal coverage probability of      . 

The coverage probabilities for    and   appear to have reached the nominal level at        

Figure 7 shows how the two coverage lengths vary with respect to    . The coverage 

lengths for each parameter decrease to zero as      The reported observations are for only 

one choice for (   ) namely that (   )  (   ). But the results were similar for other 

choices. 

 

Fig. 4. Biases of the MLEs of (   ) versus                

 

 
 

Fig. 5. Mean-squared errors of the MLEs of (   ) versus                



 
 

Fig. 6. Coverage probabilities of the MLEs of (   ) versus                

 
 

Fig. 7. Coverage lengths of the MLEs of (   ) versus                

 

7.4. Data analysis and applications 

      In this section, we illustrate the usefulness of the  GWW distribution. We fit this 

distribution to two data sets and compare the results with the beta weibull-Geometric (BWG), 

weibull-Geometric (WG) and weibull (W) with respective densities 

          ( )  
(   )           (  ) (    (  ) )   

 (   )(     (  ) )   
           

        ( )  (   )         (  ) (     (  ) )
  

     

                              ( )           (  )            

For more details, see Bidram et al. (2011). To investigate the advantage of proposed 

distribution and its sub-models, WE, TWE, GWE, weibull (W) and weighted weibull (WW) 

we consider two real data sets.  

 

 



First data set (fatigue life data): 

 The first data set is given by Birnbaum and Saunders (1969) on the fatigue life of 6061-T6 

aluminum coupons cut the direction of rolling and oscillated at 18 cycles per second. The 

data set consists of 102 observations with maximum stress per cycle 26,000 psi. The data are 

given below: 

233  258  268  276  290  310  312  315  318  321  321  329  335  336  338  338  342  342  342 

344  349  350  350  351  351  352  352  356  358  358  360  362  363  366  367  370  370  372  

372  374 375  376  379  379  380  382  389  389  395  396  400  400  400  403  404  406  408  

408  410 412  414  416  416  416  420  422  423  426  428  432  432  433  433  437  438  439  

439  443 445  445  452  456  456  460  464  466  468  470  470  473  474  476  476  486  488  

489  490 491  503  517  540  560. 

       Before analyzing this data set, we use the scaled-TTT plot to verifiy our model validity, 

see Aarset (1987). It allows to identify the shape of hazard function graphically. We provide 

the empirical scaled-TTT plot of above data set. Fig. 8. Shows the scaled-TTT plot is 

concave. It indicates that the hazard function is increasing; therefore it verifies our model 

validity. 

 

 
 

Fig.8. Scaled-TTT plot of the first data set. 

Table 1 shows the MLEs of parameters, Kolmogorov–Smirnov (K–S) distance between 

the empirical distribution and the fitted model, its corresponding P-value , log-likelihood  and 

Akaike information  criterion (AIC) for the first data set. We fit the GWW distribution to the 

data and compare it with the BWG, WG and weibull densities. For more details see Bidram et 

al. (2011). We can see for this data set the model    (          ) provides the best fit 

among above models included in data analysis. The relative histogram 

fitted    (          ) , BWG, WG and weibull (W) PDFs for fatigue life data are 

plotted in Fig 9(a). Fig 9(b) shows the empirical and fitted survival functions 

   (          ) for fatigue life data. 



Table1. The MLEs of parameters for fatigue life data. 

       Model                          MLEs of parameters          Log-likelihood     AIC              K-S test 

                                                                                                                                       (P-value) 
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Figure 9(a). Fitted densities plots for the first data set 

 

 



 

Fig 9(b). Empirical and fitted survival functions for the first data set:    (          ). 

 

Second data set (Strength data) :  

The data represent the strength measured in GPA , Badar and Priest (1982), for single carbon 

fibers and impregnated 1000-carbon fiber tows. Single fibers were tested under tension at 

gauge lengths of 1, 10, 20 and 50 mm. Impregnated tows of 1000 fibers were tested at gauge 

lengths of 20, 50, 150 and 300 mm. For illustrative purposes, we are considering the single 

fibers data set of 10 mm in gauge lengths with sample size 63. The data are presented below: 

 

 1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518 2.522 2.525 

2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738  2.740 2.856 2.917 2.928 2.937 2.937 

2.977 2.996 3.030 3.125 3.139 3.145 3.220  3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346 

3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 

4.225 4.395 5.020. 

 



 

Fig.10. Scaled-TTT plot of  the second data set . 

 

Fig. 10. Shows the scaled-TTT plot for second data set is concave. 

The results of the MLEs of parameters and (K–S) distance are reported in Table 2. 

Analysis of Table 2 shows that the model    (          ) provides the best fit among 

other models all those used here to fit data set. Fig 11(a) shows the relative histogram and the 

fitted    (          ), BWG, WG and weibull (W) PDFs for Strength data. The 

empirical (black line) and fitted survival (red line) functions    (          ) for 

Strength data are plotted in Fig 11(b). 

Table2. The MLEs of parameters for Strength data set. 

             Model                      MLEs of parameters         Log-likelihood    AIC             K-S test  

                                                                                                                                       (P-value) 
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Fig 11(a). The fitted PDFs and the relative histogram for the Strength data. 

 

 

Fig 11(b). Empirical and fittrd survival functions for Strength data:    (          ). 

 

 

 



8. Conclusions 

In this paper, we have proposed a generalized weigthed weibull distribution denoted by 

GWW. The proposed distribution generalizes the WE , TWE , Weibull (W) and  GWE 

distributions and contains these distributions as its sub-models. The GWW model is 

constructed in a way that is similar to the way in which the GWE is constructed. It is 

investigated that the new model has increasing, decreasing and upside-down bathtub shaped 

hazard. It is expected that this generalization will be widely applicable in reliability theory, 

risk analysis and other disciplines. Two applications of the GWW distribution to real data 

sets are provided to illustrate that this distribution provides a better fit than its sub-models 

and some other  recent extentions of  the weibull distribution. 
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