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Abstract. In complex engineering systems, collaboration between dif-
ferent design disciplines and concurrent optimization of the whole sys-
tem have given rise to an important issue in the field of optimization. In
recent decades, multi-disciplinary design optimization approaches and
meta-heuristic algorithms have been used in this field. In this regard,
a hybrid modified collaborative optimization framework and teaching-
learning-based-optimization algorithm for solving these kinds of prob-
lems is presented here. We show the efficiency of the introduced algo-
rithm by solving test cases and making comparisons with former results.
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1. Introduction

One of the most important challenges of optimization that is called mul-
tidisciplinary analysis (MDA) problem is to address optimization prob-
lems of complex systems involving multiple coupled disciplines such as
most real world engineering optimization problems in aerospace, auto-
mobile, architecture etc. [2, 17]. Solving these kinds of problems without
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considering the interaction between different disciplines is impossible. In
the past, a fixed point iteration process (FPI), which is just a method
to make the MDA problem converge, was used for solving these kinds
of problems. This method, however, does not perform overall system
optimization or configure the whole system so as to reach an optimum
according to one global design objective.

MDA problems are solved by introducing the multidisciplinary design
optimization (MDOQO). In fact, MDO is capable to improve the design of
the system by exploiting synergies among different disciplines [17]. Nev-
ertheless, MDO faces two big challenges, namely, computational and
organizational complexities. MDO methods are classified in two gen-
eral classes: single-level and multi-level methods. In the first class, the
optimization is only directed in the system level, and the disciplinary
models are employed for analyses. Examples for this class include multi-
discipline-feasible (MDF) [3, 4], individual-discipline-feasible (IDF) [8,4],
all-at-once (AAO) [3] and simultaneous analysis and design (SAND)
[7]. In the multi-level procedure, both the system and subsystem con-
duct optimization. Typical multi-level procedures include collaborative
optimization (CO) [1, 2], bi-level integrated system synthesis (BLISS)
[10], concurrent subspace optimization (CSSO) [13, 16] and analytical
target cascading (ATC) [15].

Teaching-learning based optimization (TLBO) is, on the other hand,
one of the new meta-heuristic algorithms based on the natural phe-
nomenon of teaching-learning process. TLBO was proposed in 2011 by
Rao et al. [11] to solve continuous non-linear programming (NLP) large
scale optimization. This algorithm does not require algorithm-specific
parameters or their own algorithm-specific control parameters. In addi-
tion, from the literature survey on evolutionary algorithms, it is observed
that the step of duplicate solutions removal is not explicitly found in the
application of different evolutionary algorithms; while, as is presented
in the literature of TLBO, the step of duplicate solutions removal.

In this paper, a new algorithm to solve MDO problems is introduced
which is a hybrid of TLBO algorithm and collaborative optimization
framework that is called Teaching-learning-based modified collabora-
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tive optimization (TLBMCO) algorithm. The paper is organized as fol-
lows. First, the TLBMCO is described and explained how it is combined
by modified collaborative optimization (MCO). Then, three famous test
problems of MDO are solved by the TLBMCO algorithm and the ob-
tained results are compared with those of other methods. Finally, con-
clusions are drawn.

2. Teaching-Learning-Based Modified Collabo-
rative Optimization

The TLBMCO algorithm has two cycles: internal and external. The in-
ternal cycle, which is a bi-level MDO framework, decomposes the original
problem to system and sub-system levels. These obtained problems are
then optimized and explored, and the synergy of coupling between var-
ious interacting disciplines in each iteration is exploited. The internal
cycle is described in Sub-section 2.1 and is explained in section 2.2.

2.1 Internal cycle of the TLBMCO

The internal cycle is based on CO, which was proposed by Kroo et
al. [2]. Here modified CO (MCO), which is a bi-level framework devel-
oped by A. V. Demiguel and W. Murray [5] is used. First, the internal
cycle receives stochastic values of variables (design and coupling vari-
ables). Then, this cycle transfers these values into feasible ones. Since
MCO has both level system and subsystem, in the internal cycle two
kinds of problems are solved, namely level system and subsystem. The
level system problem is formulated as follows:

System level:

Np
Miny (2" = 2°) + (Y} = Y)
=1

St Xip < X°< Xpp, X0 =[2°Y]],
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i-th subsystem:
Min di(X") = (2" = Z°) + (Y, = YY),

S.to: gi(X") <0,
X},B < X < XLiJB’ X' = [ZiayiéﬁXlioc]’
where Z is the vector of shared variables, Y;; is the coupling variable vec-
tor (whose value is sent from the i-th subsystem to the j-th subsystem),
Xioo .
X7 p and Xy, 5 are vectors of lower and upper bounds of the variables

is the vector of the i-th subsystem local variables, and Xg B> XIOJ B>

respectively for system level and the i-th subsystem.

The internal cycle starts when the system level receives new values for
variables ( Z° and Y;; ). In the first step, these values are forwarded
to the subsystem level. Then, using these values, subsystem problems
are optimized and in each subsystem an optimal solution (e.g. X =
7, Vi X,
sent to the system level. Now, using the received values, optimization

] ) is produced. Then, this obtained optimal solution is

of system level is performed. The next iteration of this cycle starts by
sending the achieved optimal solution system level to the subsystem
level. The inter cycle is terminated when the changes in the objective
function in the system level are smaller than a predefined value.

2.2 External cycle

During the internal cycle, compatible solutions, that is, solutions with
equal values of variables at both subsystem and level system, were at-
tempted to be attained, But, in some iterations of the internal cycle,
the objective function of the system level cannot be minimized to zero,
or does not even reach a value near zero. Therefore, one main goal of
the external cycle is to counteract these incompatible solutions in the
next generation. In order to achieve this aim, a penalty value for the
objective function is assigned. The TLBO algorithm is used [10, 6] in
the external cycle. TLBO is an algorithm with few specific parame-
ters. The implementation of TLBO does not require the determination
of any controlling parameters, and this makes the algorithm robust and
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powerful. The process of TLBMCO algorithm for MDO problems, which
is shown in Fig. 1, is described in the following.

Step 1: In the beginning, an initial population (students) is created by
selecting the values of the coupling and shared variables randomly. Then,
these values are sent to the internal cycle.

Step 2: In the internal cycle, the system level receives the values from
the previous step. Next, these values are sent to the sub-systems. In
the next step, the sub-systems are optimized and the obtained optimal
solutions are forwarded to the system level. Now, the system level is
optimized and its optimal solution is delivered to the subsystems. This
process is continued until the objective function value of the system level
is gets less than a predefined small positive number (¢).

Step 3: In the internal cycle, the goal in both the system level and sub-
systems is to minimize the difference between values of variables ZY, YZ(J)
and Z',Y);. However, the obtained solutions from some iterations are
incompatible. To exclude these kinds of solutions from the next gen-
eration, a large penalty value is assigned to the corresponding design
objective function.

Step 4: The objective function used in evaluation of the external cy-
cle, is the designing objective function. After checking the incompatible
solutions, the teacher phase starts with evaluating the values of the ob-
jective function of the compatible solutions. Then, the mean of each
variable is calculated. In the next step, the best solution is identified as
the teacher. The teacher will try to move the students toward its own
level. The solutions (students) are hence modified based on the best
solution (teacher). Afterwards, the modified solutions are sent to the
internal cycle. In the next step, each obtained solution of the internal
cycle is improved by mutual interaction with other obtained solutions
(phase learner, see [11]). Again, the improved solutions are delivered to
the internal cycle. Finally, the termination criterion is checked.

Each subsystem objective is added to the system level in CO as a com-
patibility constraint. These constraints lead to difficult convergence dur-
ing optimization. Since in TLBMCO the original objective function of
the problem is optimized in the external cycle, the sum of compatibility
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constraints corresponding to the MCO algorithm is taken as the objec-
tive function of system level in TLBMCO. For the internal cycle of the
TLBMCO algorithm, in some cases, the compatible objective cannot be
minimized to zero or near to zero. Hence, the external cycle enables these
incompatible solutions to be excluded in the next generation. Therefore,
the TLBMCO algorithm overcomes convergence problem of CO.

3. Numerical Results

To show the efficiency of the presented algorithm for MDO problems, the
TLBMCO algorithm was coded in MATLAB and run on three bench-
mark problems available in the literature. The analyses were performed
on a system with Intel(R) Core (TM) i5-2430M processor and 8GB
RAM.

Example 3.1. Consider an analytical example of an MDO problem
involving two disciplines. The coupling between the two disciplines is
described by equations below:

Y1 = 25 + 21 + 22 — 0.2y01,
Y21 = /Y12 + 21 + 22.

The related optimization problem is described by the following formu-
lation:
Min 23 + 29 + y12 + exp(—y21),
Sit1— 912 g
3/218

— —-1<1
10

—10< 21 <10, 0<z1 <10, 0< 2 <10,

where y12 and y91 are coupling variables, z; and 29 are shared variables
and z; is local variable. For ¢ = 1078, all optimizations from different
initial populations stably converge to the optimum point [3.026800] with
the objective f = 8.0027. Table 1 presents the obtained results and the
results of other methods. These results show the efficiency and benefits
of the new algorithm in comparison with other methods.
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Table 1: Comparison of different MDO method for example 3.1

Method MDF IDF CSSO BLISS Cco TLBMCO
f 8.02537 8.00347 8.19881 8.1278 21.99930  8.002712
(1) 3 b 11 3 9 9
2 0 ) 0 0 9 0
(3) 231 0 208 178 0 0
(4) 0 48 44 30 10137 215
(5) 0 48 926 27 8522 108
(6) 462 96 686 413 19259 413
(7) 28x 107  7.62x107° 24x1072 15x107% 175 1.85x 107°
(1): Number of design variables
(2): Number of equality constraints
(3): Function calls of system analysis
(4): Function calls of discipline 1
(5): Function calls of discipline 2
(6): Total function calls
(7): Relative error

Speed reducer optimization problem is selected as the second example.

Example 3.2. The speed reducer (Fig. 2) optimization problem is
taken from [9]. The objective of this problem is to minimize the volume
of a speed reducer (Fig. 7) subjected to stress, deflection, and geometric
constraints. Hence, the problem is stated as follows:

Min f(x) = 0.78547123(3.333322 + 14.933423 — 43.0934)

—1.5079z1 (22 + 22) + 7.477(x¢ + 23) + 0.7854 (w422 + 2572),

27.0

S.t. gy ;— —1<0,
12523
397.5

921 ——55— 1< 0,

T1T523
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1.93z3
xgxgl'é
1.93x3

xzxgx‘%

: 4 1100 <€ 0,
gs - By

Ao
:——1100—850<0,
ge B,

g7 xoxs — 40.0 < 0,
98:5'0<77

g3 :

g4t

go 1 = < 12.0,

x4
1.527 + 1.9
911:7( rr )—1<0,
x5

0.5
) +16.9 x 106} , By = 0.1z,

) +16.9 x 106} , By = 0.123,

According to [14, 17], the problem above is decomposed into three sub-
systems (disciplines). Sub-system 1 concerns designing the gear, while
sub-systems 2 and 3 are associated with the design of shafts 1 and 2:

Subsystem 1:
Min (z1 — fl)Q + (29 — :U~2)2 + (3 — :f3)2 + (y1 — y~1)2,
27.0

S.t. g1 3 -1 g 0,
T1T573
397.5

: —-1<0,
92wl

g7 : xoxs — 40.0 < 0,
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go : o < 12.0,
96 <11 <36, 07 <y <08, 17 < x5 < 28,
Y1 = 22T3.
Subsystem 2:
Min (z1—21)*+ (z2—22)? + (23— 23)* + (24— 24) >+ (w6 — 76 )2+ (y2 —42)*
1.5079z1 (22 + 22) + 7.477x1 (23 + 23) 4 0.7854(z422 + 2572),

1.9323
St. g T _1<0,
ToT3Tg
Ay
- 2L 1100 < 0,
g5 B,
1.5 1.9
g10 : w —1<0,
T4
745.0 0.5
A= (52 1169 x 108, By = 0.122,
23
2.6 <z1 <3.6, 0.7<23<08, 17 < 73 < 28,
7.3

<24 <83, 7.3 < w5 <83, 2.9 <6< 3.9,
Yo = —1.5079z 22 + 7.47723 + 0.7854x422.

Subsystem 3:

Min (x1—1)2 4 (va—22) 2+ (23— 23) 2+ (25— 25) 2+ (7 —77) %+ (y3—13) %,
1.9323

azgxg:c‘%

Ao
g6 : =2 — 1100 — 850 < 0,
Bo

1.5 1.9
911!7( i )—1<0,
5

745.0 0-5
T5) 1169 x 105, By = 0.1a%,

Sit. gg: —-1<0,

ToI3
il § 3.6, 0.7 § T2 g 0.
8
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y3 = —1.5079z 22 + 7.47723 + 0.7854z522.

The optimization problem is solved by the TLBMCO algorithm. The
optimal solution is obtained as [3.5. 0.7, 17, 7.3, 7.7153, 3.3512, 5.2866]
with the objective value f = 2994.3451. For comparing this solution with
other methods, from [18, 19], Table. 2 is presented.

Example 3.3. As the last example, the Electrical Package problem is
solved by TLBMCO, which is a bench-mark multidisciplinary problem
with strong coupling between electrical and thermal subsystems. Oper-
ating temperatures in thermal subsystem affect component resistances
on electrical subsystem , while temperatures depend on resistances. The
sub-systems are demonstrated in Figure 3. This problem is one of the
ten test cases used by NASA. The Electrical Package problem optimiza-
tion problem has 8 design variables that are the following:

x1: heat sink width(m)

xo: Heat sink length (m)

x3: Fin length (m)

x4: Fin width (m)

x5: Resistance 1 at temperature 7°(€2)

zg: Temperature coefficient of electrical resistance 1 (°K 1)
x7: Resistance 2 at temperature 2 (°K — 1)

xg: Temperature coefficient of electrical resistance 2 (°K 1)

The thermal and electrical state variables (linking variables) are:
y1: Negative of watt density (watts/m3)

y2: Resistance 1 at temperature 77 (£2)
y3: Resistance 1 at temperature 75 (§2)

y4: Current in resistor 1 (amps)
ys: Current in resistor 2 (amps)
ye: Power dissipation in resistor 1 (watts)

y7: Power dissipation in resistor 2 (watts)
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yg: Total circuit current (amps)
yo: Total circuit resistance ()

y10: Total current power (watts)

y11: Component temperature T3 of resistor 1 (°C')

y12: Component temperature 75 of resistor 2 (°C')

1y13: Heat sink volume (m?)

11

The Electrical Package problem optimization problem is modeled as fol-

lows:
M’Ln f = Y1,

Sit. g1 =y — 8 <0,
g2 = y12 — 85 <0,
hi =y, —ys =0<0,

0.05 < 1 £0.15, 0.05 <
10 < x5 < 1000, 0.004 < 6

0.009, 10

22 < 0.15, 0.01 < 23 < 0.1,0.005 < 24 < 0.05,
< < 27 < 1000, 0.004 < x5 < 0.009,

where objective function is negative watt density. Also, coupling be-
tween two disciplines, mainly Thermal and Electrical, are formulate by

equations as follow:

ya = 220
Ys = 912/2-&?3’
Yo = (y4)2y2,
yr = (y5)%ys3,
ys = Lotage,
Y= 14T
Y2 Y3

y10 = (ys)*yo,
y11 = f11(ye, y7, 1, T2, T3, T4),
Y12 = f12(y67y735513$27$3,$4)a
Y13 = 12273,
__y°
Y1 = Y13’
Yo = w5[1 + z6(y11 — T0)],
ys = w5[1 + 28(y12 — T?),
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Table 2: Comparison of different MDO method for Example 3.2

Method MDF IDF CSSO BLISS (610) TLBMCO

2994.3632  2994.5276  2995.2934  2995.6027 2998.4935  2994.3547

1 3 bt 11 3 9 9
2 0 2 0 0 2 0
3 252 0 208 247 0 0
4 0 106 218 197 5460 405
4 0 106 170 187 7528 413
5 0 106 190 217 6550 371
6 756 318 1202 1342 19538 1189
re 27x1076 58x107° 31x107* 42x107* 14x107% 1.1x1077

(1): Number of equality constraints

(2): Function calls of system analysis

(3): Function calls of discipline 1

(4): Function calls of discipline 2

(5): Function calls of discipline 3

(6): Total function calls

(7): Relative error

where voltage and Tv are constant parameters, which are set as follows:
voltage = 10V and To = 10°C, and f1; and fio are implicitly functions.

Table 3: Results of solving Example 3.3 by TLBMCO
Optimal value -655462.654

(1) 4328
(2) 8543
(3) 12871

(1): Function calls of discipline E
(2): Function calls of discipline T
(3): Total function calls
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Table.3 demonstrates the obtained result of solving Example 3 by the
TLBMCO algorithm.

According to Table.1 and Table. 2, IDF has the least function calls, and
that of CO is the most. The last column of both tables show the error
for the various methods. To compare convergence histories, the relative
error of the objective function value was used. Least error is given by the
TLBMCO method. Also, Table. 3 confirms the ability of the TLBMCO
method in solving the Electrical Package problem.

4. Conclusion

The proposed algorithm, TLBMCO, which is a hybrid of the TLBO al-
gorithm and the MCO framework, has two cycles. Its performance is
checked by experimenting two benchmark problems with different char-
acteristics. However, the number of the function calls of the TLBMCO
is more than the number of that of IDF. But, the error of the TLBMCO is
the least. Therefore, the results show the better performance of TLBMCO
over other MDO frameworks, namely, MDF, IDF, CSSO, BLISS and
CO. In addition, TLBMCO shows a satisfactory performance with less
error.
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Figure 1. The TLBMCO algorithm for solving MDA proble
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Figure 2. speed reducer

(X1, X2, X3, X4) (X5, Xe, X7, Xs)

Resistance

(Y2, V3)

Thermal Electrical

Temperature
(Y11, Y12)

Figure 3. Interdisciplinary Interactions of Electronic Packaging
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