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Abstract. In complex engineering systems, collaboration between dif-
ferent design disciplines and optimization of whole system concurrently
are caused an important issue in optimization. In recent decades the
multi-disciplinary design optimization approaches and meta-heuristic
algorithms have been used in this field. In this regard, a hybrid modi-
fied collaborative optimization framework and teaching-learning -based-
optimization algorithm, for solving these kind of problems is presented
here. We show efficiency of the introduced algorithm by solving test
cases and comparison to former results.
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1 Introduction

One of the very important challenge of optimization is addressing the
optimization problems of complex systems involving multiple coupled
disciplines, that called multidisciplinary analysis (MDA) problem, such
as the most real world engineering optimization problems in aerospace,
automotive, architecture and etc.[2,17], solving these kind of problems
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without considering interaction between different disciplines is impossi-
ble. In the past, fixed point iteration process (FPI) were used for solving
these kind of problems, which is just a method to converge the MDA
problem and does not perform overall system optimization or the con-
figuring of the whole system, such as to reach an optimum according to
one global design objective.

MDA problems were solved by introducing the multidisciplinary de-
sign optimization (MDO); indeed, MDO is capable to improve system
design by exploiting synergies among different disciplines[17]. Never-
theless, MDO is faced with two big challenges, computational and or-
ganizational complexities. MDO methods are classified in two general
classes: single level and multi level methods. In the first class, the opti-
mization is only directed in the system level, and the disciplinary models
are employed for analysis, such as multi-discipline-feasible (MDF) [3,4],
individual -discipline-feasible (IDF) [8,4], all-at-once (AAO) [3] and si-
multaneous analysis and design (SAND) [7]. In multi level procedure,
both the system and subsystem conduct optimization; typical multi level
procedure includes collaborative optimization (CO) [1,2], bi-level inte-
grated system synthesis (BLISS) [10], concurrent subspace optimization
(CSSO) [13,16] and analytical target cascading (ATC) [15].

In the other side teaching-learning based optimization (TLBO) is one
of the new meta-heuristic algorithm based on the natural phenomenon of
teaching-learning process; TLBO was proposed in 2011 by Rao et.al [11],
to solve continuous non linear programming (NLP) large scale optimiza-
tion. This algorithm does not require the algorithm-specific parameters
and their own algorithm-specific control parameters. In addition, from
the literature survey on evolutionary algorithm, it is observed that step
of duplicate solutions removal is not explicitly found in the application
of different evolutionary algorithms, whereas, in literature of TLBO it
is presented that the step of duplicate solutions removal.

In this paper, we introduce a new algorithm to solve MDO problems,
which is a hybrid of TLBO algorithm and collaborative optimization
framework that is called Teaching-learning- based modified collabora-
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tive optimization (TLBMCO) algorithm. The paper is organized as
follows. First, the TLBMCO is described and it is explained that how
it is combined by modified collaborative optimization (MCO); then, two
famous test problem of MDO are solved by TLBMCO algorithm and the
obtained results are comprised with results of other methods. Finally,
conclusion will be drawn.

2 Teaching-learning- based modified collabora-
tive optimization

The TLBMCO algorithm has two cycles: internal cycle and external
cycle. The internal cycle, which is a bi-level MDO framework, decom-
poses original problem to system level and sub-system level; then these
obtained problems are optimize problem and explored and exploited the
synergistic of coupling between various interacting disciplines in each
iteration. We describe internal cycle in sub-section 2.1. But external
cycle optimize original problem by TLBO.

2.1 Internal cycle of the TLBMCO

The internal cycle is based on CO, which was proposed by Kroo et al.
(1994) [2]. We use a modified Co (MCO), which is a bi-level framework
developed by A. V. Demiguel and W. Murray [5]. First internal cycle
receives stochastic value of variables (design and coupling variables);
then it transfers these values into feasible values. Since, MCO has both
level system and subsystem, in the internal cycle two kind of problems
are solved, namely level system problem and subsystem problems. Level
system problem is formulated as follows:
System level:

Min

ND∑
i=1

(Zi∗ − Z0) + (Y i∗
ij − Y 0

ij)

S.to :X0
LB ≤ X0 ≤ X0

UB, X
0 =

[
Z0, Y 0

ij ]
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i-th subsystem:

Min di(X
i) = (Zi − Ẑ0) + (Y i

ij − Ŷ 0
ij)

S.to :gi(X
i) ≤ 0

Xi
LB ≤ Xi ≤ Xi

UB, X
i =

[
Zi, Y i

ij , X
i
loc ]

where Z is vector of shared variable, Yij is coupling variable vector (i-th
subsystem sends value to j-th subsystem), Xi

loc is vector of i-th sub-
system local variables, and X0

LB, X
0
UB, X

i
LB and Xi

UB are vectors of
variable’s lower and upper bounds for respectively system level and i-th
subsystem.

The internal cycle starts when the system level receives new value of
variable ( Zi and Yij ); in the first step, these values are forwarded to sub-
system level. Then, by these values subsystem problems are optimized

and in each subsystem optimal solution (e.g. Xi∗ =
[
Zi∗, Y i∗

ij , X
i∗
loc ] )

is produced. Then, this obtained optimal solution is sent to the system
level. Now, by the received values, optimization system level is done.
The next iteration of this cycle, starts by sending achieved optimal solu-
tion system level to subsystem level. The inter cycle is terminated when
the changes in the objective function in the system level are smaller than
a predefined value.

2.2 External cycle

During internal cycle we are attempted to attain compatible solutions,
which have an equal values with regard to the same variable at both
subsystem and level system. But in some iteration of internal cycle, the
objective function of system level cannot be minimized to zero or near
zero. Therefore, one main goal of the external cycle is to counteract
these incompatible solutions in the next generation. In order to achieve
this aim, a penalty value for objective function is assigned. We use the
TLBO algorithm [10,6] in the external cycle. TLBO is an algorithm-
specific parameter-less. The implementation of TLBO does not require
the determination of any controlling parameters which makes the algo-
rithm robust and powerful. The process TLBMCO algorithm for MDO
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problems, which is showed in Fig.1, is described in continue.
Step 1: In the beginning, an initial population (students) is created by
selecting the values of the coupling and shared variables at stochastic;
then these values are sent to the internal cycle.
Step 2: In the internal cycle, system level receives these values. Then,
these values are sent to the subsystems. In next step, sub-systems are
optimized and the obtained optimal solutions are forwarded to the sys-
tem level. Now, system level is optimized and its optimal solution is
delivered to subsystems. This process is continued until objective func-
tion value of system level is less than a predefined small positive number
(ε).
Step 3:In the internal cycle, the goal in both system level and subsys-
tems are minimizing difference between values of variables Z0, Y 0

ij and

Zi, Y i
ij . However, the obtained solutions of some iterations are incom-

patible; to exclude these kind of solutions from the next generation, the
corresponding design objective function is assigned with a large penalty
value.
Step 4: Objective function in evaluating of external cycle, is designing
objective. After checking incompatible solutions, teacher phase starts by
evaluating values of objective function for compatible solutions. Then
the mean of each variable is calculated. In the next step, best solution is
identified as teacher. Teacher will try to move students toward its own
level; therefore, solutions (students) are modified based on the best so-
lution (teacher). Then, the modified solutions are sent to internal cycle.
In the next step, each obtained solution of internal cycle is improved
by mutual interaction with other obtained solutions (phase learner, see
[11]). Again improved solutions are delivered to internal cycle. Finally
the termination criterion are checked.

3 Numerical Results

To show the efficiency of the presented algorithm for problems for MDO
problems, the TLBMCO algorithm was coded in Matlab and run on two
benchmark problems available in the literature on a system based on a
Intel(R) Core (TM) i5-2430M processor with 8GB RAM.
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Example 3.1. Consider an analytical example of an MDO problem
involving two disciplines. The coupling between two disciplines is de-
scribed by equations as follows:

y12 = z21 + x1 + z2 − 0.2y21

y21 =
√
y12 + z1 + z2

The related optimization problem by following formulation is described

Min :x21 + z2 + y12 + exp(−y21)

S.to :1− y12
8

≤ 1

y21
10

− 1 ≤ 1

− 10 ≤ z1 ≤ 10, 0 ≤ x1 ≤ 10, 0 ≤ z2 ≤ 10

where y12 and y21 are coupling variables, z1 and z2 are shared variables
and x1 is local variable. For ε = 10−8,all the optimizations from different
initial populations stably converge to the optimum point [3.026800] with
the objective f = 8.0027. Table 1 presents the obtained results and the
results of other methods from [18,19]. These results show the efficiency
and benefits of the new algorithm in comparison with the others method.

Example 3.2. Example 2: The speed reducer (Fig. 2) optimization
problem is taken in the reference [9]. The objective of this problem is
to minimize the volume of a speed reducer (Fig. 2) subjected to stress,
deflection, and geometric constraints; hence, the problem is stated as



Teaching-learning- based modified collaborative optimization 7

Table 1: Comparison of different MDO method for example 3.1

Method MDF IDF CSSO BLISS CO TLBMCO

f 8.02537 8.00347 8.19881 8.1278 21.99930 8.002712

Number 3 5 11 3 9 9
of design
variables

Number of 0 2 0 0 2 0
equality
constraints

Function 231 0 208 178 0 0
calls of
system
analysis

Function 0 48 44 30 10137 215
calls of
discipline

Function 0 48 226 27 8522 198
calls of
discipline

relative 0.00281274 7.62228× 10−5 0.02448501 0.0156182 1.748930 1.84934× 10−5

errore
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follow:

Minf(x) = 0.7854x1x
2
2(3.3333x

2
3 + 14.9334x3 − 43.0934)

− 1.5079x1(x
2
6 + x27) + 7.477(x36 + x37) + 0.7854(x4x

2
6 + x5x

2
7)

S.to :g1 :
27.0

x1x22x3
− 1 ≤ 0

g2 :
397.5

x1x22x
2
3

− 1 ≤ 0

g3 :
1.93x34
x2x3x46

− 1 ≤ 0

g4 :
1.93x35
x2x3x47

− 1 ≤ 0

g5 :
A1

B1
− 1100 ≤ 0

g6 :
A2

B2
− 1100− 850 ≤ 0

g7 : x2x3 − 40.0 ≤ 0

g8 : 5.0 ≤ x1
x2

g9 :
x1
x2

≤ 12.0

g10 :
(1.5x6 + 1.9)

x4
− 1 ≤ 0

g11 :
(1.5x7 + 1.9)

x5
− 1 ≤ 0

A1 =

[
(
745.0x4
x2x3

) + 16.9× 106
]0.5

, B1 = 0.1x36

A2 =

[
(
745.0x5
x2x3

) + 16.9× 106
]0.5

, B2 = 0.1x37

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

According to [14,17], the above problem is decomposed into three sub-
system (discipline). Sub-system 1 is concerned with designing the gear,
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while sub-systems 2 and 3 is associated with the design of shafts 1 and
2:
Subsystem1:

Min(x1 − x̃1)
2 + (x2 − x̃2)

2 + (x3 − x̃3)
2 + (y1 − ỹ1)

2

S.to :g1 :
27.0

x1x22x3
− 1 ≤ 0

g2 :
397.5

x1x22x
2
3

− 1 ≤ 0

g7 : x2x3 − 40.0 ≤ 0

g8 : 5.0 ≤ x1
x2

g9 :
x1
x2

≤ 12.0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

y1 = x2x3

Subsystem2:

Min(x1 − x̃1)
2 + (x2 − x̃2)

2 + (x3 − x̃3)
2 + (x4 − x̃4)

2 + (x6 − x̃6)
2 + (y2 − ỹ2)

2

1.5079x1(x
2
6 + x27) + 7.477x1(x

3
6 + x37) + 0.7854(x4x

2
6 + x5x

2
7)

S.to :g3 :
1.93x34
x2x3x46

− 1 ≤ 0

g5 :
A1

B1
− 1100 ≤ 0

g10 :
(1.5x6 + 1.9)

x4
− 1 ≤ 0

A1 =

[
(
745.0x4
x2x3

) + 16.9× 106
]0.5

, B1 = 0.1x36

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9

y2 = −1.5079x1x
2
6 + 7.477x36 + 0.7854x4x

2
6
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Subsystem3:

Min(x1 − x̃1)
2 + (x2 − x̃2)

2 + (x3 − x̃3)
2 + (x5 − x̃5)

2 + (x7 − x̃7)
2 + (y3 − ỹ3)

2

S.to :g4 :
1.93x35
x2x3x47

− 1 ≤ 0

g6 :
A2

B2
− 1100− 850 ≤ 0

g11 :
(1.5x7 + 1.9)

x5
− 1 ≤ 0

A2 =

[
(
745.0x5
x2x3

) + 16.9× 106
]0.5

, B2 = 0.1x37

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 5.0 ≤ x7 ≤ 5.5

y3 = −1.5079x1x
2
7 + 7.477x37 + 0.7854x5x

2
7

The optimization problem is solved by TLBMCO algorithm. The op-
timal solution is obtained as [3.5. 0.7, 17, 7.3, 7.7153, 3.3512, 5.2866]
with the objective value f = 2994.3451. For comparing this solution with
other methods, from [18,19], Table.2 is presented.
According to Table. 1. and Table. 2. IDF has the least of the number
of the function calls, and that of CO is the most. The last of both ta-
bles show the error for the various methods. To compare convergence
histories, we used the relative error of the objective function value, least
error is given by the TLBMCO method.

4 Conclusion

A proposed algorithm, TLBMCO, which is a hybrid of TLBO algorithm
and MCO framework, has two cycles. Its performance is checked by
experimenting with two benchmark problems with different characteris-
tics. However, the number of the function calls of the TLBMCO is more
than IDF. But, the error of the TLBMCO is least. There for, the results
show the better performance of TLBMCO over other MDO frameworks,
namely MDF, IDF, CSSO, BLISS and CO. Also, TLBMCO shows a
satisfied performance with less error.



Teaching-learning- based modified collaborative optimization 11

Table 2: Comparison of different MDO method for example 3.2

Number Function Function Function Function relative
Method f of calls of calls of calls of calls of error

equality system discipline discipline discipline
constraints analysis 1 2 3

MDF 8.02537 0 0 0 756 2.72980× 10−6

IDF 8.00347 2 106 106 318 0.0000576331
CSSO 8.19881 0 170 190 1202 0.000313381
BLISS 8.12785 0 187 217 1342 0.000416675
CO 21.99930 2 7528 6550 19538 0.00138209
TLBMCO 8.002712 0 413 371 1189 1.08871× 10−7
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Figure 1: The TLBMCO algorithm for solving MDA proble
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Figure 2: speed reducer
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