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min
x
f(x) (1)

where x ∈ Rn, f : Rn → R. It is assumed that some of the functions
f(x), may be non smooth.

Most of these approaches require derivatives of the objective function.
We also assume that some derivatives of the objective is either unavail-
able or are computationally too expensive to obtain.

Recently, derivative-free trust region algorithms have been used increas-
ingly [7, 13, 17, 23]. A common approach is to combine conventional
algorithm such as genetic algorithms or pattern search with surrogate
models to solve expensive problems. For instance, Booker et al. [4] and
Jones et al. [12] proposed a method based on Kriging basis functions. In
recent years, nonlinear optimization is perhaps one of the most common
reasons for using derivative-free methods. Forming surrogate models by
interpolation has been proposed by Winfield [22] and reviewed by Powel
[17] and Conn [7]. Wild, Regis, and Shoemaker [19] constructed a sur-
rogate model based on RBFs.

The present paper gives a new derivative-free method for the solution
of (1), which belongs to the class of trust region methods for optimiza-
tion. Our aim in this paper is to find an efficient algorithm for the global
solution of optimization problems. At each iteration a quadratic surro-
gate model is assumed to approximate the objective function f(x) based
on RBFs. we have chosen the position of interpolation points within a
sphere of radius ∆ > 0 around the trial point. The important idea is
the assumption that the interpolation points exist and can good ap-
proximate f(x) in small spheres. When the current trial point is not
enough close to a local minimum, we update the interpolation points
and construct a new model by RBFs.

In the previous methods, whenever a trial point did not decrease the
objective function as expected, one of the interpolation points was re-
placed by another evaluated point. In our approach, all the interpolation
points are changed at each iteration, if necessary. Since evaluation of ob-
jective function is computationally expensive, we stress the importance
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of having complete knowledge of all points previously evaluated by the
algorithm. There is a fundamental difference between our method and
previous algorithms, where, in order to reduce linear algebraic compu-
tational costs, with small or large a trust region we can still obtain a
good approximation. The proposed method will guarantee global con-
vergence. Also, models based on RBFs have been shown to be of interest
for global optimization.

This paper is organized as follows: In Section 2, the surrogate model
is introduced. In Section 3, the RBFs are described. In Section 4, we
present derivative–free optimization. Section 5, gives a summary of the
surrogate model based on RBFs. In Section 6, the algorithm is intro-
duced and its convergence properties are established. Numerical results
for some examples are reported in the last Section.

Throughout the paper || . || denotes for Euclidean norm and for simplic-
ity we also use subscripts to denote functions evaluated at iterates, for
example, fk = f(xk), gk = g(xk) and Hk = H(xk).

2. Surrogate Method

We consider the following unconstrained optimization problem

min
x∈Rn

f(x),

where f : Rn → R is a function which is not necessarily differentiable. In
this paper, we propose a surrogate model that is smooth, easy to mini-
mize and that approximate well the objective f(x).

We remark that surrogate model is referred to as a technique that uses
the sample points to build a surrogate function, which is sufficient to
predict the behavior of the objective function.

2.1 Quadratic surrogate model

Powell [17] and Conn et al. [7, 8] proposed a quadratic surrogate model
as follows:

Sm(xk + s) = fk + gTk s+
1
2
sTHks, (2)
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where gk = ∇f(xk) and Hk = ∇2f(xk). When f(x) is twice differen-
tiable and admits a hessian matrix, H(x) which will always be positive
definite.

The goal is to construct the surrogate model Sm(xk) instead of the ob-
jective function f(x), which is computationally simple and inexpensive
with good analytical properties. It could be used in optimization because
of its simplicity and a suitable algebraic form.

To build a quadratic model, we define the trust region Bk := {x ∈ Rn :
||x−xk|| < ∆k}. At each iteration of the surrogate method, the solution
of optimization problem inside Bk [9, 16], as

min
s
Sm(xk + s) s.t. ||s|| < ∆k, (3)

is needed, for some trust region with radius ∆k > 0. Ratio of the actual
f(x) over the predicted Sm(x) is as follows:

ρk =
f(xk)− f(xk + sk)

Smk(xk)− Smk(xk + sk)
. (4)

Given the standard trust region 0  η0  η1 < 1, 0 < γ0 < 1 < γ1,
0 < ∆k  ∆max and xk ∈ Rn, we define a model Smk on Bk, and
compute a step sk such that xk+sk ∈ Bk, in order to sufficiently reduces
the model Sm(xk).

By accepting the trial point xk, we compute f(xk+sk) and ρk using (4),
then update the surrogate model parameters as follows,

xk+1 =

xk + sk ifρk  η0

xk o.w,

and

∆k+1 =






∆k η0  ρk < η1 ,
min{γ1∆k,∆max} ρk  η1 ,
γ0∆k ρk < η0.

The following assumptions are considered in this section:

1. f(x) is a two times differentiable function.
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2. {xk} is a bounded sequence.

Suppose that these assumption holds. Let sk be a solution of subproblem
(3), the following lemma, which can be obtained from the well-known
result (Powel) is needed [17].

Lemma 2.1.1. Subproblem (3) satisfies a sufficient decrease condition
of the form:

Smk(xk)− Smk(xk + sk) 
c

2
||gk||min(∆k,

||gk||
||Hk||

),

for some constant c ∈ (0, 1). We also assume that ||gk||
||Hk|| = +∞ when

Hk = 0.

Now the main questions are as follows: How to build surrogate models,
and how to evaluate the accuracy of surrogate models?

2.2 Trust region based on the Cauchy point

The line search methods can be globally convergent. We seek the opti-
mal solution of the subproblem (2). It is enough for purposes of global
convergence to find an approximate solution sk that lies within the trust
region and gives a sufficient reduction in the model. The sufficient re-
duction can be quantified in terms of the Cauchy point.

Definition 2.2.1. The Cauchy point, given current values xk, fk, ∇fk,
∆k, is a point that solves the quadratic model (3) along the direction
the minimizers the linear model

min
s
l(xk + s) = fk + gTk s. (5)

To calculate the Cauchy point, which we denote by sck. We find the
vector spk that solves a linear model (5), that is

spk = −∆k
∇fk

||∇fk||
.

So, the Cauchy is
sck = τks

p
k,
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where

τk =


1 gTkHkgk  0
min{ ||gk||3

∆kg
T
k Hkgk

, 1} o.w,

where gk = ∇f(xk) and Hk = ∇2f(xk).

3. Radial Basis Functions Interpolation

RBFs are widely used for scattered data interpolation. A multivariate
interpolation can be stated as follows: Given data (xi, fi), i = 1, . . . , N ,
with xi ∈ Rn, fi ∈ R, we find a continuous function Sm(x) such that
Sm(xi) = fi, i = 1, . . . , N .

The function Sm(x) is assumed to be given by a linear combination of
RBFs, that is,

Smk(xk + s) =
N

i=1

λiϕ(||s− yi||) + V (s), (6)

where RBF ϕ(||s− yi||) is centered at point yi, i = 1, . . . , N . Note that

we have V (s) =
M
j=1
γjνj(s), where ν = {ν1(s), . . . , νM (s)} is an ordered

basis for the linear space Πn
M−1, the space of polynomials of total de-

gree less than M − 1 with n variables and {λj}Nj=1 are the unknown
RBFs cofficients. Sm(x) as defined by (6) hasM degrees of freedom. To
overcome additional degrees of freedom two constraints are imposed as
follows,

Sm(xi) = fi, i = 1, . . . , N, (7)

N
i=1
λiνk(si) = 0, k = 1, . . . ,M. (8)

Conditions (7) and (8) can be written in matrix form:


Φ V
V T ∅

 
λ
ν


=

f
0


. (9)
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Where λ ∈ Rn is the undetermined coefficient vector. For the sake of
clarity, the matrix Φ is in the form:

Φ =




ϕ(||x1 − x1||) · · · ϕ(||x1 − xN ||)

...
...

ϕ(||xN − x1||) · · · ϕ(||xN − xN ||)





N×N

.

It can be seen that(9) is well-posed if the coefficient matrix is non-
singular [3]. Micchell [15] proved that the interpolation problem in equa-
tion (9) is solvable when the following two conditions are met:

1. The points {xj}Nj=1 are distinct.

2. The RBFs are used are strictly conditionally positive definite.

Definition 3.1. [6, 20] Let ν be a basis for πnM−1, with the convention
that π = ∅ if M = 0. A function ϕ is said to be conditionally positive
definite (CPD) of orderM if for all distinct points Y ⊂ Rn and all λ = 0,
satisfying

N
i=1 λiπ(xi) = 0, the quadratic form

N
i,j=1 λiϕ(||xj −xi||)λi

is positive [6, 20].

Some of the most popular (twice continuously differentiable) RBFs are
shown in Table 1.

Table 1: Some examples of popular RBFs and their orders of
conditional positive definiteness
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Table 1: Some examples of popular RBFs and their orders of conditional positive definiteness

φ(r) Order Parameters Example

rβ 2 β ∈ (2, 4) Cubic, r3

(c2 + r2)β 2 c > 0, β ∈ (1, 2) MqI, (c2 + r2)
3
2

−(c2 + r2)β 1 c > 0, β ∈ (0, 1) MqII,−(c2 + r2)
1
2

(c2 + r2)−β 0 c > 0, β > 0 Inv.Mq, (c2 + r2)−
1
2

Exp(−c2r2) 0 c > 0 Gaussian, Exp(−c2r2)

4 Derivative free optimization

In this section, we suppose that f(x) is a function from Rn into R which
is not necessarily smooth. The algorithm is based on approximating the
function (1) by a positive definite quadratic model. The main idea is
to use the available values of f(x) and building a quadratic model by
interpolating within a trust region.

Suppose that in the current xk, we have the sample points Y =
{y1 = 0, y2, . . . , yN}, with yi ∈ Rn, i = 1, . . . , N , which contains the
points closest to xk in current iterate. We wish to construct a quadratic
model of the form as:

Smk(xk + s) = fk + gTk s+
1

2
sTHks. (10)

Where the vector g ∈ Rn and H ∈ Rn×n is a symmetric matrix. By
imposing the interpolation condition in what follows:

Smk(x+ yj) = f(x+ yj), j = 1, . . . , N. (11)

It is now needed to evaluate Sm(x + s) on N = 1
2(n + 1)(n + 2)

points to find an approximating quadratic form, where n is number of
variables [3, 7, 11].

We consider {ϕi(.)}Ni=1 as a basis for the linear space of n-dimensional
quadratic function. The quadratic function (10) can be expressed as

Smk(x+ yj) =

N

i=1

λiϕi(y
j), j = 1, . . . , N.
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4. Derivative Free Optimization

In this section, we suppose that f(x) is a function from Rn into R which
is not necessarily smooth. The algorithm is based on approximating the
function (1) by a positive definite quadratic model. The main idea is
to use the available values of f(x) and building a quadratic model by
interpolating within a trust region.

Suppose that in the current xk, we have the sample points Y = {y1 =
0, y2, . . . , yN}, with yi ∈ Rn, i = 1, . . . , N , which contains the points
closest to xk in current iterate. We wish to construct a quadratic model
of the form as:

Smk(xk + s) = fk + gTk s+
1
2
sTHks, (10)

where the vector g ∈ Rn and H ∈ Rn×n is a symmetric matrix. By
imposing the interpolation condition in what follows:

Smk(x+ yj) = f(x+ yj), j = 1, . . . , N, (11)

it is now needed to evaluate Sm(x+ s) on N = 1
2(n+ 1)(n+ 2) points

to find an approximating quadratic form, where n is the number of
variables [3, 7, 11].

We consider {ϕi(.)}Ni=1 as a basis for the linear space of n-dimensional
quadratic function. The quadratic function (10) can be expressed as

Smk(x+ yj) =
N

i=1

λiϕi(yj), j = 1, . . . , N.

For some coefficients λi, which could be determined from the interpola-
tion condition (11),

N

i=1

λiϕi(yj) = f(xk + yj), j = 1, . . . , N.

λi, i = 1 . . . , N , are unique if the determinant of the matrix
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ϕ1(y1) · · · ϕ1(yN )

...
...

ϕN (y1) · · · ϕN (yN )



 ,

then, iteratively we optimize and update the surrogate model Smk to
reach a satisfactory solution.

5. Surrogate Methods Based on Radial Basis
Functions

In this section, the relevance of the surrogate methods and RBFs is
considered. Suppose that

Sm(x+ s) =
N

i=1

λiϕi(s) +
M

k=1

γkνk(s) = ΛTΦ(s)+ΓTV (s).

This model is twice dfferentiable and is important for the convergence
part of our method [11, 18]. This study considers interpolation condition
at the points of Y :

Smk(xk + yi) = f(xk + yi), ∀yi ∈ Y.

Let Φ ∈ RN×N , V ∈ RN×M be the matrices defined by Φij = ϕ(||yi −
yj ||) and vij = νi(yj). Then the interpolation condition can be expressed
as ΦΛ + V Γ = f . By using RBFs, we get the following linear system of
equations and then,


Φ V
V T ∅

 
Λ
Γ


=

f
0



⇒

Φ V
∅ −V TΦ−1V

 
Λ
Γ


=


f
−V TΦ−1f


, (12)

with the solution Γ = (V TΦ−1V )−1V TΦ−1f , Λ = Φ−1(f − V Γ).
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Sufficient condition for the solvability of system (12) is that the points
in Y to be distinct and yield a V T of full column rank.

Suppose that V T = QR , where R ∈ R(n+1)×(n+1). If Z is an orthonor-
mal basis for the null space of V [2], using the condition (8), follows that
Λ ∈ ℵ(V ). Therefore, Λ = Zw. According to (12), ΦΛ+ V TΓ = f . Mul-
tiplying by ZT from left gives, ZTΦΛ + ZTV TΓ = ZT f . Keeping in
mind that Z is an orthonormal basis for the null space V , we obtain
that ZTV TΓ = 0. Hence

ZTΦZw = ZT f. (13)

Now, we can obtain w from (13) and thus we can compute the vec-
tor Λ. By introducing the RBFs based on cubic spline [1, 6] which is
the smoothest functions interpolation and conditional positive definite-
ness, then ZTΦZ is also positive definite, using Cholesky factorization:
ZTΦZ = LLT , for a nonsingular lower triangular L and replacing in
(13), LLTw = ZTC ⇒ w = (LLT )−1ZTC, so that

||Λ|| = ||Zw|| = ||ZLT−1
L−1ZTC||  ||L−1||2|C|.

For procure Γ, we have ΦΛ+ V TΓ = C and using the QR factorization,
ΦΛ + QRΓ = C, premultiplying this equation by QT , results, RΓ =
QT (C − ΦΛ), and because Λ = Zw concludes to

RΓ = QT (C − ΦZw). (14)

In this section, we discuss a method of creating surrogate models. For
this purpose Φ must be conditionally positive definite of order at least
2 (Table 1), and V ∈ Πn

2 be linear. The RBFs interpolation is defined
such that at all sample points are established.

The RBFs coefficients λi and νi must be bounded in magnitude. Define
yi to be ith point in Y , that is in the vicinity of the trust region. How-
ever, for n  1 condition (11) is not sufficient for the existence and
uniqueness of the interpolation, and to guarantee the good quality of
the model. Geometric conditions on the set Y are required to ensure the
existence and uniqueness of the interpolation [10, 21].
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The process can be summarized as follows:
The study chooses the n + 1 offinely independent points and then gen-
erates the other interpolation points.

The cubic spline ϕ(r) = r3 in dimension n is unisolvent (as defined
below) on points Y = {y1, . . . , yN} if the matrix,


ϕ(||yi − yj ||)


1  i, j  N,

is invertible for any choice of N distinct points y1, . . . , yN ∈ Y .

Definition 5.1. Y is unisolvent for Πn
M if there exists a unique polyno-

mial in Πn
M of lowest possible degree with interpolation points of Y .

Unisolvent systems of RBFs are widely used in interpolation because
they guarantee a unique solution to the interpolation problem. This is
equivalent to the interpolation system (9) which is non-singular if the
interpolation points set Y is unisolvent.

The collection of n + 1 distinct points will uniquely determine a poly-
nomial of lowest possible degree in Πn. In this section, we describe an
algorithm to find n + 1 of interpolation points which are offinelly inde-
pendent points. We denote D := {di ∈ Rn | f(xk + di) is known} and
di ∈ ∆k. Algorithm 5.1 shows how to obtain n+1 offinelly interpolation
points.

Algorithm 5.2. For finding n+1 offinely independent points:

Step 0. Input D, constants 0 < γ0  γ1, ∆k ∈ (0,∆max].

Step 1. Choose D = {d1, d2, . . . , d|D|} ∈ Rn such that xi = xk + di are
close to xk.

Step 2. Let Z = In.

Step 3. While i, j  1
if ||di||  γ1.∆k, define u = di

γ0∆k
,

if ||projuZ ||  γ0, then yj = di,
Using the Gram-Schmidt, we obtain orthogonal basis for Y as Z̄, update
Z = Z̄
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Step 4. If |Y | < n+ 1

if ||di||  2∆max, define u = di
γ0∆k

if ||projuZ ||  γ0, then yj = di
Using the Gram-Schmidt process, we obtain an orthonormal basis for Y
as Z̄. Update Z = Z̄
However, with n+ 1 points, the solution of the system (9) is just inter-
polation obtained for linear function and coefficient Λ = ∅. To build the
surrogate model for nonlinear functions, we must add some new points.
Algorithm 5.2 shows how we can obtain “well independent” additional
sample points in the trust region.

Algorithm 5.3. Finding additional independent points:

Step 0. Input Y (obtained from algorithm 5.1), pmax = (n+1)(n+2)
2 ,

D = {d1, d2, . . . , d|D|}, θ > 1.
While i  1

Step 1. If |Y | < pmax,

ΠT =

y1 = 0 y2 . . . y

|Y |
di

1 1 . . . 1 1


.

Step 2. Find the orthogonal basis Z for null space Π.

Step 3. Build the interpolation matrix by using the cubic spline func-
tion at sample points Y ,

Φnew =


Φ Φdj

ΦT
dj

0


.

Step 4. Obtain P=ZTΦnewZ:

P = ZTΦnewZ =

ZTΦZ ZTΦdjZ

ZTΦT
dj
Z 0


.

Step 5. P is be positive definite for cubic spline function ϕ(r) = r3,
note that for P to be is positive definite, the points Y must be distinct.

Step 6. Let P = LLT , if all diagonal entries of L are positive, then add
dj to the set of sample points Y .

This procedure continues until |Y | = (n+1)(n+2)
2 . Note that the points

D = {d1, . . . , d|D|} are smartly chosen around the trial point xk by a
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random process.
In a derivative-free algorithm, it is essential to guarantee that whenever
necessary a model of the objective function with uniformly good local
accuracy can be constructed. The function f is no longer guarantee that
the model Sm(xk) approximates the function locally. Therefore, it is
required that the derivative free method similar to what is observed by
derivative based models.
The main difference between interpolation models and gradient-based
models is that the former are considered as a suitable approximation of
the objective function only under some conditions. These conditions de-
pend mainly on the geometry of the points. If they are satisfied, we say
that the model is valid in the trust region. If not, new points are gener-
ated to improve the accuracy of the model. The class of algorithms based
on interpolation models are called conditional trust region method. The
term conditional just means that the model is a convenient approxima-
tion of f only if some conditions are satisfied. The general framework
of trust region methods guarantees the convergence to a first or second-
order critical point depending on the assumptions on the model and on
the objective function. A full analysis of trust region methods can be
found in [9, 20, 21].

Therefore, we have relatively simple analytic expressions for the gradi-
ent:

∇Smk(xk + s) =
N

i=1

λiϕ
(||s− yi||) s− y

i

||s− yi|| +∇V (s),

and similar hessian (∇2Smk).

6. Optimization Surrogate on Radial Basis Func-
tions (OSRB)

This section discusses the details of the derivative-free algorithm for
finding a global solution of problem (1). As pointed in the introduction,
since the objective function is not necessarily smooth, the traditional
methods are not sufficient to search good directions. We give the algo-
rithm in which a surrogate model of problem (1) is solved. The algorithm
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proceeds until the magnitude of the objective function become less than
a natural stopping criterion.
Here, we propose a derivative–free algorithm. In this algorithm we solve
the subproblem (3) which is approximated by using of RBFs (as in
Section 5) and obtain search direction sk.
Given the current iterate xk at step k, then we probe the behavior of the
objective function f(x) along direction sk. In case sufficient reduction
of the function value is obtained, a suitable optimal is computed and is
used for the next iteration, i.e. xk+1 = x̃k + sk. If we do not obtain a
sufficient reduction, then the trust region radius ∆k is updated and in-
terpolation points are chosen again (Algorithms 5.1 and 5.2). By solving
the subproblem (3), we obtain another direction sk at the next iteration
which suitably reduces the objective function.
GivenN , a set of distinct interpolation points Y = {y1 = 0, y2, . . . , yN} ∈
Rn and the function values {f(xk + yi)}, we obtain the surrogate model
for f on Y . The Algorithm 6.1 is described as follows.

Algorithm 6.1. Iteration k of a derivative-free surrogate model:

Step 0. Input  > 0, 0  γ0 < γ1  1, 0 < η < 1 and 0 < ∆1  ∆max.
We assume that trial point xk is given.
While k  1

Step 1. From Algorithms 5.1 and 5.2 find independent points that is
denoted by Y .

Step 2. Obtain surrogate model Sm(xk + s) by using the RBF’s de-
scribed in Section 5.

Step 3. While ||∇Sm(xk)|| > 
If Sm(xk)− Sm(xk + sk)  η

2 ||∇Sm(xk)||min(∆k,
||∇Sm(xk)||
||∇2Sm(xk)||)

Obtain a step sk by solving: min {Sm(xk + s) ; xk + s ∈ B(xk,∆k)}.
Evaluate f(xk + sk) and update the trial point according to the ratio ρk
(4),

xk+1 =

xk + sk f(xk + sk)  f(xk),
xk o.w,

∆k+1 =

min{γ1∆k,∆max} f(xk + sk)  f(xk),
γ0∆k f(xk + sk) > f(xk).
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If there is no adaptable direction sk to minimize Sm(xk), the trust region
will be enlarged, i.e. ∆k+1 = θ.∆k, incremment k by 1 and go to Step 1.

In step 1, the interpolation points set Y = {y1 = 0, . . . , ypmax} are de-
termined which are linearly independent. In step 2, we consider how to
construct a model and to obtain parameters of RBFs model from (13),
and (14). In step 3, the algorithm uses criteria for model Smk(xk + s),
the aim is that ∇Sm(xk) is not too different from the gradient of the ob-
jective function and updates parameters trust region method. We finds
the candidate step sk by approximately solving the subproblem (4). In
this paper, we solve subproblem (4) by using the Fmincon function in
Matlab software.

6.1 Convergence properties of OSRB algorithm

In this study, the trust region algorithm ensures that f(x) is sampled
only within the relaxed level set,
L(x0) := {y ∈ Rn| ||x− y||  ∆max, ∀x; f(x)  f(x0)}.

Theorem 6.1.1. Let {∆k} and {xk} be sequences guaranteed by OSRB
Algorithm. Then, lim

k→∞
∆k = 0 and lim

k→∞
∇f(xk) = 0.

Proof. After the last successful iteration, there is an infinite number of
iterations that are not either acceptable or successful, therefore the trust
region is reduced. If xk+1 = xk+sk is obtained so that f(xk+1)  f(xk),
then ∆k is never increased for sufficiently large k, so ∆k is decreased
at least once every n iterations by a factor of 0 < γ < 1, thus ∆k

convergence to zero. Secondly, for each k, after the jth iteration we have
|xk − xj ||  lim

k→∞
n∆k → 0, now,

||∇f(xk)||  ||∇f(xk)−∇Sm(xk)+∇Sm(xk)||  ||∇f(xk)−∇Sm(xk)||+
||∇Sm(xk)||.

All terms of right hand side are equal to zero. 

The statement of Theorem 6.1.1 gives a natural stopping criterion for
OSRB algorithm. It results from the updating of the trust region at the
k-th iteration.



26 F. RAHMANPOUR AND M. M. HOSSEINI

Surrogate model Smk is made such that,
Sm(sk)− Sm(0) = G(0)T sk + 1

2sk
THk(0)sk,

where Gk = ∇f(xk) and Hk = ∇2f(xk).

Assumption 6.1.2. The subproblem C(x) is bounded below on L(x0)
and Sm(x) is twice continuously differentiable.

Lemma 6.1.3. Suppose that assumption 6.1.2 holds. Then,

Sm(sk)− Sm(0)  1
2
||Gk||min{∆k,

||Gk||
Hk

}.

Proof. If sk = || − Gk
Hk ||  ∆k, then the quadratic subproblem (3) can

be resolved,

Sm(sk) = Sm(0)− Gk

Hk
Gk +

1
2
(− Gk

Hk
)THk(−

Gk

Hk
),

knowing the cubic spline is twice continuously differentiable, GT
k HkGk is

positive definite. We know the model is convex along direction sk. Next,

Sm(0)− Sm(sk) =
||Gk||2
Hk − 1

2
||Gk||2
Hk  1

2 ||Gk||min{∆k,
||Gk||
Hk }.

Lemma 6.1.3 guarantees that the OSRB Algorithm will sufficient de-
crease at iteration k. 

7. Numerical Results

In this section, we present a set of unconstrained problems from [14]
which are solved by the OSRB algorithm to accommodate practical ex-
periment to show the efficiency of the proposed method. Notice that the
interpolation points are chosen so that interpolation matrix (9) always
is invertible even the trust region is very small.

We have employed the Fmincon routine from Matlab which is corre-
sponding to surrogate model. The starting points are randomly chosen
in our algorithm. We solve unconstrained problems (1) which are not
necessarily smooth to show the efficiency of the proposed method.
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For all experiments we used, the parameters [21]: ∆1 = max(1, ||x0||),
∆max = 103∆1 , η0 = 0, η1 = 10−3, γ0 = 0.1, γ1 = 10, and termina-
tion criterion ||∇Sm(xk)|| < 1.e − 7, this condition satisfied the global
convergence property of proposed method.

We now present our algorithm for solving minimization some known
problems, which their derivatives are not available. Each function has
been graphically presented to appreciate its geometrical appearance. To
optimize these functions we are used the OSRB algorithm, with wider
local search abilities and randomized neighborhood sample points.

Example 7.1. (Cross in tray function) This function has multiple
local minima with the global Minima at the search domain. This function
is given as:

f(x1, x2) = −0.0001

sin(x1)sin(x2)e|100−
√
x1

2+x2
2

π
|

+ 1

0.1

,

This problem has four distinct optima points (±1.3,±1.3), which can be
obtained from different input values.

Example 7.2. (Modified Schaffer function N.4) In the search do-
main xi ∈ [−100, 100], this function is defined as follows,

f(x1, x2) = 0.5 +
cos2

sin(|x1

2 − x2
2|)

− 0.5

[1 + 0.001(x1
2 + x2

2)]2
,

and has fmin(0, 1.253132) = 0.292579.

Example 7.3. (Holder table function) This tabular holder func-
tion has multiple local minima with Four global minima with f(x∗) =
−19.2085. This function is bellow as:

f(x1, x2) = −
sin(x1)cos(x2)e|

1−
√
x1

2+x2
2

π
|



Example 7.4. (Bukin function) Bukin function is almost fractal (with
fine seesaw edges) in the surroundings of their minimal points. Due to
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this property, it is extremely difficult to optimize by any method of
global (or local) optimization. This function is defined as follows,

f(x1, x2) =
|x1 + 10|

100
+ 100

0.01x2
1 − x2



and has fmin(−10, 1) = 0.

Non-convex problems may have multiple locally optimal points and it
can take a lot of time to identify global solution, so depending to the
algorithm it can be get different local minima. In Table 2, the results
computation are compared with the trust region method based on the
cauchy point (Sec. 2). These results show that the modified OSRB al-
gorithm is an effective method for solving non-smooth optimization to
find the global optimum.

Figure 1. An overview of non–smooth functions

Figure 1 shows surfaces created in Matlab for the objective functions. It
is noted that starting point is selected randomly and the derivatives of
objective function are not used.
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Figure 1: An overview of non–smooth functions.

Table 2: Numerical results for some new multi-modal test functions. The nf columns list
the number of function evaluations

Problem nf Modify OSRB Cauchy point

Cross in tray 26 -2.06261 -2.06261
Modified Schaffer N.4 80 2.92579e-01 9.98005E-01
Holder table 115 -19.20848 -1.73297
Bukin 74 6.80164e-11 1.10601e-01

Table 3 shows the comparison of the best solution of our method
with SDNM, GRNM and SANM [5] in terms of function value. The
header of the columns mean that: f(x) is the best value of the objective
function value, and nf is the number of objective function evaluations.
In Figure 2 we observe that OSRB algorithm is convergent for any initial
point.

We solved some of the problems considered, If we consider both
the number of function evaluation and the final function value we can
say, that our algorithm on some test problems if it obtains the same
or better final solution with less function evaluations, or if it obtain a
better final solution value with the same number of valuation. These
overall results suggest that the proposed OSRB can be considered as
an effective optimization technique for solving non-smooth optimization
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Table 2: Numerical results for some new multi-modal test
functions. The nf columns list the number of function evaluations

Table 3 shows the comparison of the best solution of our method with
SDNM, GRNM and SANM [5] in terms of function value. The header of
the columns mean that: f(x) is the best value of the objective function
value, and nf is the number of objective function evaluations. In Figure
2 we observe that OSRB algorithm is convergent for any initial point.

We solved some of the problems considered, If we consider both the
number of function evaluation and the final function value we can say,
that our algorithm on some test problems if it obtains the same or
better final solution with less function evaluations, or if it obtain a better
final solution value with the same number of valuation. These overall
results suggest that the proposed OSRB can be considered as an effective
optimization technique for solving non-smooth optimization problems.

Figure 2. Performance profile for the number of function evaluations:
(a) Beal function, (b) Rosenbrock function.
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that our algorithm on some test problems if it obtains the same or
better final solution with less function evaluations, or if it obtain a better
final solution value with the same number of valuation. These overall
results suggest that the proposed OSRB can be considered as an effective
optimization technique for solving non-smooth optimization problems.

Figure 2. Performance profile for the number of function evaluations:
(a) Beal function, (b) Rosenbrock function.
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value, and nf is the number of objective function evaluations. In Figure
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number of function evaluation and the final function value we can say,
that our algorithm on some test problems if it obtains the same or
better final solution with less function evaluations, or if it obtain a better
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(a) Beal function, (b) Rosenbrock function.



30 F. RAHMANPOUR AND M. M. HOSSEINI

Table 3: Comparison of the results with SDNM, GRNM and SANM.
The first two columns list the problem name and dimension. Columns

headed with f list the final f values and the nf columns list the
number of function evaluations, averaged over ten runs.
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8. Conclusions

We have proposed a new method based on trust region method to solve
a non-smooth unconstrained optimization without the use of deriva-
tives. The approach has been improved by a derivative-free local search
phase in which the basis of the algorithm uses the RBFs. The trial step is
accepted if the value of the objective function is sufficiently reduced. At
each iteration, a surrogate model is constructed instead of objective
function by RBFs. The most significant advantage of the proposed al-
gorithm is that the interpolation points can be managed easier, for the
system (9) to have a unique solution. We have tested a set of problems
from [14]. The numerical simulations illustrate the effectiveness of the
proposed method. Studying numerical experiments, especially for large
scale optimization problems is the aim of our future research.
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