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Abstract. In this paper, the entropy of fuzzy countable partitions is
proposed. In addition, the notion of fuzzy conditional entropy, fuzzy rel-
ative entropy and entropy on a fuzzy dynamical system based on fuzzy
countable partitions are introduced and some properties of these en-
tropies are analyzed. Using the concept of fuzzy generator, it is proved
that the entropy of a dynamical system is done through a fuzzy genera-
tor. Furthermore, one of the proven results in this paper is isomorphism
invariant property of entropy with fuzzy countable partitions on a fuzzy
dynamical system.
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1. Introduction

The notion of entropy was first introduced by Clausius in his works on thermo-
dynamics. Later this concept was generalized to other areas [7, 11, 14]. Entropy
is a tool which measures the amount of uncertainly in random events as well as
the complex behavior of the orbits in a dynamical system. In addition, entropy
makes classifying dynamical systems possible. Kolmogorov defined the impor-
tant entropy that distinguishes two dynamical systems [8]. In this entropy,
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partitions and their joins have essential roles. The fuzzy dynamical system and
its entropy were introduced by Markechow [9] and then were extended by other
researchers [1, 2, 3, 4, 12]. The main idea of fuzzy entropy was to replace the
partitions by fuzzy partitions. Entropy with infinite partitions is another en-
tropy which has been proposed by some scholars in recent years [5, 6]. Hence the
notion of fuzzy entropy with fuzzy countable partitions is introduced in Section
2. In Section 3, the fuzzy conditional entropy and fuzzy relative entropy based
on a fuzzy countable partition are proposed and some of their properties are
investigated. In the final section of this note, the entropy of a fuzzy dynamical
system is put forward and then it is proved that this entropy is isomorphism
invariant. Moreover, one of the most important results obtained in this section
is a theorem that states h̃(T ) = h(T,A), whenever A is a fuzzy generator.

2. Fuzzy Entropy with Countable Partition

This section starts with the basic concept of fuzzy probability space and it
continues with the investigation of properties of this space. Then, the important
notions of fuzzy countable partition, refinement of partition, join refinement of
two fuzzy countable partitions and entropy of a fuzzy countable partition are
introduced.

Definition 2.1. Let X be a non-empty set. M ⊆ [0, 1]X (fuzzy subsets of X)
is a σ−algebra, if:

a) 1 ∈M ,

b) if f ∈M, then f ′ = 1− f ∈M,

c) if fn ∈M for n ∈ N, then
∞
∨

i=1
fn := sup fn ∈M.

The operations “ ∨ ”, “ ∧ ” and partial ordering relation “ 6 ” are defined in
the following way:
For every f, g ∈ M , f ∨ g = sup{f, g}, f ∧ g = inf{f, g} and f 6 g iff
f(x) 6 g(x) for all x ∈ X.

Lemma 2.2. Let f, g and h be fuzzy sets. Then:

a) (f ′)′ = f , for every f ∈M,

b) if f 6 g, then g′ 6 f ′,

c) (f ∧ g)′ = f ′ ∨ g′ and (f ∨ g)′ = f ′ ∧ g′,
d) f ∧ g = g ∧ f and f ∨ g = g ∨ f,
e) f ∨ (g ∧ h) = (f ∨ g) ∧ (f ∨ h) and f ∧ (g ∨ h) = (f ∧ g) ∨ (f ∧ h).
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Proof. The proof can be found in [15]. �

Definition 2.3. Two elements f, g ∈ M are said to be orthogonal and write
f⊥g iff f 6 1− g.

Definition 2.4. Fuzzy probability space is a triplet (X,m,M), where X is a
nonempty set, M is a σ−algebra and m : M → [0, 1] is a function satisfying:

a) for every f ∈M, m(f ∨ f ′) = 1,

b) if {fi}∞i=1 is a sequence of pairwise orthogonal elements from M , then

m(
∞
∨

i=1
fi) =

∞
Σ

i=1
m(fi)

Theorem 2.5. m : M → [0, 1] has the following properties:

a) m(f ′) = 1−m(f) for every f ∈M ,

b) if f 6 g, then m(f) 6 m(g),

c) if f 6 1− g, then m(f ∧ g) = 0,

d) m(g) = 1 iff for all f ∈M , m(f ∧ g) = m(f),

e) m(f ∨ g) +m(f ∧ g) = m(f) +m(g),

f) m(f ∧ f ′) = 0.

Proof. The proof of parts a, d, and e can be found in [10]. We just prove parts
b, c and f .

b) f 6 g, so f ∧ f ′ 6 f 6 g = 1− g′ and also f 6 f ∨ g′ = 1 − (f ′ ∧ g)′

and these imply (f, f ′ ∧ g) and (f ∧ f ′, g′ ) are orthogonal. By definition 2.4,
m (f ∨ (f ′ ∧ g)) = m (f) + m (f ′ ∧ g) and m (g′ ∨ (f ∧ f ′)) = m (g′ ) +
m (f ∧ f ′) . Now we have
m (f) 6 m (f) + m (f ′ ∧ g) = m (f ∨ (f ′ ∧ g)) =
m ((f ∨ g) ∧ (f ′ ∨ f )) = m ( g ∧ (f ′ ∨ f )) = 1 − m ( g′ ∨ (f ′ ∧ f )) = 1 −
m ( g′ ) − m ( f ′ ∧ f) = m ( g) .

c) f 6 1− g so f⊥g and m(f ∨ g) = m(f) +m(g). By part e, m(f ∧ g) = 0.
f) By part c, the proof is obvious. �

Definition 2.6. A countable sequence A = {fi}∞i=1 of elements of M is a fuzzy
countable partition of X, if :

a) for i 6= j, fi 6 1− fj,

b) m(
∞
∨

i=1
fi) = 1.

Definition 2.7. Let B = {gj}∞j=1 and A = {fi}∞i=1 be fuzzy countable parti-
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tions. Partition B is a refinement of partition A and we write A ≺ B, if for any
gj there exists fi such that gj 6 fi. We say that AtB = {fi∧gj |fi ∈ A, gj ∈ B}
is a join refinement of A and B if AtB is a fuzzy countable partition and sup

i j

m(fi ∧ gj) > sup
i
m(fi) sup

j
m(gj).

Definition 2.8. Let A = {fi}∞i=1 be a fuzzy countable partition of X.we define
the entropy of A by:

H(A) := −log sup
i∈N

m(fi).

Example 2.9. A = {0, 1} is a partition and H(A) = 0.

Lemma 2.10. Let f4g = (f∧g′)∨(f ′∧g). If m(f4g) = 0, then m(f) = m(g).

Proof. Since m(f 4 g) = 0, part b of Theorem 2.5 implies that m(f ∧ g′) =
m(f ′ ∧ g) = 0. m(f) = m(f ∧ (g ∨ g′)) = m(f ∧ g) +m(f ∧ g′) −m((f ∧ g) ∧
(f ∧ g′)). m(f ∧ g′) = m((f ∧ g) ∧ (f ∧ g′)) = 0 so m(f) = m(f ∧ g). With the
same argument, we can prove that m(g) = m(f ∧ g) thus m(f) = m(g). �

Definition 2.11. Let A = {fi}∞i=1 and B = {gj}∞j=1 be countable partitions. A

and B are independent if m(fi ∧ gj) = m(fi)m(gj) for any i, j ∈ N . A
◦
⊆B if

for any fi there exists gj such that m(fi 4 gj) = 0 and A
◦◦
⊆B if for any fi

there exists gj such that m(fi ∧ g′j) = m(f ′i ∧ gj) = 0.

Example 2.12. A = {fi}∞i=1 and C = {0, 1} are independent.

Theorem 2.13. Let A = {fi}∞i=1, B = {gj}∞j=1, C = {hk}∞k=1 and D be fuzzy
countable partitions of X, then:

a) A ≺ A tB,

b) if A ≺ B, then A t C ≺ B t C,

c) if A ≺ B and C ≺ D, then A t C ≺ B tD,

d) if A
◦◦
⊆B, then A t C

◦◦
⊆B t C,

e) if A
◦◦
⊆B and C

◦◦
⊆D, then A t C

◦◦
⊆B tD,

f) if A
◦◦
⊆B, then A

◦
⊆B,

g) A
◦◦
⊆A tA.

Proof.

a) fi ∧ gj 6 fi.
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b) Let gj ∧ hk ∈ B t C be given. There exists fiεA such that gj 6 fi and this
implies gj ∧ hk 6 fi ∧ hk.

c) A t C ≺ B t C ≺ B tD.

d) For every fi there exists gj such that m(fi ∧ g′j) = m(f ′i ∧ gj) = 0. m(fi ∧
hk ∧ (gj ∧ hk)′) = m(fi ∧ hk ∧ (g′j ∨ h′k)) = m(fi ∧ hk ∧ g′j) + m(fi ∧ hk ∧
h′k) − m(fi ∧ hk ∧ g′j ∧ h′k) = m(fi ∧ hk ∧ g′j) 6 m(fi ∧ g′j) = 0. With the same
argument can be proved m(gj ∧ hk ∧ (fi ∧ hk)′) = 0.

e) A t C
◦◦
⊆B t C

◦◦
⊆B tD.

f) The proof is trivial.

g) For every fi, fi = fi ∧ fi and m(fi ∧ f ′i) = 0. �

Theorem 2.14. Let A = {fi}∞i=1, B = {gj}∞j=1and C = {hk}∞k=1 be fuzzy
countable partitions and P be the set of all fuzzy countable partitions of X.
The entropy H : P → [0,∞) has the following properties:

a) H(A) > 0, for every A,

b) if A ≺ B, then H(A) 6 H(B),

c) if A ≺ B, then H(A t C) 6 H(B t C),

d) if A
◦
⊆B, then H(A) > H(B),

e) max{H(A),H(B)} 6 H(A tB) 6 H(A) +H(B),

f) if A and B are independent, then H(A tB) = H(A) +H(B),

g) H(A) = H(A tA).

Proof.
a) Since for every fi ∈ A, 0 6 m(fi) 6 1 thus H(A) = −log sup

ieN
m(fi) > 0.

b) For every gjεB there exists fi ∈ A such that gj 6 fi and this implies
sup

j
m(gj) 6 sup

i
m(fi).

c) By Theorem 2.13 and part b is trivial.

d) For every fi there exists gj such that m(fi 4 gj) = 0 so m(fi) = m(gj) and
this implies that sup

i
m(fi) 6 sup

j
m(gj) .

e) By definition sup
i,j

m(fi ∧ gj) > sup
i
m(fi) sup

j
m(gj).

g) The proof would obtain from part b and d of Theorem 2.14. �
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3. Relative and Conditional Fuzzy Entropy with
Countable Partition

In this section based on fuzzy countable partitions, two important entropies,
named relative and conditional fuzzy entropies, are defined and some interesting
theorems analyzing the properties of these two entropies are proved.

Definition 3.1. Let A = {fi}∞i=1 and B = {gj}∞j=1 be two fuzzy countable
partitions. we define conditional entropy as follows:
H(A|B) := −log sup

i,j
(m(fi∧gj)

m(gj)
),m(gj) 6= 0.

Theorem 3.2. For every fuzzy countable partitions A = {fi}∞i=1 and B =
{gj}∞j=1:

a) H(A|B) > 0,

b) H(A|B) +H(B) 6 H(A tB),

c) H(A|B) 6 H(A). H(A|B) = H(A) if A and B are independent.

Proof. a) m(fi ∧ gj) 6 m(gj).

b) sup
i,j

(m(fi∧gj)
m(gj)

) >
sup
i,j

m(fi∧gj)

sup
j

m(gj)
.

c) sup
i,j

(m(fi∧gj)
m(gj)

) >
sup
i,j

m(fi∧gj)

sup
j

m(gj)
>

sup
i

m(fi) sup
j

m(gj)

sup
j

m(gj)
= sup

i
m(fi). If A and B

are independent, then m(fi∧gj)
m(gj)

= m(fi). �

Theorem 3.3. For every fuzzy countable partitions A = {fi}∞i=1, B = {gj}∞j=1

and C = {hk}∞k=1:

a) H(A tB|C) > H(B|A t C) +H(A|C),

b) H(A t C) > H(A) +H(C|A),

c) if A ≺ B, then H(A|C) 6 H(B|C).

Proof.
a)

m((fi ∧ gj) ∧ hk)
m(hk)

=
m((fi ∧ gj) ∧ hk)

m(hk)
m(fi ∧ hk)
m(fi ∧ hk)

and this implies

sup
i,j,k

m((fi ∧ gj) ∧ hk)
m(hk)

6 sup
i,j,k

s((fi ∧ gj) ∧ hk)
m(fi ∧ hk)

sup
i,k

m(fi ∧ hk)
m(hk)

.
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b) m(fi ∧ hj) = m(fi∧hj)
m(fi)

m(fi), so

sup
i,j

m(fi ∧ hj) 6 sup
i,j

m(fi ∧ hj)
m(fi)

sup
i

m(fi).

c) For every gj there exists fi such that gj 6 fi and this implies

m(fi ∧ hk)
m(hk)

>
m(gj ∧ hk)
m(hk)

. �

Definition 3.4. Let A = {fi}∞i=1 and B = {gj}∞j=1 be two fuzzy countable
partitions. We define the relative entropy as follows:

H(A ‖ B) := log sup
i,j

(
m(fi)
m(gj)

),m(gj) 6= 0.

Theorem 3.5. Let A = {fi}∞i=1, B = {gj}∞j=1, C = {hk}∞k=1, D and E be fuzzy
countable partitions, then:

a) if A ≺ B or B
◦
⊆A, then H(A ‖ B) > 0,

b) if A ≺ B, then H(A ‖ C) > H(B ‖ C),

c) if A ≺ B, then H(A tD ‖ C) > H(B tD ‖ C),

d) if A ≺ B and C ≺ D, then H(A t C ‖ E) > H(B tD ‖ E),

e) if B
◦
⊆A, then H(B ‖ C) 6 H(A ‖ C),

f) H(A‖B) > H(A),

g) H(A tB‖C) 6 H(A tB‖B) +H(B‖C).

Proof.
a) sup

i,j
( m(fi)

m(gj)
) > 1.

b) sup
i,k

( m(fi)
m(hk) ) > sup

j,k
( m(gj)

m(hk) ).

The proofs of parts c and d are obvious because of part b and Theorem 2.13.

e) For every gjεB there exists fi ∈ A such that m(gj) = m(fi), so sup
i,k

( m(fi)
m(hk) ) >

sup
j,k

( m(gj)
m(hk) ).

f) m(fi)
m(gj)

> m(fi).

g) sup
i,j,k

(m(fi∧gj)
m(hk) ) 6 sup

i,j
(m(fi∧gj)

m(gj)
) sup

j,k
( m(gj)

m(hk) ). �
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4. Fuzzy Entropy of Dynamical System

This section presents a definition for the entropy of a fuzzy dynamical system. It
continues proving that this entropy is isomorphism invariant. Moreover, the
notion of a fuzzy generator is introduced and it is proved that the entropy of a
fuzzy dynamical system is equal with the entropy of a fuzzy generator partition.

Definition 4.1. A mapping ϕ :M →M is an m-preserving
σ-homomorphism if:

i) ϕ(1) = 1,

ii) for every fM, ϕ(f ) = (ϕ(f)),

iii) for every sequence {fi}∞i=1 ⊂M, ϕ(
∞
∨
i=1

fi) =
∞
∨
i=1

ϕ(fi),

iv) for every f, gM, ϕ(f ∧ g) = ϕ(f) ∧ ϕ(g),
v) m(ϕ(f)) = m(f).

Definition 4.2.Quadruple (X,M,m,ϕ) is a fuzzy dynamical system if (X,M,m)
is a fuzzy probability space and ϕ is a m-preserving σ-homomorphism.
We define ϕn = ϕ ◦ ϕn−1, where ϕ0 is the identity map on M.

Theorem 4.3. Let A = {fi}∞i=1 and B = {gj}∞j=1 be fuzzy countable partitions,
then:

a) if f  g, then ϕ(f)  ϕ(g),

b) if A ≺ B, then ϕ(A) ≺ ϕ(B),

c) if A
◦
⊆B, then ϕ(A)

◦
⊆ϕ(B).

Proof.

a) f ∨ g = g and ϕ(g) = ϕ(f ∨ g) = ϕ(f) ∨ ϕ(g), so ϕ(f)  ϕ(g).

b) By definition of refinement and part a, the proof is obvious.

c)ϕ(f) ϕ(g) = ϕ(f  g). 

Theorem 4.4. Let A = {fi}∞i=1 and B = {gj}∞j=1 be fuzzy countable partitions,
then:

a) {ϕ(fi)}∞i=1 ⊂M is a fuzzy countable partition of X,

b) H(ϕn(A)) = H(ϕ(A)) = H(A),

c) H(ϕn(A)|ϕn(B)) = H(A|B),
d) H(ϕ(A)ϕ(B)) = H(AB),
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e) H(ϕ(A) t ϕ(B)) = H(A tB).

Proof.

a) By Definition 4.1, m
(
∞
∨

i=1
ϕ(fi)

)
= m

(
ϕ(

∞
∨

i=1
fi)
)

= m

(
∞
∨

i=1
fi

)
= 1.

fi 6 1− fj = f ′j , Definition 4.1 and Theorem 4.3 imply

ϕ(fi) 6 ϕ(f ′j) = (ϕ(fj))′ = 1− ϕ(fj).

b) m(ϕ(fi)) = m(fi).

c) m(ϕ(fi)∧ϕ(gj))
m(ϕ(gj))

= m(ϕ(fi∧gj))
m(ϕ(gj))

= m(fi∧gj)
m(gj)

.

d) m(ϕ(fi))
m(ϕ(gj))

= m(fi)
m(gj)

.

e) m(ϕ(fi) ∧ ϕ(gj)) = m(fi ∧ gj). �

Theorem 4.5. Let {ai}∞i=1 be sequence of nonnegative numbers such that
ar+s 6 ar + as for each r, s = 1, 2, ... , then: lim

n→∞
1
nan exists.

Proof. The proof can be found in [13]. �

Theorem 4.6. Let A be a fuzzy countable partition. Then:

h(ϕ,A) := lim
n→∞

1
nH(

n−1
t

i=0
ϕiA) exists.

Proof. We have ar+s = H(
r+s−1
t

i=0
ϕiA) = H(

(
r−1
t

i=0
ϕiA

)
t
(

r+s−1
t

i=r
ϕiA

)
) 6

H(
r−1
t

i=0
ϕiA) +H(ϕr(

s−1
t

i=0
ϕiA)) = H(

r−1
t

i=0
ϕiA) +H(

s−1
t

i=0
ϕiA) = ar + as. �

Definition 4.7. The entropy of a fuzzy dynamical system is defined as follows:
h̃(ϕ) := sup{h(ϕ,A) : A is a fuzzy countable partition of X}.

Theorem 4.8. Let A = {fi}∞i=1 and B = {gj}∞j=1 be fuzzy countable partitions
of X, then:

a) h(ϕ,A) 6 H(A),

b) h(ϕ,A tB) 6 h(ϕ,A) + h(ϕ,B),

c) h(ϕ,ϕ(A)) = h(ϕ,A),

d) h(ϕ,
r
t

j=0
ϕjA) = h(ϕ,A), r > 1,

e) if A ≺ B, then h(ϕ,A) 6 h(ϕ,B),

f) if B
◦◦
⊆A, then h(ϕ,A) 6 h(ϕ,B),
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g) h(ϕk,
k−1

i=0

ϕiA) = kh(ϕ,A) for k > 0,

h) h̃(ϕk) = kh̃(ϕ) for k > 0.

Proof.

a) H(
n−1

i=0

ϕiA) 
n−1

Σ
i=0

H(ϕiA) =
n−1

Σ
i=0

H(A) = nH(A).

b)H(
n−1

i=0

ϕi(AB)) = H((
n−1

i=0

ϕiA) (
n−1

i=0

ϕiB))  H(
n−1

i=0

ϕiA)+H(
n−1

i=0

ϕiB),

c) H(
n−1

i=0

ϕi(ϕ(A)) = H(
n−1

i=0

ϕ(ϕiA)) = H(
n−1

i=0

ϕiA).

d) h(ϕ,
r

j=0

ϕjA) = lim
n→∞

1
nH(

n−1

i=0

ϕi
r

j=0

ϕjA) = lim
n→∞

1
nH(

n+ r−1

s=0

ϕsA) = lim
p→∞

p
p−r

1
pH(

p−1

s=0

ϕsA).

e) A ≺ B and Theorem 4.3 implies ϕi(A) ≺ ϕi(B). Considering Theorems 2.13
and 2.14, we have

H(
n−1

i=0

ϕi(A))  H(
n−1

i=0

ϕi(B)).

f) The proof is the same as part e.

g) h(ϕk,
k−1

i=0

ϕiA) = lim
n→∞

1
nH(

n−1

j=0

(ϕk)j(
k−1

i=0

ϕiA)) =

lim
n→∞

k
knH(

nk−1

s=0

ϕsA) = kh(ϕ,A).

h) kh̃(ϕ) = k sup
A

h(ϕ,A) = sup
A

h(ϕk,
k−1

i=0

ϕiA)  sup
C

h(ϕk, C) = h̃(ϕk). On

the other hand since A ≺
k−1

i=0

ϕiA by part e, h(ϕk, A)  h(ϕk,
k−1

i=0

ϕiA) =

kh(ϕ,A). 

Definition 4.9. Two fuzzy dynamical systems (X1,M1,m1, ϕ1) and (X2,M2,m2, ϕ2)
are said to be isomorphic, if there exists a bijective map ψ : M1 → M2 such
that for any fM1 and any sequence {fn}∞n=1 ⊂M1:

i) ψ(
∞
∨
i=1

fi) =
∞
∨
i=1

ψ(fi) and ψ(f ) = 1− ψ(f),

ii) m1(f) = m2(ψ(f)),

iii) ψ(ϕ1(f)) = ϕ2(ψ(f)).

Theorem 4.10. If (X1,M1,m1, ϕ1) and (X2,M2,m2, ϕ2) are isomorphic, then:

a) A = {fi}∞i=1 is a countable partition of X1 iff ψ(A) = {ψ(fi)}∞i=1 is a
countable partition of X2,

96 Z. ESLAMI GISKI AND M. EBRAHIMI

g) h(ϕk,
k−1

i=0

ϕiA) = kh(ϕ,A) for k > 0,

h) h̃(ϕk) = kh̃(ϕ) for k > 0.

Proof.

a) H(
n−1

i=0

ϕiA) 
n−1

Σ
i=0

H(ϕiA) =
n−1

Σ
i=0

H(A) = nH(A).

b)H(
n−1

i=0

ϕi(AB)) = H((
n−1

i=0

ϕiA) (
n−1

i=0

ϕiB))  H(
n−1

i=0

ϕiA)+H(
n−1

i=0

ϕiB),

c) H(
n−1

i=0

ϕi(ϕ(A)) = H(
n−1

i=0

ϕ(ϕiA)) = H(
n−1

i=0

ϕiA).

d) h(ϕ,
r

j=0

ϕjA) = lim
n→∞

1
nH(

n−1

i=0

ϕi
r

j=0

ϕjA) = lim
n→∞

1
nH(

n+ r−1

s=0

ϕsA) = lim
p→∞

p
p−r

1
pH(

p−1

s=0

ϕsA).

e) A ≺ B and Theorem 4.3 implies ϕi(A) ≺ ϕi(B). Considering Theorems 2.13
and 2.14, we have

H(
n−1

i=0

ϕi(A))  H(
n−1

i=0

ϕi(B)).

f) The proof is the same as part e.

g) h(ϕk,
k−1

i=0

ϕiA) = lim
n→∞

1
nH(

n−1

j=0

(ϕk)j(
k−1

i=0

ϕiA)) =

lim
n→∞

k
knH(

nk−1

s=0

ϕsA) = kh(ϕ,A).

h) kh̃(ϕ) = k sup
A

h(ϕ,A) = sup
A

h(ϕk,
k−1

i=0

ϕiA)  sup
C

h(ϕk, C) = h̃(ϕk). On

the other hand since A ≺
k−1

i=0

ϕiA by part e, h(ϕk, A)  h(ϕk,
k−1

i=0

ϕiA) =

kh(ϕ,A). 

Definition 4.9. Two fuzzy dynamical systems (X1,M1,m1, ϕ1) and (X2,M2,m2, ϕ2)
are said to be isomorphic, if there exists a bijective map ψ : M1 → M2 such
that for any fM1 and any sequence {fn}∞n=1 ⊂M1:

i) ψ(
∞
∨
i=1

fi) =
∞
∨
i=1

ψ(fi) and ψ(f ) = 1− ψ(f),

ii) m1(f) = m2(ψ(f)),

iii) ψ(ϕ1(f)) = ϕ2(ψ(f)).

Theorem 4.10. If (X1,M1,m1, ϕ1) and (X2,M2,m2, ϕ2) are isomorphic, then:

a) A = {fi}∞i=1 is a countable partition of X1 iff ψ(A) = {ψ(fi)}∞i=1 is a
countable partition of X2,
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b) H(A) = H(ψ(A)),

c) h(ϕ1, A) = h(ϕ2, ψ(A)),

d) h̃(ϕ1) = h̃(ϕ2), i.e. the entropy of fuzzy dynamical system is an isomorphism
invariant.

Proof.

a) m2(
∞
∨

i=1
ψ(fi)) = m2(ψ(

∞
∨

i=1
fi)) = m1(

∞
∨

i=1
fi) = 1. Whenever i 6= j, then

ψ(fi) 6 (ψ(fj))′ iff ψ(fi) = ψ(fi) ∧ (ψ(fj))′ = ψ(fi) ∧ (ψ(f ′j)) = ψ(fi ∧ f ′j) iff
fi = fi ∧ f ′j iff fi 6 f ′j , so fi 6 1− fj . We can do the same argument with
ψ−1.

b) H(ψ(A)) = −log sup
i∈N

m2(ψ(fi)) = −log sup
i∈N

m1(fi)) = H(A).

c) h(ϕ2, ψ(A)) = lim
n→∞

1
nH(

n−1
t

i=0
(ϕi

2ψ(A))) = lim
n→∞

1
nH(

n−1
t

i=0
ψ(ϕi

1A))

= lim
n→∞

1
nH(ψ(

n−1
t

i=0
ϕi

1A)) = lim
n→∞

1
nH(

n−1
t

i=0
ϕi

1A) = h(ϕ1, A).

d) By part c, for any fuzzy countable partition A of M1 and B of M2 we have
h(ϕ1, A) = h(ϕ2, ψ(A)) and h(ϕ2, B) = h(ϕ1, ψ

−1(B)), so sup{h(ϕ1, A): A is
a fuzzy countable partition of X1} = sup{h(ϕ2, A): A is a fuzzy countable
partition of X2}.

Definition 4.11. A fuzzy countable partition A of X is said to be a fuzzy
generator of the fuzzy dynamical system (X,M,m,ϕ), if there exists an integer
r > 0 such that:

B ≺
r
t

i=0
ϕi(A),

for every fuzzy countable partition B of X.

Theorem 4.12. If the fuzzy countable partition A is a fuzzy generator, then:

a) h(ϕ,B) 6 h(ϕ,A), for every fuzzy countable partition B of X,

b) h̃(ϕ) = h(ϕ,A).

Proof.

a) A is a generator, so for each fuzzy countable partition B ofX, B ≺
r
t

i=0
ϕi(A).

Theorem 4.8 implies h(ϕ,B) 6 h(ϕ,
r
t

i=0
ϕi(A)) = h(ϕ,A).

b) From part a, for every fuzzy countable partition B of X we have h(ϕ,B) 6
h(ϕ,A). Taking the supremum with respect to all fuzzy countable partitions
of X, we obtain h̃(ϕ) = sup

B
h(ϕ,B) = h(ϕ,A). �
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Lemma 4.13. Let ϕ : M → M be an m-preserving σ-homomorphism, invert-
ible and ϕ− 1 be an m-preserving σ-homomorphism, then:

h̃ (ϕ) = h̃
(
ϕ− 1

)
.

Proof. It suffices to show that h (ϕ, A) = h
(
ϕ−1, A

)
, for all fuzzy countable

partition A. But

H

(
n− 1
∨

i = 1
ϕi (A)

)
= H

(
ϕ−(n− 1) n− 1

∨
i = 1

ϕi (A)
)

= H

(
n− 1
∨

j = 1
ϕ− j (A)

)
,

because ϕ−1 is an m-preserving σ-homomorphism and Theorem 4.4 part b
implies H (ϕ−n (A)) = H (A ). �

Theorem 4.14. Let ϕ : M →M be an m-preserving σ-homomorphism, then:

a) if ϕ = 1M , then h̃(ϕ) = 0,

b) if ϕ is invertible, ϕ− 1 be an m-preserving σ-homomorphis and there exists
k ∈ Z − {0} such that ϕk = 1M , then h̃(ϕ) = 0.

Proof.

a) For each fuzzy countable partition A, we have ϕ(A) = A and this implies

lim
n→∞

1
nH(

n−1
t

i=0
ϕiA) = lim

n→∞
1
nH(

n−1
t

i=0
A) = lim

n→∞
1
nH(A) = 0.

b) First, we demonstrate that h̃
(
ϕk
)

= |k| h̃ (ϕ) for k ∈ Z. For k > 0, it
is clear by Theorem 4.8. part(h). If k = 0, then h̃

(
ϕ0
)

= h̃ (1M ) = 0 =
0 h̃ (ϕ) , where 1M is the identity map over M . Let k < 0. We have h̃

(
ϕk
)

=

h̃
((
ϕ− 1

)|k|) = |k| h̃
(
ϕ− 1

)
. By the previous Lemma, h̃ (ϕ) = h̃

(
ϕ− 1

)
.

Therefore, we get h̃
(
ϕk
)

= |k| h̃ (ϕ) .

Now, let k 6= 0. We have h̃ (ϕ) = 1
|k| h̃

(
ϕk
)

= 1
|k| h̃ (1M ) = 0. �

5. Concluding Remarks

In this work, some properties of fuzzy dynamical systems with regard to fuzzy
countable partitions are investigated. Mostly results are similar to those ones
obtained in the classical theory. This new introduced entropy of a fuzzy dynam-
ical system is also an isomorphism invariant, which is a useful property. In this
paper, the join is suggested using the fuzzy infimum operation, but it seems
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that most of the results stated in this paper remain valid if we consider prod-
uct fuzzy operation. Another interesting open problem could be trying to find
other properties of fuzzy generators.
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Lemma 4.13. Let ϕ : M → M be an m-preserving σ-homomorphism, invert-
ible and ϕ− 1 be an m-preserving σ-homomorphism, then:

h̃ (ϕ) = h̃
�
ϕ− 1


.

Proof. It suffices to show that h (ϕ, A) = h
�
ϕ−1, A


, for all fuzzy countable

partition A. But

H


n− 1
∨
i=1

ϕi (A)

= H


ϕ−(n− 1) n− 1

∨
i=1

ϕi (A)

= H


n− 1
∨
j=1

ϕ− j (A)

,

because ϕ−1 is an m-preserving σ-homomorphism and Theorem 4.4 part b
implies H (ϕ−n (A)) = H (A ). 

Theorem 4.14. Let ϕ :M →M be an m-preserving σ-homomorphism, then:

a) if ϕ = 1M , then h̃(ϕ) = 0,

b) if ϕ is invertible, ϕ− 1 be an m-preserving σ-homomorphis and there exists
k ∈ Z − {0} such that ϕk = 1M , then h̃(ϕ) = 0.

Proof.

a) For each fuzzy countable partition A, we have ϕ(A) = A and this implies

lim
n→∞

1
nH(

n−1

i=0

ϕiA) = lim
n→∞

1
nH(

n−1

i=0

A) = lim
n→∞

1
nH(A) = 0.

b) First, we demonstrate that h̃
�
ϕk


= |k| h̃ (ϕ) for k ∈ Z. For k > 0, it

is clear by Theorem 4.8. part(h). If k = 0, then h̃
�
ϕ0


= h̃ (1M ) = 0 =

0 h̃ (ϕ) , where 1M is the identity map over M . Let k < 0. We have h̃
�
ϕk


=

h̃
�
ϕ− 1

|k| = |k| h̃
�
ϕ− 1


. By the previous Lemma, h̃ (ϕ) = h̃

�
ϕ− 1


.

Therefore, we get h̃
�
ϕk


= |k| h̃ (ϕ) .

Now, let k = 0. We have h̃ (ϕ) = 1
|k| h̃

�
ϕk


= 1

|k| h̃ (1M ) = 0. 

5. Concluding Remarks

In this work, some properties of fuzzy dynamical systems with regard to fuzzy
countable partitions are investigated. Mostly results are similar to those ones
obtained in the classical theory. This new introduced entropy of a fuzzy dynam-
ical system is also an isomorphism invariant, which is a useful property. In this
paper, the join is suggested using the fuzzy infimum operation, but it seems




