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Abstract. In this paper, we consider different types of generalized
vector variational-like inequalities and study the relationships between
their solutions. We study the general forms of Stampacchia and Minty
type vector variational inequalities for bifunctions and establish the ex-
istence of their solutions in the setting of topological vector spaces.
We extend these vector variational inequalities for the Clarke’s subdif-
ferential of non-differentiable locally Lipschitz functions and prove the
existence of their solutions. As applications, we establish some exis-
tence results for a solution of the vector optimization problem by using
Stampacchia and Minty type vector variational inequalities.

AMS Subject Classification: 49J40; 47J20; 90C29.
Keywords and Phrases: Stampacchia and Minty type vector varia-
tional inequalities, pseudomonotonicity, vector optimization problem.

1. Introduction

Let X be a real Banach space endowed with a norm ‖.‖ and X∗ its
dual space with a norm ‖.‖∗. We denote by 2X∗

and 〈., .〉 the family
of all nonempty subsets of X∗ and the dual pair between X and X∗,

respectively. Let K be a non-empty open subset of X, η : K ×K → X

a vector-valued function. We suppose that C is a closed, convex and
pointed cone of Rn ; i.e., C ∩ {−C} = ∅ with intC 6= ∅, where intC
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denotes the interior of C. Let note that 0 6∈ intC.

Let X1 and Y be real topological vector spaces, K a nonempty subset
of X1 and C ⊆ Y a proper, closed, convex cone with intC, Note that
C 6= Y if and only if 0 6∈ intC. Let g : K ×X1 → Y be a vector-valued
bifunction and η : K × K → X be a map. We consider the following
Stampacchia Vector Variational Inequality problem (SVVI) consists of
finding a vector x ∈ K such that

g(x, η(x, y)) /∈ −intC, ∀y ∈ K,

and Minty Vector Variational Inequality problem (MVVI) consists of
finding a vector x ∈ K such that

g(y, η(x, y)) /∈ intC, ∀y ∈ K.

The solution sets of (SV V I) and (MV V I) are denoted by Sg and Mg,

respectively. (SV V I) and (MV V I) contain the Stampacchia and Minty
vector variational inequalities considered in [1,12,14,19] and references
therein as special cases.

If g : K × K → Y and η(y, x) = y for all x, y ∈ K, then Stampacchia
vector variational inequality reduces to the vector equilibrium problem
considered and studied in ([1,5,6,11,13,18,19]) and references therein.
In this case, Minty vector variational inequality becomes the so called
dual vector equilibrium problem considered and studied by Konnov and
Schaible ([13]) for scalar-valued bifunctions. It is worth mentioning that
the vector equilibrium problem includes vector variational inequalities,
the vector complementarity problem, the vector saddle point problem
and the Nash equilibrium problem for vector-valued functions as special
cases.
In the sequel we adopt the following ordering relations:

x >C y ⇔ x− y ∈ Candx >C y ⇔ x− y ∈ intC.

In this section, we recall some known definitions and results which will
be used in the sequel. Throughout the article, for a nonempty subset
A of a vector space, we denote by coA the convex hull of A. If A is a
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subset of a topological space, intA and A (or clA) denote the interior
and closure of A, respectively. We denote by 2A the family of all subsets
of A.
Let X and Y be real topological vector spaces. A set-valued map Γ :
X → 2Y is said to be upper semicontinuous (u.s.c) on X if for each
x0 ∈ X and for any open set V in Y containing Γ(x0), there exists an
open neighborhood U in X such that Γ(x) ⊆ V for all x ∈ U.

A set-valued map Γ : K → X is called a KKM map if and only if for
every finite subset x1, ..., xn of K

co{x1, x2, ..., xn} ⊆
⋃n

i=1
Γ(xi).

Mohan and Neogy in ([16]) introduced a Condition (C) defined as fol-
lows.

Condition (C). Let η : X × X → X. We say the function η satisfies
the Condition (C) if, for any x, y ∈ X, λ ∈ [0, 1],
(C)(a) η(y, y + λη(x, y)) = −λη(x, y),
(C)(b) η(x, y + λη(x, y)) = (1− λ)η(x, y).

Definition 1.1. The map η : K ×K → X is said to be skew if for all
x, y ∈ K,

η(y, x) + η(x, y) = 0.

The following concepts and results are taken from Clarke et al. ([8]).

Definition 1.2. The function f : K → Rn is locally Lipschitz if for
each x ∈ K there exists a neighborhood of x and k > 0 such that for all
y, z in this neighborhood we have ‖f(y)− f(z)‖ 6 k‖y − z‖.
Let f : K → R be a locally Lipschitz function. The Clarke’s generalized
derivative of f : K → R at x in direction v ∈ X is defined by

fo(x; v) = lim sup
y→x λ→0+

f(y + λv)− f(y)
λ

,

and the Clarke’s generalized subdifferential of f at x ∈ X is defined by

∂cf(x) = {ξ ∈ X∗ : 〈ξ, v〉 6 fo(x; v) ,∀v ∈ X}.
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Definition 1.3. A subset K of X is said to be invex with respect
to η : K × K → X if , for any x, y ∈ K and λ ∈ [0, 1], we have
y + λη(x, y) ∈ K.

Throughout this paper, fi : K → R the components of f : K → Rn

are non-differentiable locally Lipschitz functions and K stands for an
invex subset of X. The definition of Clarke’s generalized derivative can
be extended to a locally Lipschitz vector-valued function f : K −→ Rn.

In fact the Clarke’s generalized derivative of f at x in direction v is

fo(x; v) = fo
1 (x; v)×fo

2 (x; v)×...×fo
n(x; v),

and the Clarke’s generalized subdifferential of f at x ∈ X is the set

∂cf(x) = ∂cf1(x)×∂cf2(x)×...×∂cfn(x).

Remark 1.4. Similar to the real-valued case, one can show that the
set-valued mapping ∂cf : K → X∗n of a function f : K → Rn is
(‖.‖ − w∗)-u.s.c.(See; [8]).

The following results will play a crucial role in establishing existence
results for solutions of vector variational inequalities.

Lemma 1.5. ([10]) Let K be a nonempty convex subset of a Hausdorff
topological vector space X. Let Γ : K → 2X be a KKM map such that for
all y ∈ K, Γ(y) is closed and Γ(y∗) is compact for some y∗ ∈ K. Then⋂

y∈K Γ(y) 6= ∅.

The following result is a particular form of Corollary 3.2. in [15].

Theorem 1.6. ([15]) Let K be a nonempty convex subset of a Hausdorff
topological vector space X. Let Γ : K → 2K be a set-valued map such
that

(i) for all x ∈ K, Γ(x) is a nonempty convex subset of K and x /∈
Γ(x);

(ii) for all y ∈ K, Γ−1(y) is open in K;

(iii) there exist a nonempty compact convex subset B of K and a nonempty
compact subset D of K such that for all x ∈ K \ D, there exists
ỹ ∈ B such that x ∈ intKΓ−1(ỹ).
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Then, there exists a point x̄ ∈ K such that Γ(x̄) = ∅.

Lemma 1.7.([9]) Let (Y, C) be an ordered topological vector space with a
closed, convex and pointed cone C with intC 6= ∅. Then foe each x, y ∈ Y ,
one has

(1) y − x ∈ intC and y /∈ intC ⇒ x /∈ intC.

(2) y − x ∈ C and y /∈ intC ⇒ x /∈ intC.

(3) y − x ∈ −intC and y /∈ −intC ⇒ x /∈ −intC.

(4) y − x ∈ −C and y /∈ −intC ⇒ x /∈ −intC.

2. Existence Results for Generalized Vector
Variational-Like Inequalities (VVLI)

Let Let fo : K × X → Rn be a vector-valued bifunction, the Clarke’s
generalized derivative of f : K → Rn, and η : K × K → X be a map.
We supposed that C is a closed, convex and pointed cone in Rn with
intC 6= ∅. We consider the following Stampacchia Vector Variational
Inequality (SVVI) problem in terms of the bifunction fo:
SVVI(f, η)

Find x̄ ∈ K such that fo(x̄; η(y, x̄)) 6∈ −intC, for all y ∈ K,

and Minty Vector Variational Inequality (MVVI) problem in terms of
the bifunction fo:
MVVI(f, η)

Find x̄ ∈ K such that fo(y; η(x̄, y)) 6∈ intC, for all y ∈ K.

The solution sets of SVVI(f, η) and MVVI(f, η) are denoted by Sf and
Mf , respectively. The following results will play a crucial role in estab-
lishing existence results for solutions of SVVI(f, η) and MVVI(f, η).

Definition 2.1. Let η : K × K → X be a map. A bifunction fo :
K ×X → Rn is said to be
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(i) C-pseudomonotone with respect to η if for all x, y ∈ K,

fo(x; η(y, x)) 6∈ −intC ⇒ fo(y; η(x, y)) 6∈ intC;

(ii) C-subodd with respect to η if for all x, y ∈ K, fo(x; η(x, y)) +
fo(x; η(y, x)) ∈ C.

The following results will play a crucial role in establishing existence
results for solutions of SVVI(f, η) and MVVI(f, η).

Definition 2.2. Let K ⊆ X be nonempty invex w.r.t η : K ×K → X.
A bifunction fo : K ×X → Rn is said to be
(i)u-hemicontinuous if for all x, y ∈ K and t ∈ [0, 1], the mapping t 7→
fo(x + tη(y, x); η(y, x)) is continuous at 0+.
(ii)C-subodd with respect to η if for all x, y ∈ K, fo(x, η(x, y))+fo(x, η(y, x)) ∈
C. If η(y, x) = y − x for all x, y ∈ K, the definition of C-pseudomonotone
w.r.t. η reduces to the definition of C-pseudomonotone on K.
The following result is a generalization of well-know Minty lemma.

Proposition 2.3. Let fo : K × X → Rn be a vector-valued bifunction
and η : K ×K → X be a map. The following statements hold:

(a) If fo is C-pseudomonotone w.r.t. η, then Sf ⊆ Mf ;
(b) Let K ⊆ X be a nonempty invex set and the map η : K×K → X

be skew and satisfy Condition (C)(a), then Mf ⊆ Sf .

Proof.(a) It directly follows from the definition of C-pseudomonotonicity
of f .
(b) Let x̄ ∈ K be a solution of MVVI(f, η). Then for every y ∈ K, we
have fo(y; η(x̄, y)) 6∈ intC. Since K is an invex set, for any λ ∈ (0, 1) we
have x̄ + λη(y, x̄) ∈ K and so

fo (x̄ + λη(y, x̄), η(x̄, x̄ + λη(y, x̄))) 6∈ intC. (1)

By Condition (C)(a),

η(x̄, x̄ + λη(y, x̄)) = −λη(y, x̄).
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Since η is skew, we have −λη(y, x̄) = λη(x̄, y) and by positive homo-
geneity of fo, we have

fo(x̄ + λη(y, x̄); η(x̄, x̄ + λη(y, x̄))) = fo(x̄ + λη(y, x̄);λη(x̄, y))

= λfo(x̄ + λη(y, x̄); η(x̄, y)).

It follows from (1) that

fo(x̄ + λη(y, x̄); η(x̄, y)) 6∈ intC. (2)

By C-suboddness of fo, we have

fo(x̄ + λη(y, x̄); η(y, x̄)) + fo(x̄ + λη(y, x̄); η(x̄, y)) ∈ C. (3)

From (2)-(3) and the fact that if b /∈ intC and a + b ∈ C then a /∈ intC,
we obtain

fo(x̄ + λη(y, x̄); η(y, x̄)) 6∈ −intC,

Letting λ → 0+ and using u-hemicontinuity of f for any y ∈ K, we get

fo(x̄; η(y, x̄)) 6∈ −intC.

Thus Mf ⊆ Sf . �
The following notion of proper C-suboddness generalizes the concept of
C-suboddness given by Lalitha and Mehta ([14]).

Definition 2.4. A bifunction fo : K × X → Rn is said to be proper
C-subodd with respect to η : K ×K → X if for every x, y1, . . . , yn ∈ K

with
∑n

i=1 η(yi, x) = 0, we have

fo(x, η(y1, x)) + · · ·+ fo(x, η(yn, x)) ∈ C.

When K is a nonempty convex subset of X, we derive the following
result from Proposition 2.3. (b).

Corollary 2.5. Let K be a nonempty convex subset of X and η :
K×K → X be a skew map such that η(y, y+λ(x−y)) = −λη(x, y) for all
x, y ∈ K and all λ ∈ [0, 1]. If vector-valued bifunction fo : K ×X → Y

is proper C-subodd and positive homogeneous such that for all x, y ∈ K
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and all t ∈ [0, 1], the map t 7→ fo(x + t(y − x); η(y, x)) is continuous at
0+, then Mf ⊆ Sf .

Theorem 2.6. Let K be a nonempty compact convex subset of X, the
map η : K ×K → X be affine in the first argument and the bifunction
fo : K × X → Rn be C-pseudomonotone w.r.t. η and fo(x; η(x, x)) /∈
−intC and for all y ∈ K, the map x 7→ fo(y; η(x, y)) is continuous.
Then MVVI(f, η) has a solution.

Proof. For all y ∈ K, define set-valued maps M,S : K → 2K by

M(y) = {x ∈ K : fo(y; η(x, y)) 6∈ intC}

and
S(y) = {x ∈ K : fo(x; η(y, x)) 6∈ −intC}.

Since for all x ∈ K, fo(x; η(x, x)) /∈ −intC, we have S(y) is nonempty
for each y ∈ K. We claim that S is a KKM map on K. If S is not a KKM
map, then there exists x0 ∈ co{y1, ..., yn} such that for all λ1, . . . , λn ∈
[0, 1] with

∑n
i=1 λi = 1, we have x0 6∈

⋃n
i=1 S(yi). Thus,

fo(x0; η(yi, x0)) ∈ −intC, for each i = 1, ..., n.

Since −intC is convex, we have

n∑
i=1

λif
o(x0; η(yi, x0)) ∈ −intC. (4)

On the other hand, by affineness of η in the first argument and positive
homogeneity of fo in the second argument, we have

n∑
i=1

λif
o(x0; η(yi, x0)) = fo(x0; η(x0, x0)) /∈ −intC,

which contradicts to (4). Hence, S is a KKM map.
By virtue of C-pseudomonotone of f , S(y) ⊆ M(y) for all y ∈ K. Thus,
M is also a KKM map and, of course, M(y) is nonempty for all y ∈ K.
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Now we show that for all y ∈ K, M(y) is closed. Let {xn} be a sequence
in M(y) such that {xn} converges to x0 ∈ K. Then,

fo(y, η(xn, y)) 6∈ intC.

Since the map x 7→ fo(y; η(x, y)) is continuous, we have

fo(y; η(xn, y)) → fo(y; η(x0, y)) 6∈ intC.

We conclude that x0 ∈ M(y), that is, M(y) is a closed subset of a
compact set K and hence compact. Thus all the conditions of Lemma
1.5 are fulfilled and hence

Mf =
⋂

y∈K

M(y) 6= ∅.

Therefore, there exists x̄ ∈ K such that

fo(y; η(x̄, y)) 6∈ intC, ∀y ∈ K,

and hence MVVI(f, η) has a solution. �

Remark 2.7. The condition ‘fo(x; η(x, x)) /∈ −intC for all x ∈ K’ in
Theorem 2.6 holds if fo : K×X → Y is proper C-subodd and η(x, x) = 0
for all x ∈ K.

When K is not necessarily compact, we have following result.

Theorem 2.8. Let K be a nonempty convex subset of X, the map
η : K × K → X be affine in the first argument and the bifunction
fo : K × X → Rn be proper C-subodd, C-pseudomonotone w.r.t. η .
Assume that the following conditions hold:

(i) For all x ∈ K, η(x, x) = 0;

(ii) For all y ∈ K, the map x 7→ fo(y; η(x, y)) is continuous;

(iii) There exists a nonempty compact convex subset D of K such that
for all x ∈ K \ D, there exists ỹ ∈ D satisfying fo(ỹ; η(x, ỹ)) ∈
intC.
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Then MVVI(f, η) has a solution.

Proof. Let {y1, . . . yk} be a finite subset of K and let Q = co(D ∪
{y1, . . . yk}). Then Q is compact and convex. By Theorem 2.6, there
exists x̄ ∈ Q such that

fo(y; η(x̄, y)) /∈ intC, ∀y ∈ Q.

From condition (iii), x̄ ∈ D. In particular, we have x̄ ∈ D such that

fo(yi; η(x̄, yi)) /∈ intC, ∀i = 1, 2, . . . , k.

Since D is compact and convex, by continuity of the map x 7→ fo(y; η(x, y)),
we have

G(y) = {x ∈ D : fo(y; η(x, y)) /∈ intC}

is closed in D and hence compact. Therefore, {G(y)}y∈K has a nonempty
intersection property and hence⋂

y∈K

G(y) 6= ∅.

Thus, there exists x̄ ∈ D such that fo(y; η(x̄, y)) /∈ intC for all y ∈ K. �

By combining Corollary 2.5. and Theorem 2.8., we obtain the existence
result for a solution of SVVI(f, η).

Theorem 2.9. Let K be a nonempty convex subset of X and the map
η : K×K → X be skew, affine in the first argument such that η(x, x) = 0
and η(y, y + λ(x − y)) = −λη(x, y) for all x, y ∈ K and all λ ∈ [0, 1].
Let the vector-valued bifunction fo : K × X → Rn be proper C-subodd,
C-pseudomonotone and the map t 7→ fo(x + t(y − x); η(y, x)) is con-
tinuous at 0+. Assume that there exists a nonempty compact convex
subset D of K such that for all x ∈ K \D, there exists ỹ ∈ D satisfying
fo(ỹ; η(x, ỹ)) ∈ intC. Then SVVI(f, η) has a solution.
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