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Abstract. The topic of ”Homorooty” (for integer numbers) has been
introduced and studied in [2]. There are some applications of the homo-
rooty in studying and solving some Diophantine equations and systems,
as an interesting and useful elementary method. As a continuation of
the Homorooty, we consider it for arbitrary rings and will study its prop-
erties in different rings, especially UFD and homorooty rings (which will
be introduced). At last we shall state some applications of homorooty
in studying some equations over homorooty rings.
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1. Introduction

In [1] the homoroot integer numbers have been introduced and studied.
The topic of Homorooty has some applications in studying and solving
some Diophantine equations and systems (specially the quartic equa-
tions discussed in [2]).
Two integer numbers a, b are called homoroot if there exist integer num-
bers r1, r2 (the root of a, b) such that a = r1 + r2 and b = r1r2. Two ho-
moroot integer numbers a, b will be denoted by < a, b >→ Z < r1, r2 >
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or simply by < a, b >→ Z. By < a, b >→ N we mean < a, b >→ Z <

r1, r2 > and {a, b, r1, r2} ⊆ N. Thus if a, b ∈ N and < a, b >→ Z, then
< a, b >→ N. It is shown that the following properties hold (see [2]).
(I)

< a, a + b >→ Z ⇐⇒< a− 2, b + 1 >→ Z,

< a,−a + b >→ Z ⇐⇒< a + 2, b + 1 >→ Z.

(II) (The homorooty inequalities) Let b be a non-zero integer. Then
(a) < a, b >→ Z =⇒ |a| 6 |b + 1|.
(b) If < a, b >→ Z and |a| 6= | bi + i|, for i = 1, · · · , n 6

√
|b|, then

|a| < | bn + n|.
(c) moreover if a, b ∈ N, then
< a, b >→ N =⇒ 2

√
b 6 a 6 b + 1.

< a, a + b >→ N =⇒ a 6 b + 4.
< a,−a + b >→ Z =⇒ a 6 b.

(III) (The homorooty lemma for integers) For every integers a, b with
b 6= 0, the following statements are equivalent:
(a) < a, b >→ Z,
(b) The equation x2 − ax + b has an integer root,
(c) < λa, λ2b >→ Z for every integer λ 6= 0,
(d) a = r + b

r for some integer r such that r|b and 1 6 |r| 6
√
|b|,

(e) < λ0a, λ2
0b >→ Z for some integer λ0 6= 0,

(f) a2 − 4b is a square integer,
(g) < −a, b >→ Z.

(IV) We have < a, a − 1 >→ Z, < a, 0 >→ Z and < 0,−a2 >→ Z,
for every a ∈ Z.

2. Homoroot Elements of Rings

Considering the properties of elements of a ring, it is induced that the
homorooty can be defined and studied in any arbitrary ring. Hence, in
this section we consider the homorooty in arbitrary rings and study its
properties in various kinds of rings.
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Definition 2.1. Let (R,+, .) be a ring, we say that the elements a, b

of R are homoroot if there exist elements r1 and r2 of R such that
a = r1+r2, b = r1.r2 (the elements r1 and r2 are called ’the roots of a, b’).

Two homoroot elements a, b will be denoted by < a, b >→ R < r1, r2 >

or simply by < a, b >→ R. It is easy to see that the following properties
hold.

(I) In an arbitrary ring R we have
(i) < a, 0 >→ R,< 0,−a2 >→ R, for every a ∈ R.
(ii) < a, b >→ R ⇐⇒< −a, b >→ R.

(iii) < a, b >→ R ⇐⇒ b = ar − r2, for some r ∈ R.

(II) Let R be a ring with identity. Then for every a, b ∈ R we have
(i) < a, a− 1 >→ R.
(ii) < a, a + b >→ R ⇐⇒< a− 2, b + 1 >→ R.

(iii) < a,−a + b >→ R ⇐⇒< a + 2, b + 1 >→ R.

(III) Let R be a commutative ring. Then
(i) < a, b >→ R =⇒< λa, λ2b >→ R, for every λ ∈ R.

(ii) < a, b >→ R =⇒ a2 − 4b = c2, for some c ∈ R.
(iii) a2 − 4b = c2 =⇒< 2a, 4b >→ R.

(IV) Let R be a commutative ring with identity. Then < a, a >→ R if
and only if there exists an invertible element u such that a = u+u−1+2.

Therefore
(i) < a, a >→ Q ⇐⇒ a = (m+n)2

mn , for some m,n ∈ Z \ {0}, (m,n) = 1.

(ii) < a, a >→ Z ⇐⇒ a = 0, 4.

(V) Let R be a commutative ring with no zero divisors. If < a, b >→ R,

then the roots of a, b are unique (i.e, < a, b >→ R < r1, r2 >,< a, b >→
R < t1, t2 >, then r1 = t1, r2 = t2 or r1 = t2, r2 = t1).

Assume that S ⊆ R. By the notation < a, b >→ S we mean < a, b >→
R < r1, r2 > and {a, b, r1, r2} ⊆ S.
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2.1 Homorooty Rings

There exists a vast class of rings in which important properties of homo-
rooty, including the homorooty lemma, hold. Now we introduce these
rings.

Definition 2.2. Let R be an arbitrary ring. For an integer n and
a ∈ R, n|a means that there exists an element b ∈ R such that a = nb

(note that if 1 ∈ R, then n|a if and only if n1R|a, in the sense of dividing
for two elements of a ring). We say that n is prime with respect to R if
for any r1, r2 ∈ R,n|r1r2 implies that n|r1 or n|r2.

Definition 2.3. Let R be a commutative ring with no element of
additive order 2. Then R is called a homorooty ring if we have

∀r1, r2 ∈ R (2|r1 + r2, 4|r1r2 =⇒ 2|r1, 2|r2) .

Example 2.4. Assume R to be a commutative ring such that or
Ord(r) 6= 2 (for every r ∈ R). If the integer number 2 or 4 is prime
with respect to R or if 1 ∈ R and 2 or 4 is a unit element, then R is
homorooty ring. The field F for which Char(F ) 6= 2 is another type of
the homorooty rings.

Lemma 2.5. The Gaussian domain is a homorooty ring.

Proof. Consider the elements r1 = a + bi, r2 = c + di of Z[i], so
r1r2 = (ac − bd) + (ad + bc)i. If 4|r1r2, then 4|ac − bd and 4|ad + bc,
therefore

4|a(c2 + d2), 4|c(a2 + b2), 4|d(a2 + b2).

If a2 + b2 is odd, then 4|c, 4|d so 2|c + di = r2.

Let a2 + b2 be even. If a and b are even, then 2|a + bi + r1 and if a

and b are odd, then 4|c2 + d2 so 2|c and 2|d and hence 2|c + di = r2.
Therefore, we have proved that ”4|r1r2 =⇒ 2|r1 or 2|r2”, and this proves
our claim. �

Lemma 2.6. Let R be a commutative ring such that Ord(r) 6= 2 , for
every r ∈ R. If 4|a2 − c2 implies 2|a + c (for any a, c ∈ R), then R is a
homorooty ring and vice versa.
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Proof. If 2|r1 + r2 and 4|r1r2, then r1 − r2 = −2a, for some a ∈ R.
thus 4|a2− (r2−a)2 = −r1r2 and so 2|a+(r2−a) = r2 and 2|r1, clearly.
Conversely, let R be a homorooty ring. If 4|a2− c2 then 4|(a + c)(a− c)
and 2|(a + c) + (a− c). Therefore 2|a + c. �

Lemma 2.7. (The homorooty Lemma) Let R be a homorooty ring.
Then

< a, b >→ R ⇐⇒ a2 − 4b = c2,

for some c.

Proof. Suppose that a2−4b = c2 so < 2a, 4b >→ R, by (III), therefore

2a = t1 + t2, 4b = t1t2 =⇒ 2|t1 + t2, 4|t1t2 =⇒ 2|t1, 2|t2 =⇒ t1 = 2r1, t2 = 2r2

So 2a = 2(r1 + r2), 4b = 4r1r2 and then a = r1 + r2, b = r1r2. �

Corollary 2.8. Let F be a field for which Char(F ) 6= 2. Then g ∈
F [X] is reducible (i.e.g can be expressed as the product of two non-
trivial factors in F [X]) if and only if there exists f ∈ F [X] such that
deg(f) < deg(g) and f2 − 4g is a square element.

Proof. If f2 − 4g is a square element, then < f, g >→ F [X], by
the homorooty lemma. So, there exist two polynomials r1 = r1(x) ,
r2 = r2(x) such that g = r1r2 and deg(r1 + r2) < deg(r1r2). Thus
deg(r1),deg(r2) > 1 and so g is reducible. The converse is trivial. �

We note that
√

a (a/2) is every element r of R such that r2 = a (2r = a).
Here we call r a second root of a.

Theorem 2.9. (a) In every homorooty ring the formula a+
√

a2−4b
2 gives

us all roots of x2 − ax + b and the set of all roots of this polynomial is
the set of all values of a+

√
a2−4b
2 .

(b) Consider the indeterminate equation x2− dy = z2 over a homorooty
ring R, where d is a constant element of R or Z. Then the general
solution of the (d-homorooty equation) is

(x, y, z) = (
r1 + r2

2
,
r1r2

d
,
r1 − r2

2
) for all r1, r2 ∈ R with 2|r1 + r2 , d|r1r2.

If d = 4 (homorooty equation), then (x = r1 + r2, y = r1r2, z = r1 − r2)
is its general solution, where r1, r2 run over R.
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Proof. If R is a commutative ring and r is a root of x2 − ax + b, then
there exists a second root t, of a2−4b such that r = a+t

2 . This is because
r2 − ar + b = 0 implies

(2r − a)2 = a2 − 4b =⇒ 2r − a =
√

a2 − 4b =⇒ 2r = a +
√

a2 − 4b.

But if t is a second root of a2−4b, then it is no more necessary for r = a+t
2

to be a root of x2 − ax + b (even it is possible that r = a+t
2 does not

make sense). Now assume that R is a homorooty ring and a2 − 4b = t2,
for some r ∈ R, then 2|a + t (by Lemma 3.6) so a+t

2 = r ∈ R thus

2r − a = t =⇒ (2r − a)2 = t2 = a2 − 4b =⇒ 4(r2 − ar + b) = 0,

therefore r2 − ar + b = 0.
The part (b) is gotten from the homorooty lemma and this fact that
x2

0 − dy0 = z2
0 implies < 2x0, dy0 >→ R. �

2.2 Homorooty Properties in UFD’s

In this section we assume that R is a UFD. and F is the quotient field
of R.

Lemma 2.10. Let a, b ∈ R. Then < a, b >→ F if and only if <

a, b >→ R and moreover the roots of a, b in F belong to R.

Proof. By the Gaussian lemma, the polynomial x2−ax+b is reducible
over F if and only if it is reducible over R, so by (I), the first part of
the lemma is proved, but if < a, b >→ F then < a, b >→ R and so the
roots of a, b in F are the same as the roots of a, b in R. �

Corollary 2.11. Let a, b, c, d, λ belong to R and bd 6= 0. Then
(i)

bd|ad + bc, bd|ac ⇐⇒ b|a, d|c.

(ii)
λ|a + c, λ2|ac ⇐⇒ λ|a, λ|c.
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Proof. Put r1 = a/b, r2 = c/d, s = r1 + r2 = ad + bc/bd, p = ac/bd so
s, p ∈ R (up to isomorphism) since < s, p >→ F, we have < s, p >→ R

and r1, r2 ∈ R (by Lemma 3.10), therefore b|a , d|c. (ii) is a conclusion
of (i), by putting λ = b = d 6= 0 in (i) (if λ = 0, then it is clear). �

Corollary 2.12. Every UFD with no characteristic 2 is a homorooty
ring.

Proof. It is enough to consider λ = 2 in the above corollary. �

Lemma 2.13. If 0 6= λ ∈ R, then

< λa, λ2b >→ R ⇐⇒< a, b >→ R.

Proof. Suppose λa = r1 + r2, λ
2b = r1r2 so λ|r1 + r2, λ

2|r1r2 thus
λ|r1 and λ|r2 (corollary 3.2) so r1/λ and r2/λ belong to R. Since we
have a = r1 + r2/λ, b = r1r2/λ2, then we have a = (r1/λ) + (r2/λ), b =
(r1/λ)(r2/λ) so < a, b >→ R. �

Lemma 2.14. Let < a, b >→ R < r1, r2 > . Then (a, b) and (r1, r2)
are associated if and only if (a, b)2|b (where (a, b) is the greatest common
divisor of a and b).

Proof. Assume (a, b)2|b, so (a, b)|r1+r2, (a, b)2|r1r2 thus (a, b)|r1, (a, b)|r2

therefore (a, b)|(r1, r2), also clearly (r1, r2)|(a, b). Now if (a, b)|(r1, r2),
then (a, b)2|r1r2 = b. �

Lemma 2.15. Let m, n, p, q belong to R. Then

<
m

n
,
p

q
>→ F ⇐⇒< qm, pqn2 >→ R.

Proof. Suppose < m
n , p

q >→ F so there exist α, β, γ, λ in R such that

m

n
=

α

β
+

γ

λ
,

p

q
=

α

β

γ

λ
.

so
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mq = nq α
β + nq γ

λ , pqn2 = (nq α
β )(nq γ

λ) =⇒< mq, pqn2 >→ F

=⇒< mq, pqn2 >→ R,

(by Lemma 3.10). Now assume < qm, pqn2 >→ R, then

qm = r1 + r2, pqn2 = r1r2 =⇒ m
n = r1

qn + r2
qn , p

q = r1
qn

r2
qn

=⇒< m
n , p

q >→ F. �
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