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Abstract. In this article we consider inferences on the largest
mean of k( = 2) normal populations with unequal unknown vari-
ances. The coverage probability and expected length of the two
confidence intervals for the largest mean are compared using Monte
Carlo simulation. We found that the coverage probability of the
generalized confidence interval and optimal confidence interval are
close to nominal level but the expected length of generalized con-
fidence interval is smaller than the optimal confidence interval.
Finally an example is provided.
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Introduction

Let my, 79, ..., m be k(= 2) normal populations with means u; and

ances o2, and n; observations taken from each population, i = 1,2, ...

The ordered values of p;’s, denoted by pp < pp < ... < g,

vide some important and useful information about the populations.
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example, when the variances are equal, the ordering of pu;’s is equiva-
lent to ordering of the populations. In reliability and lifetesting, ranked

parameters are applied to study a system.

The problem of ranking of means of several independent normal
populations, specially the largest and smallest mean, has been stud-
ied by many authors; Dudewicz (1972) showed that the largest sample
mean, as a natural estimator of the largest mean, is biased. However,
Chen (1976) noted that the largest sample mean is both strongly con-
sistent and asymptotically unbiased. For the largest mean, when the
common population variance is known, Saxena and Tong (1969) and
Dudewicz (1972) analyzed confidence intervals that were not optimal,
but Dudewicz and Tong (1971) proposed an optimal confidence interval,
and then Tong (1973) provided percentage points for this kind of inter-
val. When the variances are equal but unknown, Saxena (1976) gave a
large sample approximation, Chen and Chen (1999) obtained a nearly
optimal, and Chen and Chen (2004) found an optimal confidence inter-
val. When the variances are unknown and possibly unequal, Chen and
Dudewicz (1976), and Chen (1977a,b) proposed a class of intersecting
intervals, and then Chen and Wen (2006) found an optimal confidence

interval.

For the ranked mean, p;) there are two articles, by Dudewicz (1972),

who obtained a class of two-sided intervals when variances are known,
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and by Alam and Saxena (1974), who gave a confidence interval such
that the distribution of each population is stochastically increasing in

mearn.

In this paper, we first review two methods that are applicable for
interval estimation ranked means, pj; in Section 2. First method is
based on the concepts of generalized confidence interval and generalized
p-value, and is given by Chang and Huang (2000). The concepts of gen-
eralized p-value and generalized confidence interval that provide exact
tests and exact confidence intervals, proposed by Tsui and Weerahandi
(1989) and Weerahandi (1993). Second method is optimal confidence
interval that is given by Chen and Wen (2006). In Section 3, by a nu-
merical example, we compare these methods with each other. Simulation
studies are presented in Section 4, to compare the coverage probabilities

and the expected lengths of these methods.

2. Inferences for the Mean of the Best Popula-
tion

Suppose X1, Xi2, ..., Xin,, t = 1,...,k are k random samples with size
n; from normal populations with means p; and unequal variances arf.
The largest normal mean, p* = pp) = max(py, ..., g) provides some

important and useful information about populations. The population

that has the largest mean, p* is known as the best population.
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The problem of interest is to find confidence interval for the largest
mean. In this Section we first study the confidence interval of p* based
on a generalized pivotal variable that is given by Chang and Huang
(2000). Then briefly we review the method of Chen and Chen (2006)

that is an optimal confidence interval for the largest mean.

2.1 Generalized Confidence Interval for the Largest Mean

_ g U _

Let, for the ith population, X; = > Xj;/n; and S? = > (X5 -X;)?
j=1 J=1

/(n; — 1) be the sample mean and sample variance, respectively, and z;

and s? denote the observed values of X; and S2,i=1,.... k.

The generalized pivotal variable for pu; is given by

T, =2 — 2120 =1,k (1)

X —

where t,,_1 = \/1; ES i follows a student’s t-distribution with n; — 1
i

degrees of freedom.

The generalized pivotal variable for the largest mean is the largest

generalized pivotal variables, T;’s of p;’s, i.e.
T* = max(T1, T, ..., T). (2)
The exact (1 — «) confidence interval is given by
[T"(a/2), T*(1 = a/2)], ®3)

where T () stands for the yth quantile of T*.
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2.2 Optimal Confidence Interval

Chen and Wen (2006) proposed a two-stage procedure for obtaining an
optimal confidence interval for the largest or smallest mean of k indepen-
dent normal population, where the population variances are unknown
and possibly unequal. This procedure requires additional samples and
it may not be practicable in real problems. Therefore they employed a
one-stage sampling procedure that is proposed by Chen and Lam (1989)
for interval estimation. This one-stage sampling procedure for interval
estimation is stated as follows:

Let Xj; (j = 1,...,n;) be an independent random sample from normal

2

population m;, (i = 1,...,k) with unknown and unequal variance o;,

i=1,..k
1

' . ’ ’
Choose n; (n; = 3) observations, X;,,...., X , from each random
Tt
T

samples, X1, ..., Xin,.
Employ the first ng observations, (2 < ng < n;) and calculate the

sample mean and sample variance of these observations, respectively by

T 1 ]

~ _1 ’ s2 ’ > 2
Xz—ROFZlXij ) Sz'_no_lj;(xij Xi)“.

It is noted that Chen and Lam (1989) suggested taking no to be

min {n: —-1,i=1, ,k} .
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Choose the weights for the ith sample observations to be

= . h* 1 . h*
Ui:i,_,_if\/u(”t__l) , %:i__\/ Mo (M)
1.

&2 7 T 2

i Ty 1o S; n; n;\ n;—no S;
&3
where h* is the maximum of { =&, ..., =&

Let final weighted sample mean using all observations be defined by

o ﬂ"a
Yi=U) Xi+Vi 3, X,
j=1 J=np+1

and Y* represents the largest one of Y1, ..., Yi. Then the 100%(1 — «)

confidence interval for largest mean, p* is
(Y* —diVh*, Y* + doVh*), (4)

where d; and dy are left entry and right entry percentage points, re-

spectively, that are given by Chen and Wen (2006).
3. Numerical Example

The data, taken from Bishop and Dudewicz (1978), is an experiment
for studying the bacterial killing. The experiment involved testing four
types of solvents for their effects on the ability of a fungicide methyl-2-
benzimidazole-carbamate to destroy the fungus Penicillium expansum.
The fungicide was diluted in exactly the same manner in the four dif-
ferent types of solvents and sprayed on the fungus, and the percentage

of fungus destroyed was measured. Let p; denote the mean percentage
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of fungus destroyed by solvent . Our interest is in finding an interval
estimation for the largest mean percentage, u* = max(pu1, po, 13, fa).
The summary statistics of all data for different solvents and other
needed values for one-stage sampling procedure by ng = 15, are given in
Table 1 (For details see Chen and Wen (2006)).
The 95% proposed generalized confidence interval in [3] and one-
stage confidence interval in [4] for the largest mean, u* are (97.038,

97.953) and (96.290, 97.868), respectively.

Table 1: Summary statistics of bacterial killing ability example

Statistics n;g I st nl Z; 57

Solvent 1 19 97.18 2.091 18 96.8420 2.1099
Solvent 2 28 9541 4.112 25 94.6860 3.1708
Solvent 3 52 9542 4.764 49 94.3833 5.8842

Solvent 4 16 97.37 0.753 16 97.3327 0.7797

4. Simulation Study

For comparing the coverage probabilities and expected length of the
confidence intervals for the largest mean, simulations were studied for
the case of £ = 4 only. The observations are generated with size n; from
four normal populations with means p; and variances af, 1=1,2,3,4.
Also we considered that p* = p; = 10, that is, the largest mean is 10

and the first population is the best population.
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The generalized confidence interval (GC) in (3) that is considered by
Chang and Huang (2000), compared by the optimal confidence interval
(OC) of Chen and Chen (2006) in (4). The results are given in Tables
2 and 3. We found that the coverage probabilities of generalized confi-
dence interval and optimal interval are close to significant level and in
some cases the coverage probabilities of optimal interval is greater than
significant level. Also the expected length of generalized confidence in-

terval is smaller than expected length optimal confidence interval.

References

[1] K. Alam and K. M. L. Saxena, On interval estimation of a ranked param-
eter. J. Roy. Statist. Soc, B 36 (1974), 277-283.

(2] T. A. Bishop and E. J. Dudewicz, Exact analysis of variance with unequal
variances: test procedures and tables. Technometrics, 20 (1978), 419-430.

(3] Y. P. Chang and W. T. Huang, Generalized confidence intervals for the
largest value of some functions of parameters under normality. Statistics

Sinica, 10 (2000), 1369-1383.

[4] H. J. Chen, Strong consistency and asymptotic unbiasedness of a natural
estimator for a ranked parameter. Sankhya, Ser. B 38 ( 1976), 92-94.

[5] H. J. Chen, Estimation of ordered parameters from k stochastically in-
creasing distributions. Naval Res. Logist. Quarterly, 24 (2) (1977a), 269-
280.

[6] H.J. Chen, A class of fixed-width confidence intervals for a ranked normal
mean. Comm. Statist. B 6 (1977b), 137-156.

[7] S. Y. Chen and H. J. Chen, Single-stage analysis of variance under het-
eroscedasticity. Comm. Statist. Simulation Comput. 27 (3) (1998), 641-
666.

[8] H. J. Chen and S. Y. Chen, A nearly optimal confidence interval for the
largest normal mean.Comm. Statist. Simulation Comput. 28 (1) (1999),
131-146.



[9]

(10]

(1]

(12]

[13]

(14]

(15]
[16]

(17]

18]

(19]

[20]

21]

GENERALIZED CONFIDENCE INTERVAL ... 53

H. J. Chen and S. Y. Chen, Optimal confidence interval for the largest nor-
mal mean with unknown variance. Comput. Stat. Data Anal., 47 (2004),
845-866.

H. J. Chen and E. J. Dudewicz, Procedures for fixed-width interval esti-

mation of the largest normal mean. J. Amer. Statist. Assoc., 71, (1976),
752-756.

H. J. Chen and K. Lam, Single-stage interval estimation of the largest nor-
mal mean under heteroscedasticity. Comm. Statist. Theory and Methods
18 (10) (1989), 3703-3718.

H. J. Chen and M. J. Wen, Optimal confidence interval for the largest
normal mean under heteroscedasticity. Comput. Stat. Data Anal., 51 (
2006), 982-1001.

E. J. Dudewicz, Two-sided confidence intervals for ranked means. J. Amer.
Statist. Assoc., 67 (1972), 462-464.

E. J. Dudewicz and Y. L. Tong, Optimal confidence interval for the largest
location parameter. In: Gupta, S.S., Yackel, J. (Eds.), Statistical Decision
Theory and Related Topics. Academic Press, Inc., New York (1971).

J. Neter , H. Kutner, C. J. Nachtsheim, and W. Wasserman, Applied
Statistical Linear Models, 4th Edition. IRWIN, Inc., Harvard, IL, (1996).

K. M. L. Saxena, A single-sample procedure for the estimation of the
largest mean. J. Amer. Statist. Assoc. 71 (1976), 147-148.

K. M. L. Saxena and Y. L. Tong, Interval estimation of the largest mean
of k normal populations with known variance. J. Amer. Statist. Assoc.,
64 (1969), 296-299.

Y. L. Tong, An asymptotically optimal sequential procedure for the esti-
mation of the largest mean. Ann. Statist., 1 (1973), 175-179.

K. W. Tsui and S. Weerahandi, Generalized p-values in significance test-
ing of hypothesis in the presence of nuisance parameters, J. Am. Statist.
Assoc., 84 (1989), 602-607.

S. Weerahandi, Generalized confidence intervals, J. Am. Statist. Assoc.,
88 (1993), 899-905.

S. Weerahandi, Ezact statistical methods for data analysis, Springer,
NewYork, (1995).



54 J. BEHBOODIAN, A. A. JAFARI

Table 2: Simulation of %95 coverage probabilities with unequal variances
and p* = p; =10

o, 3, [ 1,1,1 1,2,5 2,5,7
oc GC oc GC oc GC
0? =(1,1,2,2)
n = (10,10, 10, 10) 0.951  0.958 0.947 0.951 0.954 0.954
n = (10,10, 20, 20) 0.944 0.944 0.956  0.947 0.953 0.939
n = (20,10, 10, 30) 0.937  0.969 0.959 0.948 0.956 0.944
= (10,30, 30, 30) 0.961 0.943 0.942 0.951 0.947  0.955
= (30,30, 30, 30) 0.951 0.946 0.950 0.958 0.956  0.965
=(4,1,2,3)
= (10,10, 10,10) 0.937 0.957 0.944 0.953 0.944 0.951
= (10,10, 20, 20) 0.941 0.943 0.947  0.959 0.955 0.942
n = (20,10, 10, 30) 0.947 0.954 0.955 0.950 0.959  0.950
n = (10, 30, 30, 30) 0.956 0.938 0.954 0.954 0.952  0.946
n = (30, 30, 30, 30) 0.944 0.941 0.941  0.961 0.955 0.947
o? = (1,10,2,1)
n = (10, 10,10, 10) 0.947 0.942 0.961 0.965 0.961 0.953
n = (10,10, 20, 20) 0.941 0.954 0.956  0.949 0.960 0.950
n = (20,10, 10, 30) 0.951 0.942 0.942  0.952 0.944 0.947
= (10, 30, 30, 30) 0.950 0.959 0.941 0.947 0.942 0.945
n = (30, 30, 30, 30) 0.946 0.939 0.948 0.958 0.962 0.949
o’ = (5,2,1,10)
n = (10,10, 10, 10) 0.948 0.938 0.963 0.949 0.957 0.962
n = (10, 10, 20, 20) 0.947 0.945 0.942  0.949 0.960 0.957
n = (20, 10, 10, 30) 0.953  0.946 0.954 0.954 0.955 0.954
n = (10,30, 30, 30) 0.956 0.945 0.943  0.953 0.951 0.941
n = (30, 30, 30, 30) 0.945 0.948 0.951 0.955 0.962  0.956
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Table 3: Simulation of expected length of %95 confidence interval with
unequal variances and p* = pup = 10

M2y H3, [l ls]-!l 132$5 235$7

oc GO oc GC oc GC

o2 =(1,1,2,2)
n = (10, 10, 10, 10) 5202 1.387  5.162 1.401 5.317 1.401
n = (10, 10,20, 20) 4210 1.373 4147 1.372 4129 1.393
n = (20,10, 10, 30) 4.462 0.923 4304 0.927 3.716  0.927
n = (10,30, 30, 30) 3441 1.397 3431 1.395 3.324  1.391
n = (30,30, 30,30) 2.902 0.738  2.878 0.744 2.781  0.743

o =(4,1,2,3)
n=(10,10,10,10) | 6.733 2781  6.709 2.787  6.840 2.770
n=(10,10,20,20) | 5839 2805 5934 2.825 5929 2.773
n=(20,10,10,30) | 5324 1.854 5903 1.842 5298 1.854
n=(10,30,30,30) | 5.158 2767 5220 2.804  5.152 2.804
n=(30,30,30,30) | 3.741 1.782  3.771 1484  3.767 1.482

0% = (1,10,2,1)
n = (10,10, 10, 10) 8.936 1.386 8.903 1.397 8.445 1.391
n = (10, 10, 20, 20) 8.469 1.384 8.081 1.381 8.026 1.389
n = (20,10, 10, 30) 8.142 0.915 8.151 0.916 8.163 0.931
n = (10, 30, 30, 30) 5.606 1.392 5.430 1.404 5.558  1.386
n = (30, 30, 30, 30) 4.788 0.739 5.004 0.741 4.908 0.743

o? = (5,2,1,10)
n=(10,10,10,10) | 10.97 4.354  11.07 4318  10.83 4.138
n=(10,10,20,20) | 9477 4429 9305 4416  9.266 4.174
n=(20,10,10,30) | 8.035 2938  7.901 2.955  7.764 2.861
n=(10,30,30,30) | 8.225 4.449 8530 4.476  8.389 4.147
n=(30,30,30,30) | 5.967 2346  6.229 2.360  5.921 2.329
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