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Abstract. In this paper we study the notions of relative informa-
tion function and relative conditional information function on a relative
probability measure space. We present some examples and prove some
theorems about them. Also the concept of relative information func-
tion for a relative measure preserving transformation is introduced and
some of its properties, are proved. Finally, it is proved that the relative
information function of relative measure preserving transformations is
invariant under isomorphism.
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1. Introduction

Molaie in [11] has studied the notion of one dimensional observer. This
notion has been applied in dynamical systems [9,13], topology [5,8,9],
geometry [12], and mathematical physics [12]. Let X be a non-empty set,
then any function η : X → [0, 1] is called a one-dimensional observer of
X. In this paper we assume that g : X → X is a mapping, η : X → [0, 1]
is an observer of X and E is an arbitrary subset of X. The relative
probability measure of E with respect to an observer η is the function
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mg
η(E) : X → [0, 1] which is defined in [13] by

mg
η(E)(x) = lim sup

n→∞

1
n

n−1∑
i=0

χE(gi(x))η(gi(x)).

The notation mg
η(E)(x) is the measure of E according to an observer

viewpoint when it looks at x [13]. In this paper we will use the notion of
observer to define the relative information function for relative measure
preserving transformations.

2. Relative Information Function for Partitions

We assume that (X,mg
η) is a relative probability space.

A partition of X is a disjoint collection of elements of P (X) whose union
is X, where P (X) is the power set of X.
Let A = {A1, ..., An} and C = {C1, ..., Cm} be two finite partitions of
X. Their join is defined in [16] as the partition:

A ∨ C = {Ai ∩ Cj : Ai ∈ A,Cj ∈ C}.

If T : X → X is a mapping, then T is called relative probability measure
preserving if T−1E ⊆ E and mg

η(T−1E)(x) = mg
η(E)(x), for all x ∈ X.

Also we say D is a refinement of C, and write C 4g
η D, when we can

write each element of C, as union of some elements of D.

Definition 2.1. Let A = {A1, ..., An} be a finite partition of X. Then
the relative information function of A is defined by

I(η,g)(A, x) = −
n∑

i=1

χAi
(x) logmg

η(Ai)(x).

Example 2.2. Let X = [0, 1]. If A = {A1, A2, A3, A4} such that

A1 = [0,
1
4
], A2 = (

1
4
,
1
2
], A3 = (

1
2
,
3
4
], A4 = (

3
4
, 1].
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Then A is a partition of X. Now let g : X → X be defined by x 7→ 1
2 .

Let η : X → [0, 1] be defined by x 7→ x. Then

mg
η(Ai)(x) = lim sup

n→∞

1
n

n−1∑
i=0

χAi(g
i(x))η(g

i(x))

= lim sup
n→∞

1
n

[χAi(x).x+
n−1∑
i=1

χAi(
1
2
).(

1
2
)].

So mg
η(Ai)(x) = 0 for i 6= 2 and mg

η(A2)(x) = 1
2 . Thus

I(η,g)(A,
1
3
) = −

4∑
i=1

χAi(
1
3
) logmg

η(Ai)(
1
3
) = − log(

1
2
) = log 2.

Theorem 2.3. If T : X → X is a relative probability measure preserving
map then Iη,g(T−1A, x) = Iη,g(A, x), for all x ∈ X.

Proof. Let A = {A1, ..., An}. Since T−1A is a partition ofX, there exists
T−1Ai0 ∈ T−1A, such that x ∈ T−1Ai0 and T−1Ai0 is uniqe. So x ∈ Ai0

and we have

Iη,g(T−1A, x) = −
n∑

i=1

χT−1Ai
(x) logmg

η(T
−1Ai)(x)

= − logmg
η(T

−1Ai0)(x)

= − logmg
η(Ai0)(x)

= −
n∑

i=1

χAi(x) logmg
η(Ai)(x)

= Iη,g(A, x). �

Now we want to study the concept relative conditional information func-
tion for finite partitions. Suppose that A and C are two finite partitions
of X.

Definition 2.4. [6] The relative information function of A given C is
the number:

Iη,g(A/C, x) = −
n∑

i=1

m∑
j=1

χAi∩Bj (x) log
mg

η(Ai ∩Bj)(x)
mg

η(Bj)(x)
.
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Theorem 2.5. Let D = {∅, X}. Then

Iη,g(A/D, x) = Iη,g(A, x) + logmg
η(X)(x).

Proof.

Iη,g(A/D, x) = −
n∑

i=1

χAi(x) log
mg

η(Ai)(x)
mg

η(X)(x)
.

= Iη,g(A, x) +
n∑

i=1

χAi(x) logmg
η(X)(x)

= Iη,g(A, x) + χ∪n
i=1Ai(x) logmg

η(X)(x)

= Iη,g(A, x) + logmg
η(X)(x). �

Corollary 2.6. If D = {∅, X} and mg
η(X)(x) = 1 then

Iη,g(A/D, x) = Iη,g(A, x).

Theorem 2.7. If (X,mg
η) is a relative probability space, and A,C and

D are finite partitions of X then
i) Iη,g(A ∨ C/D, x) = Iη,g(A/D, x) + Iη,g(C/A ∨D,x);
ii) Iη,g(A ∨ C, x) = Iη,g(A, x) + Iη,g(C/A, x);
iii) If A 4g

η C then Iη,g(A, x) 6 Iη,g(C, x);
iv) If A 4g

η C, then Iη,g(A/D, x) 6 Iη,g(C/D, x).

Proof. See [6]. �

Corollary 2.8. If (X,mg
η) is a relative probability space, T is a relative

probability measure-preserving map, and A,C are countable partitions
of X then Iη,g(T−1(A)/T−1(C, x) = Iη,g(A/C, x).

Proof. For each Ai ∈ A,Cj ∈ C, we have T−1(Ai∩Cj) = T−1Ai∩T−1Cj ,

so T−1(A ∨ C) = T−1A ∨ T−1C. By Theorems 2.5 and 2.7 (part ii), we
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can write

Iη,g(T−1A/T−1C, x) = Iη,g(T−1A ∨ T−1C, x)− Iη,g(T−1C, x)

= Iη,g(T−1(A ∨ C), x)− Iη,g(T−1C, x)

= Iη,g(A ∨ C, x)− Iη,g(C, x)

= Iη,g(A/C, x). �

Two finite partitions A and C are called independent if mg
η(A∩C)(x) =

mg
η(A)(x)mg

η(C)(x) for all A ∈ A,C ∈ C, and x ∈ X.

Theorem 2.9. Let A and C be two finite partitions of (X,mg
η), and let

A,C be independent. Then Iη,g(A ∨ C, x) = Iη,g(A, x) + Iη,g(C, x).

Proof. Let A = {A1, ..., An} and C = {C1, ..., Cm}. Since A,C and
A ∨ C are some partitions of X, there exist Ai0 ∈ A, and Cj0 ∈ C such
that x ∈ Ai0 ∩Cj0 and Ai0 , Cj0 are uniqe. So by definition of the notion
Independence for A,C, we can write

Iη,g(A ∨ C, x) = −
n∑

i=1

m∑
j=1

χAi∩Cj (x) logmg
η(Ai ∩ Cj)(x)

= − logmg
η(Ai0 ∩ Cj0)(x)

= − log(mg
η(Ai0)(x)×mg

η(Cj0)(x))

= − logmg
η(Ai0)(x)− logmg

η(Cj0)(x)

= −
n∑

i=1

χAi(x) logmg
η(Ai)(x)−

m∑
j=1

χCj (x) logmg
η(Cj)(x)

= Iη,g(A, x) + Iη,g(C, x). �

Corollary 2.10. If A and C are two independent finite partitions of
(X,mg

η), then Iη,g(A/C, x) = Iη,g(A, x).

Proof. From Theorems 2.7 and 2.9, we have

Iη,g(A/C, x) = Iη,g(A ∨ C, x)− Iη,g(C, x) = Iη,g(A, x). �

Theorem 2.11. Let A,C and D be finite partitions of (X,mg
η). If A

and C ∨D are independent then
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Iη,g(A ∨ C/D, x) = Iη,g(A, x) + Iη,g(C/D, x).

Proof. Let A = {A1, ..., An}, C = {C1, ..., Cm}, and D = {D1, ..., Dk}.
By definition the notion of partition, there exist Ai0 ∈ A,Cj0 ∈ C and
Dk0 ∈ D such that x ∈ Ai0 ∩Cj0 ∩Dk0 and Ai0 , Cj0 , and Dk0 are uniqe.
Now since A and C ∨D are independent, we have

Iη,g(A ∨ C/D, x) = −
n∑

i=1

m∑
j=1

r∑
k=1

χAi∩Cj∩Dk
(x) log

mg
η(Ai ∩ Cj ∩Dk)(x)

mg
η(Dk)(x)

= − log
mg

η(Ai0 ∩ Cj0 ∩Dk0)(x)
m(Dk0)(x)

= − log
mg

η(Ai0)(x)×mg
η(Cj0 ∩Dk0)(x)

m(Dk0)(x)

= − logmg
η(Ai0)(x)− log

mg
η(Cj0 ∩Dk0)(x)
m(Dk0)(x)

= −
n∑

i=1

χAi(x) logmg
η(Ai)(x)

−
m∑

j=1

r∑
k=1

χCj∩Dk
(x) log

mg
η(Cj ∩Dk)(x)
mg

η(Dk)(x)

= Iη,g(A, x) + Iη,g(C/D, x). �

3. Relative Information Function of a Relative
Measure Preserving Transformation

In this section we assume that (X,mg
η) is a relative probability space

and T : X −→ X is a relative measure preserving transformation.

Definition 3.1. Let A be a finite partition of (X,mg
η). The relative

information function of T with respect to A is defined as

Iη,g(T,A, x) = lim sup
n→∞

1
n
Iη,g(∨n−1

i=0 T
−iA, x).
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Theorem 3.2. Let A,B,C and D are finite partitions of X. Then the
following holds.
i) Iη,g(T,A, x) > 0;
ii) if A 4g

η C and B 4g
η D, then A ∨B 4g

η C ∨D;
iii) A 4g

η C implies that Iη,g(T,A, x) 6 Iη,g(T,C, x);
iv) Iη,g(T, T−1A, x) = Iη,g(T,A, x).

Proof.

i) It is trivial.

ii) Let A = {A1, ..., An}, B = {B1, ..., Bk}, C = {C1, ..., Cm}, and D =
{D1, ..., Dr}. Since A 4g

η C, there exists a partition I(1), ...I(n) of the
set {1, ...,m} such that Ai =

⋃
j∈I(i)Cj for every i = 1, ..., n. Also since

B 4g
η D, there exists a partition Q(1), ..., Q(k) of the set {1, ..., r} such

that Bq =
⋃

s∈Q(q)Ds for every q = 1, ..., k. For each i and q, we have

Ai

⋂
Bq = (

⋃
j∈I(i)

Cj)
⋂

(
⋃

s∈Q(q)

Ds) =
⋃

j∈I(i),s∈Q(q)

(Cj

⋂
Ds),

and this means A ∨B 4g
η C ∨D.

iii) Let A = {A1, ..., An} and C = {C1, ..., Cm}. Since A 4g
η C, there

exists a partition I(1), ..., I(n) of the set {1, ...,m} such that Ai =⋃
j∈I(i)Cj for every i = 1, ..., n. So for each i, T−1Ai = T−1(

⋃
j∈I(i)Cj) =⋃

j∈I(i) T
−1Cj , therefore T−1A 4g

η T−1C. Thus we obtain T−iA 4g
η

T−iC, for every i ∈ N. Since A 4g
η C by part ii), we get A ∨ T−1A 4g

η

C∨T−1C. Now by induction we conclude ∨n−1
i=0 T

−iA 4g
η ∨n−1

i=0 T
−iC , for

n > 1. Since for each i, T−iA and T−iC are partitions of X, ∨n−1
i=0 T

−iA

and ∨n−1
i=0 T

−iC , are partitions ofX, too. Therefore by Theorem 2.5, (iii),
Iη,g(∨n−1

i=0 T
−iA, x) 6 Iη,g(∨n−1

i=0 T
−iC, x). Thus 1

nIη,g(∨n−1
i=0 T

−iA, x) 6
1
nIη,g(∨n−1

i=0 T
−iC, x). Hence Iη,g(T,A, x) 6 Iη,g(T,C, x).

iv) By Theorem 2.3, we have

Iη,g(
n∨

i=1

T−iA, x) = Iη,g(T−1(
n−1∨
i=0

T−iA), x) = Iη,g(
n−1∨
i=0

T−iA, x).

So we can write
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Iη,g(T, T−1A, x) = lim sup
n→∞

1
n
Iη,g(∨n−1

i=0 T
−i(T−1A), x)

= lim sup
n→∞

1
n
Iη,g(∨n

i=1T
−iA, x)

= lim sup
n→∞

1
n
Iη,g(∨n−1

i=0 T
−iA, x)

= Iη,g(T,A, x). �

Iη,g(T, x) = supA Iη,g(T,A, x), is called the relative information function
of T at x, where the supremum is taken over all finite partitions of
(X,mg

η).

Theorem 3.3.

i) Iη,g(id, x) = 0;

ii) For k > 1, Iη,g(T k, x) = kIη,g(T, x).

Proof.

i) Since T = id, we have ∨n−1
i=0 T

−iA = A, for any n ∈ N. Therefore,

Iη,g(id, A, x) = lim sup
n→∞

1
n
Iη,g(A, x) = 0.

ii) Let A be an arbitrary finite partition. We can write

Iη,g(T k,∨k−1
i=0 T

−iA, x) = lim sup
n→∞

1
n
Iη,g(∨n−1

j=0 (T k)−j(∨k−1
i=0 T

−iA), x)

= lim sup
n→∞

1
n
Iη,g(∨n−1

j=0 ∨
k−1
i=0 T

−(kj+i)A, x)

= lim sup
n→∞

1
n
Iη,g(∨nk−1

i=0 T−iA, x)

= lim sup
n→∞

nk

n

1
nk
Iη,g(∨nk−1

i=0 T−iA, x)

= kIη,g(T,A, x).
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So

kIη,g(T, x) = k sup
A
Iη,g(T,A, x) = sup

A
Iη,g(T k,∨k−1

i=0 T
−iA, x)

6 sup
A
Iη,g(T k, A, x) = Iη,g(T k, x).

On the other hand, since A ≺ ∨k−1
i=0 T

−iA, we have

Iη,g(T k, A, x) 6 Iη,g(T k,∨k−1
i=0 T

−iA, x) = kIη,g(T,A, x). �

Corollary 3.4. Let T k = id, for some k ∈ N, then Iη,g(T, x) = 0.

Proof. T k = id, implies that Iη,g(T k, x) = 0. Therefore Iη,g(T, x) =
1
kIη,g(T k, x) = 0. �

Definition 3.5. Let T1 : X −→ X and T2 : X −→ X be two relative
measure preserving transformations. We say that T1 and T2 are isomor-
phic if there exists a bijective relative measure preserving transformation
ϕ : X −→ X such that ϕoT1 = T2oϕ.

Theorem 3.6. If T1 : X −→ X and T2 : X −→ X are isomorphic, then
Iη,g(T1, x) = Iη,g(T2, x).

Proof. By definition, there exists a bijective relative measure preserving
transformation ϕ : X −→ X such that ϕoT1 = T2oϕ. We can write

Iη,g(T2, A, x) = lim sup
n→∞

1
n
Iη,g(

n−1∨
i=0

T−i
2 A, x)

= lim sup
n→∞

1
n
Iη,g(ϕ−1(

n−1∨
i=0

T−i
2 A), x)

= lim sup
n→∞

1
n
Iη,g(

n−1∨
i=0

ϕ−1(T−i
2 A), x)

= lim sup
n→∞

1
n
Iη,g(

n−1∨
i=0

T−1
1 (ϕ−iA), x)

= Iη,g(T1, ϕ
−1A, x).
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So

Iη,g(T2, x) = sup
A
Iη,g(T2, A, x) = sup

A
Iη,g(T1, ϕ

−1A, x)

6 sup
A
Iη,g(T1, A, x) = Iη,g(T1, x).

Therefore Iη,g(T2, x) 6 Iη,g(T1, x). Similarly we obtain Iη,g(T1, x) 6
Iη,g(T2, x). �
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