Journal of Mathematical Extension Vol. 10, No. 2, (2016), 35-46 ISSN: 1735-8299 URL: http://www.ijmex.com

Dini Lipschitz Functions for the Generalized Fourier-Bessel Transform in the Space $L^2_{\alpha,n}$

R. Daher

University Hassan II

S. El ouadih^{*}

University Hassan II

M. El hamma

University Hassan II

Abstract. In this paper, using a generalized translation operator, we obtain an analog of Younis [8, Theorem 2.5] in for the generalized Fourier-Bessel transform for functions satisfying the Fourier-Bessel Dini Lipschitz condition in the space $L^2_{\alpha,n}$.

AMS Subject Classification: 42B37

Keywords and Phrases: Singular differential operator, generalized Fourier-Bessel transform, generalized translation operator

1. Introduction

Integral transforms and their inverses, the Bessel transform are widely used to solve various problems in calculus, mechanics, mathematical physics, and computational mathematics (see [7] and [6]).

Younis [8, Theorem 2.5] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Dini Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have

Received: July 2015; Accepted: October 2015

^{*}Corresponding author

 $\begin{array}{ll} \textbf{Theorem 1.1. ([8]) Let } f \in L^2(\mathbb{R}). \ Then \ the \ following \ are \ equivalents: \\ (a) \quad \|f(x+h) - f(x)\| = O\left(\frac{h^{\eta}}{(\log \frac{1}{h})^{\gamma}}\right), \quad as \quad h \to 0, 0 < \eta < 1, \gamma \ge 0 \\ (b) \quad \int_{|\lambda| \ge r} |\widehat{f}(\lambda)|^2 d\lambda = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty, \end{aligned}$

where \hat{f} stands for the Fourier transform of f.

In this paper, we consider a second-order singular differential operator \mathcal{B} on the half line which generalizes the Bessel operator \mathcal{B}_{α} . We obtain an analog of Theorem 1.1 in the generalized Fourier-Bessel transform associated to \mathcal{B} in $L^2_{\alpha,n}$. For this purpose, we use a generalized translation operator.

We briefly overview the theory of generalized Fourier-Bessel transform and related harmonic analysis (see [2] and [3]):

Consider the second-order singular differential operator on the half line defined by

$$\mathcal{B}f(x) = \frac{d^2 f(x)}{dx^2} + \frac{(2\alpha + 1)}{x} \frac{df(x)}{dx} - \frac{4n(\alpha + n)}{x^2} f(x),$$

where $\alpha > \frac{-1}{2}$ and n = 0, 1, 2, For n = 0, we obtain the classical Bessel operator

$$\mathcal{B}_{\alpha}f(x) = \frac{d^2f(x)}{dx^2} + \frac{(2\alpha+1)}{x}\frac{df(x)}{dx}$$

Let M be the map defined by

$$Mf(x) = x^{2n}f(x), \quad n = 0, 1, ...$$

Let $L^p_{\alpha,n},\, 1\leqslant p<\infty$, be the class of measurable functions f on $[0,\infty[$ for which

$$||f||_{p,\alpha,n} = ||M^{-1}f||_{p,\alpha+2n} < \infty,$$

where

$$||f||_{p,\alpha} = \left(\int_0^\infty |f(x)|^p x^{2\alpha+1} dx\right)^{1/p}.$$

If p = 2, then we have $L^2_{\alpha,n} = L^2([0,\infty[,x^{2\alpha+1}).$

For $\alpha \ge \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind j_{α} defined by

$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{2})^{2n}}{n! \Gamma(n+\alpha+1)}, \quad z \in \mathbb{C},$$
(1)

where $\Gamma(x)$ is the gamma-function (see [4]). The function $y = j_{\alpha}(z)$ satisfies the differential equation

$$\mathcal{B}_{\alpha}y + y = 0,$$

with the initial condition y(0) = 0 and y'(0) = 0. The function $j_{\alpha}(z)$ is infinitely differentiable and indeed is an entire analytic.

From (1) we see that

$$\lim_{z \to 0} \frac{j_{\alpha}(z) - 1}{z^2} \neq 0,$$
(2)

hence , there exist c > 0 and $\nu > 0$ satisfying

$$|z| \leqslant \nu \Rightarrow |j_{\alpha}(z) - 1| \geqslant c|z|^2.$$
(3)

From [2], we have

$$|j_{\alpha}(x)| \leqslant 1, \tag{4}$$

$$1 - j_{\alpha}(x) = O(x^2), \quad 0 \le x \le 1.$$
 (5)

For $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$, put

$$\varphi_{\lambda}(x) = x^{2n} j_{\alpha+2n}(\lambda x). \tag{6}$$

From [1] and [6] recall the following properties.

Proposition 1.2.

(c) φ_{λ} satisfies the differential equation

$$\mathcal{B}\varphi_{\lambda} = -\lambda^2 \varphi_{\lambda}.$$

(d) For all $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$

$$|\varphi_{\lambda}(x)| \leqslant x^{2n} e^{|Im\lambda||x|}.$$

The generalized Fourier-Bessel transform which we call it the integral transform, is defined by

$$\mathcal{F}_{\mathcal{B}}f(\lambda) = \int_0^\infty f(x)\varphi_\lambda(x)x^{2\alpha+1}dx, \lambda \ge 0, f \in L^1_{\alpha,n}$$

(see [1]).

Let $f \in L^1_{\alpha,n}$ such that $\mathcal{F}_{\mathcal{B}}(f) \in L^1_{\alpha+2n} = L^1([0,\infty[,x^{2\alpha+4n+1}dx)$. Then the inverse generalized Fourier-Bessel transform is given by the formula

$$f(x) = \int_0^\infty \mathcal{F}_{\mathcal{B}} f(\lambda) \varphi_\lambda(x) d\mu_{\alpha+2n}(\lambda),$$

where

$$d\mu_{\alpha+2n}(\lambda) = a_{\alpha+2n}\lambda^{2\alpha+4n+1}d\lambda, \quad a_{\alpha} = \frac{1}{4^{\alpha}(\Gamma(\alpha+1))^2}$$

(see [1]). From [1] and [6], we have the following proposition.

Proposition 1.3.

(e) For every $f \in L^1_{\alpha,n} \cap L^2_{\alpha,n}$ we have the Plancherel formula

$$\int_0^{+\infty} |f(x)|^2 x^{2\alpha+1} dx = \int_0^{+\infty} |\mathcal{F}_{\mathcal{B}} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

(f) The generalized Fourier-Bessel transform $\mathcal{F}_{\mathcal{B}}$ extends uniquely to an isometric isomorphism from $L^2_{\alpha,n}$ onto $L^2([0, +\infty[, \mu_{\alpha+2n}).$

Define the generalized translation operator T^h , $h \ge 0$, by the relation

$$T^{h}f(x) = (xh)^{2n} \tau^{h}_{\alpha+2n}(M^{-1}f)(x), x \ge 0,$$

where τ^h_{α} is the Bessel translation operator of order α defined by

$$\tau_{\alpha}^{h}f(x) = c_{\alpha} \int_{0}^{\pi} f(\sqrt{x^{2} + h^{2} - 2xh\cos t})\sin^{2\alpha}tdt,$$

where

$$c_{\alpha} = \left(\int_0^{\pi} \sin^{2\alpha} t dt\right)^{-1} = \frac{\Gamma(\alpha+1)}{\Gamma(\pi)\Gamma(\alpha+\frac{1}{2})}.$$

For $f \in L^2_{\alpha,n}$, we have

$$\mathcal{F}_{\mathcal{B}}(T^{h}f)(\lambda) = \varphi_{\lambda}(h)\mathcal{F}_{\mathcal{B}}(f)(\lambda), \qquad (7)$$

$$\mathcal{F}_{\mathcal{B}}(\mathcal{B}f)(\lambda) = -\lambda^2 \mathcal{F}_{\mathcal{B}}(f)(\lambda).$$
(8)

(see [2] for details). Denote by $W_2^m(\mathcal{B}), m = 0, 1, 2...$, the class of functions $f \in L^2_{\alpha,n}$ that have on \mathbb{R}^+ generalized derivatives $f'(x), f''(x), ..., f^{(2m)}(x)$ in the sense of Levi (see [5]) and belong to $L^2_{\alpha,n}$ with $\mathcal{B}^m f \in L^2_{\alpha,n}$, i.e.,

$$W_2^m(\mathcal{B}) = \left\{ f \in L^2_{\alpha,n} / \mathcal{B}^m f \in L^2_{\alpha,n} \right\}$$

where $\mathcal{B}^0f=f,\,\mathcal{B}^m=\mathcal{B}(\mathcal{B}^{m-1}f),m=0,1,2....$

2. Dini Lipschitz Condition

In the rest of these papers, we give the main results. For this objective, we first need to define the Fourier-Bessel Dini Lipschitz class.

Definition 2.1. Let $f \in W_2^m(\mathcal{B})$, and define

$$\|(T^{h} - h^{2n}I)\mathcal{B}^{m}f(x)\|_{2,\alpha,n} \leq C \frac{h^{\eta+2n}}{(\log\frac{1}{h})^{\gamma}}, \quad \gamma \ge 0, m = 0, 1, 2...;$$

i.e.,

$$\|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n} = O\left(\frac{h^{\eta+2n}}{(\log\frac{1}{h})^{\gamma}}\right),$$

for all x in \mathbb{R}^+ and for all sufficiently small h, C being a positive constant and I is the unit operator in $L^2_{\alpha,n}$. Then we say that f satisfies a Fourier-Bessel Dini Lipschitz of order η , or f belongs to $Lip(\eta, \gamma)$.

Definition 2.2. If

$$\frac{\|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n}}{\frac{h^{\eta+2n}}{(\log\frac{1}{h})^{\gamma}}} \to 0, \quad as \quad h \to 0, \gamma \ge 0, m = 0, 1, 2...;$$

i.e.,

$$\|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n} = O\left(\frac{h^{\eta+2n}}{(\log\frac{1}{h})^{\gamma}}\right),$$

then f is said to be belong to the little Fourier-Bessel Dini Lipschitz class $lip(\eta, \gamma)$.

Remark 2.3. It follows immediately from these definitions that

$$lip(\eta, \gamma) \subset Lip(\eta, \gamma).$$

Theorem 2.4. Let $\eta > 1$. If $f \in Lip(\eta, \gamma)$, then $f \in lip(1, \gamma)$.

Proof. For $x \in \mathbb{R}^+$, h small enough and $f \in Lip(\eta, \gamma)$ we have

$$\|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n} \leqslant C \frac{h^{\eta+2n}}{(\log \frac{1}{h})^{\gamma}}.$$

Then

$$(\log\frac{1}{h})^{\gamma} \| (T^h - h^{2n}I)\mathcal{B}^m f(x) \|_{2,\alpha,n} \leqslant Ch^{\eta+2n}.$$

Therefore

$$\frac{(\log\frac{1}{h})^{\gamma}}{h^{1+2n}} \| (T^h - h^{2n}I)\mathcal{B}^m f(x) \|_{2,\alpha,n} \leqslant Ch^{\eta-1},$$

which tends to zero with $h \to 0$. Thus

$$\frac{(\log \frac{1}{h})^{\gamma}}{h^{1+2n}} \| (T^h - h^{2n}I)\mathcal{B}^m f(x) \|_{2,\alpha,n} \to 0, \quad h \to 0.$$

Then $f \in lip(1, \gamma)$. \Box

Theorem 2.5. If $\eta < \nu$, then $Lip(\eta, 0) \supset Lip(\nu, 0)$ and $lip(\eta, 0) \supset lip(\nu, 0)$.

Proof. We have $0 \leq h \leq 1$ and $\eta < \nu$, then $h^{\nu} \leq h^{\eta}$. So the proof of theorem is complete. \Box

3. New Results on Dini Lipschitz Class

Lemma 3.1. For $f \in W_2^m(\mathcal{B})$, we have

$$\left(h^{4n} \int_0^\infty \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda)\right)^{\frac{1}{2}} = \|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n},$$

where m = 0, 1, 2...

Proof. From formula (8), we obtain

$$\mathcal{F}_{\mathcal{B}}(\mathcal{B}^m f)(\lambda) = (-1)^m \lambda^{2m} \mathcal{F}_{\mathcal{B}} f(\lambda); m = 0, 1, \dots$$
(9)

By using the formulas (6), (7) and (9), we conclude that

$$\mathcal{F}_{\mathcal{B}}(T^{h}\mathcal{B}^{m}f)(\lambda) = (-1)^{m}h^{2n}j_{\alpha+2n}(\lambda h)\lambda^{2m}\mathcal{F}_{\mathcal{B}}f(\lambda)$$

thus

$$\mathcal{F}_{\mathcal{B}}((T^{h}-h^{2n}I)\mathcal{B}^{m}f)(\lambda) = (-1)^{m}h^{2nk}(j_{\alpha+2n}(\lambda h)-1)\lambda^{2m}\mathcal{F}_{\mathcal{B}}f(\lambda).$$

Now by proposition 1.3, we have the result. \Box

Theorem 3.2. Let $\eta > 2$. If f belongs to the Fourier-Bessel Dini Lipschitz class, i.e.,

$$f \in Lip(\eta, \gamma), \quad \eta > 2, \gamma \ge 0,$$

then f is equal to the null function in \mathbb{R}^+ .

Proof. Assume that $f \in Lip(\eta, \gamma)$. Then we have

$$\|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n} \leqslant C \frac{h^{\eta+2n}}{(\log \frac{1}{h})^{\gamma}}, \quad \gamma \ge 0.$$

From Lemma 3.1, we get

$$h^{4n} \int_0^\infty \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) \leqslant C^2 \frac{h^{2\eta+4n}}{(\log \frac{1}{h})^{2\gamma}}.$$

Therefore

$$\int_0^\infty \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) \leqslant C^2 \frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}.$$

Then

$$\frac{\int_0^\infty \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\mathcal{B}} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda)}{h^4} \leqslant C^2 \frac{h^{2\eta-4}}{(\log \frac{1}{h})^{2\gamma}}.$$

Since $\eta > 2$ we have

$$\lim_{h \to 0} \frac{h^{2\eta - 4}}{\left(\log \frac{1}{h}\right)^{2\gamma}} = 0.$$

Thus

$$\lim_{h \to 0} \int_0^\infty \left(\frac{|1 - j_\alpha(\lambda h)|}{\lambda^2 h^2} \right)^2 \lambda^{4+4m} |\mathcal{F}_{\mathcal{B}} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = 0,$$

and also from the formula (2) and Fatou theorem, we obtain

$$\int_0^\infty \lambda^{4+4m} |\mathcal{F}_{\mathcal{B}} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = 0.$$

Hence $\lambda^{2+2m} \mathcal{F}_{\mathcal{B}} f(\lambda) = 0$ for all $\lambda \in \mathbb{R}^+$ and so f(x) is the null function. \Box

Analogous to the Theorem 3.2, we obtain the following theorem.

Theorem 3.3. Let $f \in W_2^m(\mathcal{B})$. If f belong to lip(2,0), *i.e.*,

$$||(T^h - h^{2n}I)\mathcal{B}^m f(x)||_{2,\alpha,n} = O(h^{2+2n}), \quad as \quad h \to 0,$$

then f is equal to null function in \mathbb{R}^+ .

Now, we give another main result of this paper analogous to the Theorem 1.1.

Theorem 3.4. Let $f \in W_2^m(\mathcal{B})$. Then the following conditions are equivalent

$$(i) \quad f \in Lip(\eta,\gamma) \ , \quad 0 < \eta < 1, \gamma \geqslant 0,$$

(*ii*)
$$\int_{r}^{\infty} \lambda^{4m} |\mathcal{F}_{\mathcal{B}}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty.$$

Proof. $(i) \Rightarrow (ii)$. Suppose that $f \in Lip(\eta, \gamma)$. Then

$$\|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n} = O\left(\frac{h^{\eta+2n}}{(\log\frac{1}{h})^{\gamma}}\right), \quad h \to 0.$$

From Lemma 3.1, we have

$$\|(T^{h}-h^{2n}I)\mathcal{B}^{m}f(x)\|_{2,\alpha,n}^{2} = h^{4n}\int_{0}^{\infty}\lambda^{4m}|j_{\alpha+2n}(\lambda h)-1|^{2}|\mathcal{F}_{\mathcal{B}}f(\lambda)|^{2}d\mu_{\alpha+2n}(\lambda).$$

By formula (3), we get

$$\int_{\nu/2h}^{\nu/h} \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) \ge \frac{c^2 \nu^4}{2^4} \int_{\nu/2h}^{\nu/h} \lambda^{4m} |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

Then there exists a positive constant ${\cal C}$ such that

$$\int_{\nu/2h}^{\nu/h} \lambda^{4m} |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) \leqslant C \int_{\nu/2h}^{\nu/h} \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) \\
\leqslant \frac{C}{h^{4n}} ||(T^h - h^{2n}I)\mathcal{B}^m f(x)||_{2,\alpha,n}^2 \\
= O\left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right).$$

So we obtain

$$\int_{r}^{2r} \lambda^{4m} |\mathcal{F}_{\mathcal{B}} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) \leqslant C' \frac{r^{-2\eta}}{(\log r)^{2\gamma}},$$

where C' is a positive constant. Now, we have

$$\begin{split} \int_{r}^{\infty} \lambda^{4m} |\mathcal{F}_{\mathcal{B}}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda) &= \sum_{i=0}^{\infty} \int_{2^{i_{r}}}^{2^{i+1}r} \lambda^{4m} |\mathcal{F}_{\mathcal{B}}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda) \\ &\leqslant C' \left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}} + \frac{(2r)^{-2\eta}}{(\log 2r)^{2\gamma}} + \frac{(4r)^{-2\eta}}{(\log 4r)^{2\gamma}} + \cdots \right) \\ &\leqslant C' \frac{r^{-2\eta}}{(\log r)^{2\gamma}} \left(1 + 2^{-2\eta} + (2^{-2\eta})^{2} + (2^{-2\eta})^{3} + \cdots \right) \\ &\leqslant K_{\eta} \frac{r^{-2\eta}}{(\log r)^{2\gamma}}, \end{split}$$

where $K_{\eta} = C'(1 - 2^{-2\eta})^{-1}$ since $2^{-2\eta} < 1$. Consequently,

$$\int_{r}^{\infty} \lambda^{4m} |\mathcal{F}_{\mathcal{B}} f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty.$$

 $(ii) \Rightarrow (i)$. Suppose that

$$\int_{r}^{\infty} \lambda^{4m} |\mathcal{F}_{\mathcal{B}} f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty,$$

and write

$$\|(T^{h} - h^{2n}I)\mathcal{B}^{m}f(x)\|_{2,\alpha,n}^{2} = h^{4n}(I_{1} + I_{2}),$$

where

$$I_{1} = \int_{0}^{1/h} \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^{2} |\mathcal{F}_{\mathcal{B}}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda),$$

and

$$I_2 = \int_{1/h}^{\infty} \lambda^{4m} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\mathcal{B}}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

Using the inequality (4), we get

$$I_2 \leqslant 4 \int_{1/h}^{\infty} \lambda^{4m} |\mathcal{F}_{\mathcal{B}} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = O\left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right), \quad as \quad h \to 0.$$

 Set

$$\phi(\lambda) = \int_{\lambda}^{\infty} x^{2m} |\mathcal{F}_{\mathcal{B}}f(x)|^2 d\mu_{\alpha+2n}(x).$$

From formula (5) and integration by parts, we have

$$I_1 = -\int_0^{1/h} |j_{\alpha+2n}(\lambda h) - 1|^2 |\phi'(\lambda) d\lambda$$

$$\leqslant -C_1 h^2 \int_0^{1/h} \lambda^2 \phi'(\lambda) d\lambda$$

$$\leqslant -C_1 \phi(\frac{1}{h}) + 2C_1 h^2 \int_0^{1/h} \lambda \phi(\lambda) d\lambda$$

$$\leqslant C_2 h^2 \int_0^{1/h} \lambda^{1-2\eta} (\log \lambda)^{-2\gamma} d\lambda$$

$$\leqslant C_2 \frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}$$

where C_1 and C_2 are positive constants, and this completes the proof. \Box

Corollary 3.5. Let $f \in W_2^m(\mathcal{B})$. If

$$\|(T^h - h^{2n}I)\mathcal{B}^m f(x)\|_{2,\alpha,n} = O\left(\frac{h^{\eta+2n}}{(\log\frac{1}{h})^{\gamma}}\right), \quad as \quad h \to 0,$$

then

$$\int_{r}^{\infty} |\mathcal{F}_{\mathcal{B}}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-4m-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty.$$

Acknowledgements

The authors would like to thank the referee(s) for their valuable comments and suggestions.

References

- V. A. Abilov and F. V. Abilova, Approximation of functions by Fourier-Bessel sums, *Izv. Vyssh. Uchebn. Zaved.*, *Mat.*, 8 (2001), 3-9.
- [2] R. F. Al Subaie and M. A. Mourou, The continuous wavelet transform for a Bessel type operator on the half line, *Mathematics and Statistics*, 1 (4) (2013), 196-203.

- [3] R. F. Al Subaie and M. A. Mourou, Transmutation operators associated with a Bessel type operator on the half line and certain of their applications, *Tamsii. oxf. J. Inf. Math. Scien.*, 29 (3) (2013), 329-349.
- [4] B. M. Levitan, Expansion in Fourier series and integrals over Bessel functions, Uspekhi Math. Nauk, 6 (2) (1951), 102-143.
- [5] S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems, Nauka, Moscow, 1977.
- [6] A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kratsov, Lectures on mathematical physics, Nauka, Moscow, 2004.
- [7] V. S. Vladimirov, Equations of mathematical physics, Marcel Dekker, New York, 1971.
- [8] M. S. Younis, Fourier transforms of Dini-Lipschitz functions. Int. J. Math. Math. Sci., 9 (2) (1986), 301-312. doi:10.1155/S0161171286000376

RADOUAN DAHER

Departement of Mathematics, Faculty of Sciences Ain Chock Ph. D. of Mathematics University Hassan II Casablanca, Morocco E-mail: rjdaher024@gmail.com

SALAH EL OUADIH

Departement of Mathematics, Faculty of Sciences Ain Chock Ph. D. of Mathematics University Hassan II Casablanca, Morocco E-mail: salahwadih@gmail.com

MOHAMED EL HAMMA

Departement of Mathematics, Faculty of Sciences Ain Chock Associate Professor of Mathematics University Hassan II, Casablanca, Morocco E-mail: m-elhamma@yahoo.fr