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1. Introduction

Integral transforms and their inverses, the Bessel transform are widely
used to solve various problems in calculus, mechanics, mathematical
physics, and computational mathematics (see [7] and [6]).

Younis [8, Theorem 2.5] characterized the set of functions in L2(R) sat-
isfying the Dini Lipschitz condition by means of an asymptotic estimate
growth of the norm of their Fourier transforms, namely we have
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Theorem 1.1. ([8]) Let f ∈ L2(R). Then the following are equivalents:
(a) ‖f(x+ h)− f(x)‖ = O

(
hη

(log 1
h
)γ

)
, as h→ 0, 0 < η < 1, γ > 0

(b)
∫
|λ|>r

|f̂(λ)|2dλ = O

(
r−2η

(log r)2γ

)
, as r →∞,

where f̂ stands for the Fourier transform of f .

In this paper, we consider a second-order singular differential operator
B on the half line which generalizes the Bessel operator Bα. We obtain
an analog of Theorem 1.1 in the generalized Fourier-Bessel transform
associated to B in L2

α,n. For this purpose, we use a generalized translation
operator.

We briefly overview the theory of generalized Fourier-Bessel transform
and related harmonic analysis (see [2] and [3] ):

Consider the second-order singular differential operator on the half line
defined by

Bf(x) =
d2f(x)
dx2

+
(2α+ 1)

x

df(x)
dx

− 4n(α+ n)
x2

f(x),

where α > −1
2 and n = 0, 1, 2, ... . For n = 0, we obtain the classical

Bessel operator

Bαf(x) =
d2f(x)
dx2

+
(2α+ 1)

x

df(x)
dx

.

Let M be the map defined by

Mf(x) = x2nf(x), n = 0, 1, ..

Let Lp
α,n, 1 6 p < ∞ , be the class of measurable functions f on [0,∞[

for which
‖f‖p,α,n = ‖M−1f‖p,α+2n <∞,

where

‖f‖p,α =
(∫ ∞

0
|f(x)|px2α+1dx

)1/p

.

If p = 2, then we have L2
α,n = L2([0,∞[, x2α+1).
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For α > −1
2 , we introduce the Bessel normalized function of the first

kind jα defined by

jα(z) = Γ(α+ 1)
∞∑

n=0

(−1)n( z
2)2n

n!Γ(n+ α+ 1)
, z ∈ C, (1)

where Γ(x) is the gamma-function (see [4]). The function y = jα(z)
satisfies the differential equation

Bαy + y = 0,

with the initial condition y(0) = 0 and y′(0) = 0. The function jα(z) is
infinitely differentiable and indeed is an entire analytic.

From (1) we see that

lim
z→0

jα(z)− 1
z2

6= 0, (2)

hence , there exist c > 0 and ν > 0 satisfying

|z| 6 ν ⇒ |jα(z)− 1| > c|z|2. (3)

From [2], we have

|jα(x)| 6 1, (4)

1− jα(x) = O(x2), 0 6 x 6 1. (5)

For λ ∈ C, and x ∈ R, put

ϕλ(x) = x2njα+2n(λx). (6)

From [1] and [6] recall the following properties.

Proposition 1.2.
(c) ϕλ satisfies the differential equation

Bϕλ = −λ2ϕλ.
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(d) For all λ ∈ C, and x ∈ R

|ϕλ(x)| 6 x2ne|Imλ||x|.

The generalized Fourier-Bessel transform which we call it the integral
transform, is defined by

FBf(λ) =
∫ ∞

0
f(x)ϕλ(x)x2α+1dx, λ > 0, f ∈ L1

α,n

(see [1]).

Let f ∈ L1
α,n such that FB(f) ∈ L1

α+2n = L1([0,∞[, x2α+4n+1dx). Then
the inverse generalized Fourier-Bessel transform is given by the formula

f(x) =
∫ ∞

0
FBf(λ)ϕλ(x)dµα+2n(λ),

where

dµα+2n(λ) = aα+2nλ
2α+4n+1dλ, aα =

1
4α(Γ(α+ 1))2

(see [1]). From [1] and [6], we have the following proposition.

Proposition 1.3.
(e) For every f ∈ L1

α,n ∩ L2
α,n we have the Plancherel formula∫ +∞

0
|f(x)|2x2α+1dx =

∫ +∞

0
|FBf(λ)|2dµα+2n(λ).

(f) The generalized Fourier-Bessel transform FB extends uniquely to an
isometric isomorphism from L2

α,n onto L2([0,+∞[, µα+2n).

Define the generalized translation operator T h, h > 0, by the relation

T hf(x) = (xh)2nτh
α+2n(M−1f)(x), x > 0,

where τh
α is the Bessel translation operator of order α defined by

τh
αf(x) = cα

∫ π

0
f(
√
x2 + h2 − 2xh cos t) sin2α tdt,
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where

cα =
 π

0
sin2α tdt

−1

=
Γ(α+ 1)

Γ(π)Γ(α+ 1
2)

.

For f ∈ L2
α,n , we have

FB(T hf)(λ) = ϕλ(h)FB(f)(λ), (7)

FB(Bf)(λ) = −λ2FB(f)(λ). (8)

(see [2] for details). Denote by Wm
2 (B),m = 0, 1, 2..., the class of func-

tions f ∈ L2
α,n that have on R+ generalized derivatives f (x), f (x), ...., f (2m)(x)

in the sense of Levi (see [5]) and belong to L2
α,n with Bmf ∈ L2

α,n, i.e.,

Wm
2 (B) =


f ∈ L2

α,n/Bmf ∈ L2
α,n


,

where B0f = f , Bm = B(Bm−1f),m = 0, 1, 2....

2. Dini Lipschitz Condition

In the rest of these papers, we give the main results. For this objective,
we first need to define the Fourier-Bessel Dini Lipschitz class.

Definition 2.1. Let f ∈Wm
2 (B), and define

(T h − h2nI)Bmf(x)2,α,n  C
hη+2n

(log 1
h)
γ
, γ  0,m = 0, 1, 2...;

i.e.,

(T h − h2nI)Bmf(x)2,α,n = O


hη+2n

(log 1
h)
γ


,

for all x in R+ and for all sufficiently small h,C being a positive constant
and I is the unit operator in L2

α,n. Then we say that f satisfies a Fourier-
Bessel Dini Lipschitz of order η, or f belongs to Lip(η, γ).

Definition 2.2. If

(T h − h2nI)Bmf(x)2,α,n
hη+2n

(log 1
h
)γ

→ 0, as h→ 0, γ  0,m = 0, 1, 2...;
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i.e.,

‖(T h − h2nI)Bmf(x)‖2,α,n = O

(
hη+2n

(log 1
h)γ

)
,

then f is said to be belong to the little Fourier-Bessel Dini Lipschitz class
lip(η, γ).

Remark 2.3. It follows immediately from these definitions that

lip(η, γ) ⊂ Lip(η, γ).

Theorem 2.4. Let η > 1. If f ∈ Lip(η, γ), then f ∈ lip(1, γ).

Proof. For x ∈ R+, h small enough and f ∈ Lip(η, γ) we have

‖(T h − h2nI)Bmf(x)‖2,α,n 6 C
hη+2n

(log 1
h)γ

.

Then

(log
1
h

)γ‖(T h − h2nI)Bmf(x)‖2,α,n 6 Chη+2n.

Therefore

(log 1
h)γ

h1+2n
‖(T h − h2nI)Bmf(x)‖2,α,n 6 Chη−1,

which tends to zero with h→ 0. Thus

(log 1
h)γ

h1+2n
‖(T h − h2nI)Bmf(x)‖2,α,n → 0, h→ 0.

Then f ∈ lip(1, γ). �

Theorem 2.5. If η < ν, then Lip(η, 0) ⊃ Lip(ν, 0) and lip(η, 0) ⊃
lip(ν, 0).

Proof. We have 0 6 h 6 1 and η < ν, then hν 6 hη.
So the proof of theorem is complete. �



DINI LIPSCHITZ FUNCTIONS FOR THE GENERALIZED ... 41

3. New Results on Dini Lipschitz Class

Lemma 3.1. For f ∈Wm
2 (B), we have


h4n

 ∞

0
λ4m|jα+2n(λh)− 1|2|FBf(λ)|2dµα+2n(λ)

 1
2

= (T h−h2nI)Bmf(x)2,α,n,

where m = 0, 1, 2...

Proof. From formula (8), we obtain

FB(Bmf)(λ) = (−1)mλ2mFBf(λ);m = 0, 1, ... (9)

By using the formulas (6), (7) and (9), we conclude that

FB(T hBmf)(λ) = (−1)mh2njα+2n(λh)λ2mFBf(λ).

thus

FB((T h − h2nI)Bmf)(λ) = (−1)mh2nk(jα+2n(λh)− 1)λ2mFBf(λ).

Now by proposition 1.3, we have the result. 

Theorem 3.2. Let η > 2. If f belongs to the Fourier-Bessel Dini
Lipschitz class, i.e.,

f ∈ Lip(η, γ), η > 2, γ  0,

then f is equal to the null function in R+.

Proof. Assume that f ∈ Lip(η, γ). Then we have

(T h − h2nI)Bmf(x)2,α,n  C
hη+2n

(log 1
h)
γ
, γ  0.

From Lemma 3.1, we get

h4n

 ∞

0
λ4m|jα+2n(λh)− 1|2|FBf(λ)|2dµα+2n(λ)  C2 h2η+4n

(log 1
h)

2γ
.
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Therefore∫ ∞

0
λ4m|jα+2n(λh)− 1|2|FBf(λ)|2dµα+2n(λ) 6 C2 h2η

(log 1
h)2γ

.

Then∫ ∞

0
λ4m|jα+2n(λh)− 1|2|FBf(λ)|2dµα+2n(λ)

h4
6 C2 h2η−4

(log 1
h)2γ

.

Since η > 2 we have

lim
h→0

h2η−4

(log 1
h)2γ

= 0.

Thus

lim
h→0

∫ ∞

0

(
|1− jα(λh)|

λ2h2

)2

λ4+4m|FBf(λ)|2dµα+2n(λ) = 0,

and also from the formula (2) and Fatou theorem, we obtain∫ ∞

0
λ4+4m|FBf(λ)|2dµα+2n(λ) = 0.

Hence λ2+2mFBf(λ) = 0 for all λ ∈ R+ and so f(x) is the null func-
tion. �

Analogous to the Theorem 3.2, we obtain the following theorem.

Theorem 3.3. Let f ∈Wm
2 (B). If f belong to lip(2, 0), i.e.,

‖(T h − h2nI)Bmf(x)‖2,α,n = O(h2+2n), as h→ 0,

then f is equal to null function in R+.

Now, we give another main result of this paper analogous to the Theorem
1.1.

Theorem 3.4. Let f ∈ Wm
2 (B). Then the following conditions are

equivalent

(i) f ∈ Lip(η, γ) , 0 < η < 1, γ > 0,
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(ii)
 ∞

r
λ4m|FBf(λ)|2dµα+2n(λ) = O


r−2η

(log r)2γ


, as r →∞.

Proof. (i)⇒ (ii). Suppose that f ∈ Lip(η, γ). Then

(T h − h2nI)Bmf(x)2,α,n = O


hη+2n

(log 1
h)
γ


, h→ 0.

From Lemma 3.1, we have

(T h−h2nI)Bmf(x)22,α,n = h4n

 ∞

0
λ4m|jα+2n(λh)−1|2|FBf(λ)|2dµα+2n(λ).

By formula (3) , we get
 ν/h

ν/2h
λ4m|jα+2n(λh)−1|2|FBf(λ)|2dµα+2n(λ) 

c2ν4

24

 ν/h

ν/2h
λ4m|FBf(λ)|2dµα+2n(λ).

Then there exists a positive constant C such that
 ν/h

ν/2h
λ4m|FBf(λ)|2dµα+2n(λ)  C

 ν/h

ν/2h
λ4m|jα+2n(λh)− 1|2|FBf(λ)|2dµα+2n(λ)

 C

h4n
(T h − h2nI)Bmf(x)22,α,n

= O


h2η

(log 1
h)

2γ


.

So we obtain
 2r

r
λ4m|FBf(λ)|2dµα+2n(λ)  C 

r−2η

(log r)2γ
,

where C  is a positive constant. Now, we have
 ∞

r
λ4m|FBf(λ)|2dµα+2n(λ) =

∞

i=0

 2i+1r

2ir
λ4m|FBf(λ)|2dµα+2n(λ)

 C 


r−2η

(log r)2γ
+
(2r)−2η

(log 2r)2γ
+
(4r)−2η

(log 4r)2γ
+ · · ·


 C 
r−2η

(log r)2γ
�
1 + 2−2η + (2−2η)2 + (2−2η)3 + · · ·



 Kη
r−2η

(log r)2γ
,
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where Kη = C ′(1− 2−2η)−1 since 2−2η < 1.
Consequently,

∫ ∞

r
λ4m|FBf(λ)|2dµα+2n(λ) = O

(
r−2η

(log r)2γ

)
, as r →∞.

(ii) ⇒ (i). Suppose that

∫ ∞

r
λ4m|FBf(λ)|2dµα+2n(λ) = O

(
r−2η

(log r)2γ

)
, as r →∞,

and write

‖(T h − h2nI)Bmf(x)‖2
2,α,n = h4n(I1 + I2),

where

I1 =
∫ 1/h

0
λ4m|jα+2n(λh)− 1|2|FBf(λ)|2dµα+2n(λ),

and

I2 =
∫ ∞

1/h
λ4m|jα+2n(λh)− 1|2|FBf(λ)|2dµα+2n(λ).

Using the inequality (4), we get

I2 6 4
∫ ∞

1/h
λ4m|FBf(λ)|2dµα+2n(λ) = O

(
h2η

(log 1
h)2γ

)
, as h→ 0.

Set

φ(λ) =
∫ ∞

λ
x2m|FBf(x)|2dµα+2n(x).
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From formula (5) and integration by parts, we have

I1 = −
∫ 1/h

0
|jα+2n(λh)− 1|2|φ′(λ)dλ

6 −C1h
2

∫ 1/h

0
λ2φ′(λ)dλ

6 −C1φ(
1
h

) + 2C1h
2

∫ 1/h

0
λφ(λ)dλ

6 C2h
2

∫ 1/h

0
λ1−2η(log λ)−2γdλ

6 C2
h2η

(log 1
h)2γ

where C1 and C2 are positive constants, and this completes the proof. �

Corollary 3.5. Let f ∈Wm
2 (B). If

‖(T h − h2nI)Bmf(x)‖2,α,n = O

(
hη+2n

(log 1
h)γ

)
, as h→ 0,

then ∫ ∞

r
|FBf(λ)|2dµα+2n(λ) = O

(
r−4m−2η

(log r)2γ

)
, as r →∞.
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