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Abstract. A lot of methods and models in classical reliability theory
assume that all parameters of lifetime density function are precise. But
in the real world applications imprecise information is often mixed up
in the lifetimes and/or parameters of systems. However, the param-
eters sometimes cannot be recorded precisely due to machine errors,
experiment, personal judgment, estimation or some other unexpected
situations. When parameters in the lifetime distribution are interval-
valued, the conventional reliability system may have difficulty for han-
dling reliability function. Therefore, estimation methods for reliability
characteristics have to be adapted to the situation of interval-valued
parameters of life times in order to obtain more realistic results. In this
regard, the present paper will discuss the system reliability for coherent
system based on a new notion of random variable with interval-valued
parameters. The concepts of probability density function and cumula-
tive distribution function of the random variable with interval-valued
parameters will be stated in this paper. Using the same techniques
in classical probability theory, the probability measure of the random
variable can be constructed from the probability density function and
cumulative distribution function. In the proceeding discussion, several
numerical examples are provided in reliability systems and queueing
theory to clarify our discussions.
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1. Introduction

The classical probabilistic methods and statistical techniques provide a
rigorous framework for modeling uncertainty due to randomness. These
methods are inadequate for dealing with certain kinds of uncertainty due
to human judgment. However, there are many situations where we have
insufficient information regarding the underlying model. For instance,
it is frequently difficult to assume that the parameters, for which the
distribution of a random variable is determined, have a precise or crisp
value. In such a case, closed intervals may be more effective in encoding
parameters instead of crisp ones. To achieve suitable probability the-
ory dealing with imprecise information, we need to model the imprecise
information and extend the usual probability space to imprecise envi-
ronments. On the other hand, the conventional reliability of a system
is defined as the probability that the system performs its assigned func-
tion properly during a predefined period under the condition that the
system behavior can be fully characterized in the context of probability
measures [9]. Classical reliability assessment is based largely on crisp
or precise information. In practice, however, some information about
an underlying system might not be assumed crisp and they are repre-
sented in the form of vague quantities. In this regards, over the past
decades, different approaches and theories have been proposed for treat-
ing imprecision and uncertainty generalizing the classical methods to
vague environments for studying and analyzing the systems of interests
(see Taheri and Zarei [18] for reviewing of fuzzy reliability and vague
reliability studies). This suggests the need for a theory of defining new
notions of probability density function and cumulative distribution func-
tion of random variable with interval-valued parameters. The topic of
probability theory with imprecise information has been studied by some
authors. Below is a brief review of some studies relevant to the present
work.

Smets [14] proposed some axioms to justify the natural definition
of the probability of a fuzzy event. A fuzzy event is a fuzzy set whose
membership function is Borel measurable and its probability is defined
by Zadeh [23] as the expected value of the membership function char-
acterizing the fuzzy set. Stein [15] discussed the treatment of fuzzy
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probabilities in setting of fuzzy variables and joint possibility distribu-
tions. Yager [21] introduced a methodology for obtaining a crisp fuzzy
measure of the probability of a fuzzy event in the face of probabilistic
uncertainty on the base elements. Klement [8] suggested a modification
of Yager’s [21] definition which leads to a piecewise continuous fuzzy sub-
set. Yager [22] provided an appropriate interpretation for Klement’s [8]
modification and used it to provide an alternative definition for a fuzzy
probability of a fuzzy event. Plasecki [11] defined the probability of fuzzy
events as a denumerable additivity measure and proposed the notions of
conditional probability of fuzzy events, complete fuzzy repartition and
independent fuzzy events. Cheng and Liu [3] extended the fuzzy proba-
bility of a fuzzy event from a fuzzy algebra to the fuzzy σ-algebra. Toth
[19] redesigned some definitions of a probability of a fuzzy event based
on the operational viewpoint of f -set theory and on some concepts of
operational statistics. Heilpern [7] studied the fuzzy subsets of the space
of all probability measures so that the probability of fuzzy event is ob-
tained as a fuzzy set. Baldwin et al. [1] introduced the probability of a
fuzzy event by using mass assignment theory techniques for processing
uncertainty toughener with the t-norm definition of conditional prob-
abilities. Grzegorzewski [6] generalized the notion of independence of
events and the concept of conditional probability on the intuitionistic
fuzzy events. Chinag and Yao [4] considered fuzzy probabilities con-
structed over fuzzy topological spaces. Mesiar and Komorńıková [10]
transformed probability measures on intuitionistic fuzzy events were ax-
iomatically characterized by Riec̆an [12] as interval-valued fuzzy sets.
Stojaković [16] and Stojaković and Gajić [17] defined set valued proba-
bility and fuzzy valued probability over a measurable space as a fuzzy
valued set functions which were used for analyzing and modeling highly
uncertain probability systems. In Bayesian reliability analysis, Viertl
and Mirzaei Yeganeh [20] proposed fuzzy probability distributions in re-
liability analysis, fuzzy HPD-regions, and fuzzy predictive distributions
and generalized the concept of highest a-posteriori density regions for
parameters and the predictive densities for lifetimes based on fuzzy data.
En-lin and You-ming [5], based on the interval probability, studied the
second kind of fuzzy random problem and introduced definitions of fuzzy
probability, random variable and its distribution function, distribution
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sequence, fuzzy math expectation and fuzzy variance.

The purpose of this paper is to provide a novel method of construct-
ing a probability measure induced by a family of interval-valued para-
metric distribution function. In order to satisfy the purpose of this
paper, we discuss the notion of probability density function and the
way of constructing the probability measure of random variable from
the known probability density function. From a different perspective, in
this paper the problem of the evaluation of system reliability will be con-
sidered in which the lifetimes of components are described using random
variables with interval-valued parameters. Furthermore, the reliability
functions of series systems, parallel systems and k-out-of-n systems are
discussed. Finally, some numerical examples are presented to illustrate
how to calculate the reliability function.

This paper is organized as follows: In Section 2, the computational
procedures and several examples are provided in order to extend the
classical probability measure based on a family of distributions with
interval-valued parameters. In Section 3, in order to clarify the theory
discussed in this paper and to give a possible insight for applying the
random variables with interval-valued parameters several examples are
provided in system reliability assessment. Finally, Section 4 provides an
overall conclusion.

2. Probability Measure with Interval-Valued
Parameters

In statistical inference, the data set is viewed as a realization or ob-
servation of a random element defined on a probability space (Ω,A,P)
related to the random experiment. A set of probability measures Pθ

on (Ω,A) indexed by a parameter θ ∈ Θ is said to be a parametric
family if and only if Θ ⊆ Rp for some fixed positive integer p and each
Pθ is a known probability measure when θ is known. The set Θ is
called the p-dimensional parameter space. A parametric model refers to
the assumption that the probability measure P is in a given parametric
family.

Let X : Ω→ R be a random variable, where R is equipped with the
σ-algebra B(R), the set of all Borel subsets of R. Then the probability
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measure induced by X, i.e. PX : B(R)→ [0, 1], is defined as follows for
all A ∈ B(R) [13]

PX(A) = P{X ∈ A}

=

∫
{ω∈Ω|X(ω)∈A}

dP (ω).

In particular, if A = (−∞, x], then the cumulative distribution function
of X, for each x ∈ R, is obtained as follows

FX(x) = P{X ≤ x}

=

∫
{ω∈Ω|X(ω)≤x}

dP (ω).

So, the probability of A = (a, b] can be obtained by P (a < X ≤ b) =
FX(b)− FX(a).

In the following we extend the concept of probability of an event
induced by a family of distribution with interval-valued parameters.

Definition 2.1. Suppose that a random experiment is defined on a
probability space (Ω,A, Pθ), θ ∈ Θ ⊆ Rp. Let X : (Ω,A, Pθ) →
(R,B(R), PX) be a random variable related to this random experiment
having a distribution with interval parameter θ = (θ1, . . . , θp) ∈ (C(Θ))p,
where C(Θ) is the class of nonempty compact intervals on real numbers
R. Then the probability measure induced by X, i.e. PX : B(R)→ [0, 1],
with interval parameter θ is defined as follows

PX(B) = P{X ∈ B} (1)

=

∫ 1

0

∫
{ω∈Ω|X(ω)∈B}

dPθλ(ω)dλ,

where B ∈ B, θ = (θ1, . . . , θp), θλ = (θ1λ, . . . , θpλ), and θjλ = λθlj +(1−
λ)θuj (the convex combination of endpoints of the interval θj = [θlj , θ

u
j ],

j = 1, . . . , p, λ ∈ [0, 1]).

Remark 2.2. Note that an interval-valued parameter sometimes hap-
pens when an expert estimates the value of a parameter θ based on the
smallest possible value (or “pessimistic”) and the highest possible value
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(or “optimistic”). We can solicit this estimate from the expert as is
done in estimating job times in project scheduling. So we can con-
struct/consider an interval for parameter θ in computation (for more
see [2]).

Remark 2.3. Let B = (−∞, x] in Eq. (1), then the cumulative distri-
bution function of X is obtained as follows

FX(x) = P{X ≤ x}

=

∫ 1

0

∫
{ω∈Ω|X(ω)≤x}

dPθλ(ω)dλ

=

∫ 1

0
Pθλ(X ≤ x)dλ,

We denote by X ∼ Fθ the random variable X from distribution F with
interval-valued parameter θ. Differentiating both sides of the preceding
equation yields the relationship between the cumulative distribution FX
and the probability density fX which is expressed by

fX(x) =
d

dx
FX(x)

=

∫ 1

0

d

dx
Pθλ(X ≤ x)dλ, x ∈ R,

Therefore, it is seen that the following relationship between the cumula-
tive distribution FX and the probability density fX is held for any x ∈ R

FX(x) =

{ ∫ x
−∞ fX(t)dt if X is a continuous random variable,∑
t≤x fX(t) if X is a discrete random variable.

Example 2.4. Assume that X ∼ Fθ where Fθ(x) = 1 − e−θx and
θ = [θl, θu] ∈ C((0,∞)). The cumulative distribution function of X is
given by

FX(x) =

∫ 1

0
Pθλ(X ≤ x)dλ

=

∫ 1

0
(1− e−(λθl+(1−λ)θu)x)dλ

=

{
0 x ≤ 0;

1 + e−θ
ux−e−θlx

(θu−θl)x x > 0.
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For example assume that θ = [0.02, 0.04]), then PX(45 < X < 65) =
FX(65)− FX(45) = 0.11.

Example 2.5. Assume that X ∼ fθ where fθ(x) =
(
n
x

)
θx(1−θ)n−x, x =

0, 1, 2, . . . , n and θ = [θl, θu] ∈ C((0, 1)). The cumulative distribution
function of X is obtained as follows

FX(x) =

∫ 1

0
Pθλ(X ≤ x)dλ

=

[x]∑
i=0

(
n

i

)∫ 1

0

(
λθl + (1− λ)θu

)i (
1− (λθl

+ (1− λ)θu))n−i dλ,

where [x] denotes the greatest integer smaller than or equal to x. Now,
let θ = [0.7, 0.8], then PX(4 ≤ X ≤ 7) = FX(7) − FX(3) = 0.4728 −
0.0042 = 0.469.

Example 2.6. Assume that X is normally distributed with interval
parameters µ = [−1, 1] and σ2 = [0.5, 1.5]. The cumulative distribution
function of X is obtained as follows

FX(x) =

∫ 1

0
Pθλ(X ≤ x)dλ

=

∫ 1

0

∫ x

−∞

1√
2π(1.5− λ)

e
− 1

2

(
t−(1−2λ)

1.5−λ

)2

dt dλ.

Now the probability of any event such as A = [−1, 2] can be easily
calculated as PX(−1 ≤ X ≤ 2) = FX(2)− FX(−1) = 0.75.

Remark 2.7. The situation with the usual (precise) random variable
with crisp parameters is a special case of the proposed procedure. If the
parameter gets a crisp value, the lower and upper bounds will become
equal, which means that the results and concepts of our approach coincide
with the classical probability concepts.
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3. Applied Numerical Examples

3.1. Application in reliability systems analysis

The name reliability is given to the field of study that attempts to assign
numbers to the probability of systems to fail. In a more restrictive sense,
the term reliability is defined to be the probability that a system per-
forms its mission successfully. Because the mission is often specified in
terms of time, reliability is often defined as the probability that a system
will operate satisfactorily for a given period of time. When parameters in
the lifetime distribution are interval-valued, the conventional reliability
system may have difficulty for handling reliability function. Therefore,
in the following the estimation methods for reliability characteristics will
be adapted to the situation of interval-valued parameters of lifetimes in
order to obtain more realistic results.

Let X be a random variable with pdf fX of known functional form
but depending on an unknown p-dimensional interval-valued vector pa-
rameter θ which belongs to the family of parametric distribution {fX(x) :
θ ∈ (C(Θ))p, x ∈ (0,∞)}. Based on the concepts of probability density
function and cumulative distribution function of the random variable
with interval-valued parameters the components of a lifetime distribu-
tion at time t > 0 are defined as follows

1. The Reliability Function (R.F.): R(x) = 1−FX(x), for all x ∈ R.

2. The Mean Time to Failure (M.T.F.): E =
∫∞

0 (1− FX(x)) dx.

3. The Mean Residual Life Function (M.R.L.F.):

µ(x) = E(X − x|X > x) =

∫∞
x R(t) dt

R(x)
, for all x ∈ R.

4. The Residual Life Function (R.L.F.) (or Hazard Rate Function)

h(x) = fX(x)
1−FX(x) , for all x ∈ R.

5. The Cumulative Hazard Rate function (C.H.R.): H(x) =
∫ x

0 h(t) dt,
for all x ∈ R.
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Figure 1: The components of the life time distribution at any time
t > 0 for the system reliability in Example 3.1

6. Conditional Reliability (C.R.):

C(X, t) = P (no failure in (t, t+X)| no failure in (0, t))

=
R(t+X)

R(t)
, for all t ∈ R.

Example 3.1. Assume that the random variable X has the exponential
distribution with interval parameter λ = [0.02, 0.04]. The reliability
function (R(x)), density function (fX(x)), mean residual life function
(µ(x)), residual life function (h(x)) of the random variable X at any
time are shown in Figure 1.

Estimating reliability is essentially a problem in probability model-
ing. A system consists of a number of components. In the simplest case,
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each component has two states, operating or failed. When the set of
operating components and the set of failed components is specified, it
is possible to discern the status of the system. The problem is to com-
pute the probability that the system is operating, i.e. the reliability of
the system. Let c1, c2, . . . , cn denote the n components in a reliability
systems. Assume that the n components operate independently, and
P (cj works until time t) = Rj(t). Certain types of systems frequently
arisen in practice usually are k-out-of-n systems. The reliability of the
k-out-of-n system is given by

RS(t) =

n∑
j=k

(
n

j

)
(Rj(t))

j(1−Rj(t))n−j .

If k = 1, the system reduces to a parallel system with the reliability of
RS(t) = 1−

∏n
j=1(1−Rj(t)), and if k = n the system reduces to a series

system with the reliability of RS(t) =
∏n
j=1Rj(t).

Example 3.2. Consider a system that has five synchronous computers
which analyze all other systems and compare the results among each
other. For a launch take place, four out of five computers must agree
on the system parameters. If all agree, the launch takes place. If one
computer fails and four agree, the fifth computer is ignored and the
launch occurs. If two computers fail to agree, the launch is scrubbed.
Assume that all components are exponentially distributed (with c.d.f.
Fγ(x) = 1− e−γx) with interval-valued parameter γ = [0.003, 0.005]. In
this case, the probability of a successful launch is

RS(1) =
5∑
j=4

(
5

j

)
(Rj(1))j(1−Rj(1))5−j

=
5∑
j=4

(
5

j

)(∫ 1

0
e−(0.003λ+0.005(1−λ))dλ

)j
(

1−
∫ 1

0
e−(0.003λ+0.005(1−λ))dλ

)5−j

= 0.99.
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Figure 2: The complex system in Example 3.3

Example 3.3. Consider the complex system as shown in Figure 2 where
the starting and ending blocks cannot fail. Assume that the components

A through E are Weibull distributed (with c.d.f. Fβη(x) = 1 − e−(x
η

)β
)

where β = [1.1, 1.3] and η = [1225, 1235] are interval-valued parame-
ters. The first step is to obtain the reliability function for the system.
Since the components in this example are identical, the system reliability
equation is obtained as follows

RS(t) = 2(R(t))2 + 2(R(t))3 − 5(R(t))4 + 2(R(t))5,

where

R(t) =

∫ 1

0
e
−( t

ηλ
)βλ
dλ

=

∫ 1

0
e−( t

1225+10λ
)1.1+0.2λ

dλ.

The reliability function, probability density function of the system, resid-
ual lifetime function, and cumulative hazard rate function are shown in
Figures 3-6, respectively. In addition E =

∫∞
0 (1−Fθλ

(x))dx = 1006.87.

Sometimes it is desirable to know the time value associated with a
certain reliability. Warranty periods are often calculated by determining
what percentage of the failure population can be covered financially and
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Figure 3: Reliability function of the system reliability in Example 3.3

estimating the time at which this portion of the population will fail. So,
the warranty time can be obtained by solving RS(t) = 0.9 with respect
to time for the system reliability which leads to a time of t = 372.7
hours. Lastly, the conditional reliability can be obtained using

C(X, t) =
R(t+X)

R(t)
.

For instance

C(200, 400) =
R(400)

R(200)
= 0.906.

3.2. Application in queueing theory

In this section the application of the proposed method will be considered
in Queueing Theory. An M/M/1 queueing system is the simplest non-
trivial queue where the requests arrive according to a Poisson process
with rate θ. The service times are also assumed to be independent
and exponentially distributed with parameter µ. Furthermore, all the
involved random variables are supposed to be independent of each other.
The model is considered stable only if θ < µ. If, on average, arrivals
happen faster than service completions the queue will grow indefinitely
long and the system will not have a stationary distribution. Various
performance measures can be computed explicitly for the M/M/1 queue.
Below we recall some common measures:
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Figure 4: Probability density function of the system reliability in Ex-
ample 3.3
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Figure 5: Residual life function of the system reliability in Example
3.3
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Example 3.3
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1. The probability that the stationary process is in state n is

P (N = n) = (1− ρ)ρn, n = 0, 1, 2, . . . , ρ =
θ

µ
.

The average number of the customers in the system is E(N) =
ρ

(1−ρ) .

2. Let Tq be the time that a customer spends in waiting line waiting
for service, then

P (Tq = 0) = P (N = 0) = 1− ρ,
FTq(x) = P (Tq ≤ x) = 1− ρe−µ(1−ρ)x, x > 0,

E(Tq) =
ρ

(1− ρ)µ
.

3. Let T be the time that a customer spends in the system (in wait-
ing line and being served). Then T is distributed as exponential
distribution with parameter µ − θ, hence the average time that a
customer spends in the system is E(T ) = 1

µ−θ .

4. Let U be percentage of the time that all servers are busy, then
U = θ

µ .

However, as it is mentioned in Introduction, “service times” are of-
ten reported as vague numbers (non-crisp values). Now consider an
M/M/1 queueing system with a Poisson process with rate θ and the
interval-valued service time µ = [µl, µu] ∈ C((0,∞)). Now, by applying
the proposed method, the above performance measures are extended as
follows:

1. The probability that the stationary process is in state n is

P (N = n) =

∫ 1

0
(1− ρλ)(ρλ)ndλ, n = 0, 1, . . . , ρλ =

θ

µλ
, θ < µl.

The average number of the customers in the system is E(N) =∫ 1
0

ρλ
(1−ρλ)dλ.
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2. Let Tq be the time that a customer spends in the waiting line
waiting for service. Then

P (Tq = 0) = 1−
∫ 1

0
ρλdλ,

FTq(x) = 1−
∫ 1

0
ρλe
−µλ(1−ρλ)xdλ, x > 0,

E(Tq) =

∫ 1

0

ρλ
(1− ρλ)µλ

dλ.

3. Let T be the time that a customer spends in the system (in waiting
line and being served). Then E(T ) =

∫ 1
0

1
µλ−θdλ.

4. Let U be the percentage of the time that all servers are busy, then
U =

∫ 1
0

θ
µλ
dλ.

Example 3.4. Our observations of one cashier in a supermarket have
shown that the arrival distribution of customers follows Poisson distri-
bution with arrival rate of θ = 0.75 customers per every 5 minutes. The
distribution of service time follows exponential distribution with service
time about 1 minute per customer described as the interval µ = [0.5, 1.5].
The measurements of effectiveness of the queuing system are calculated
as E(N) = 1.37, P (Tq = 0) = 0.50, Wq = 1.94, and E(T ) = 3.04.

Example 3.5. The Erlang distribution can be used to model the time
to complete n operations in series, where each operation requires an
exponential period of time to complete. In Queueing Theory, it is usually
used to model inter-arrival time and service time with a low coefficient
of variation. An Erlang random variable X with rate θ and n stages has
the following probability density function

fX(x) =
1

(n− 1)! θn
xn−1e−

x
θ , x > 0.

Now, consider a queue with three people ahead of you. Assume one is
being served and two are waiting. Their service times S1, S2, and S3 are
independent exponential random variables with mean about 2 minutes
per each person given by θ = [1, 3]. Your conditional time in the queue
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given the system state N = 3 upon your arrival is T = S1 + S2 + S3.
Now, using Remark 2.3, one can obtain that T is distributed according
to extended Erlang distributed with the following density function

fT (t) =

∫ 1

0

1

2(1 + 2λ)3
t2e−

t
1+2λdλ, t > 0.

Hence, the probability that you wait, for instance, more than 7 minutes
in the queue is

P (T > 7) =

∫ 1

0

∫ ∞
7

1

2(1 + 2λ)3
t2e−

t
1+2λdtdλ

= 0.313.

Moreover, the expected time that you wait in the queue is evaluate by

E(T ) =

∫ 1

0

∫ ∞
0

1

2(1 + 2λ)3
t3e−

t
1+2λdtdλ

= 6.

4. Conclusions

There are many situations in real world applications that we deal with
imprecise (non-crisp) information in applied statistics. For instance, the
parameters of lifetimes of components are usually not crisp and therefore
statistical inferences such as the Reliability Systems or Queueing Theory
are not feasible for such cases. In this regard, the subject of probabil-
ity theory induced by the new notion of random variable with interval-
valued parameters has been successfully introduced and discussed in this
paper to overcome this difficulty. The numerical results show that the
induced probability distribution is a solution to overcome such uncer-
tainty in such applications of statistics. The proposed probability theory
is a generalization of conventional probability theory since if parameters
are crisp, it turns in to the conventional reliability system.

The proposed methodology may be used/extended for a more general
problem when parameters are recorded as fuzzy quantities rather than
crisp values or interval values. This is a potential subject for future
study.
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