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Abstract. This paper deals with a construction of both stationary
and non-stationary M -band tight framelet packets in L2(R) using ex-
tension principles. The approach here is different from the method de-
scribed by Shah and Debnath in [ Explicit construction of M -band tight
framelet packets, Analysis, 32 (2012) 281-294 ] in that we directly de-
compose the multiresolution space VJ for a fixed level J > 0 to the
level 0 with any combined wavelet mask m = [m0, m1, . . . , mL] satisfy-
ing the unitary extension principle condition M(ξ)M∗(ξ) = IM , where

M(ξ) =
{
m`

(
ξ + 2πp

M

)}M−1

`,p=0
.
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1. Introduction

The traditional wavelet frames provide poor frequency localization in
many applications as they are not suitable for signals whose domain fre-
quency channels are focused only on the middle frequency region. There-
fore, in order to make more kinds of signals suited for analyzing by
wavelet frames, it is necessary to extend the concept of wavelet frames
to a library of wavelet frames, called framelet packets or wavelet frame
packets. The original idea of framelet packets was introduced by Coifman
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et al. [4] to provide more efficient decomposition of signals containing
both transient and stationary components. Chui and Li [3] generalized
the concept of orthogonal wavelet packets to the case of non-orthogonal
wavelet packets so that they can be applied to the spline wavelets and
so on. Shen [19] generalized the notion of univariate orthogonal wavelet
packets to the case of multivariate orthogonal wavelets such that they
may be used in a wider field. Other notable generalizations are the
wavelet packets and p-framelet packets on the positive half-line R+ [15,
16], wavelet packets on locally compact abelian groups [18], the vector-
valued wavelet packets [8], the M -band wavelet packets [10] and the
tight framelet packets on Rd [12].

On the other hand, the standard orthogonal wavelets are not also suit-
able for the analysis of high-frequency signals with relatively narrow
bandwidth. To overcome this shortcoming, M -band orthonormal wavelets
were created as a direct generalization of the 2-band wavelets [20]. The
motivation for a larger M(M > 2) comes from the fact that, unlike
the standard wavelet decomposition which results in a logarithmic fre-
quency resolution, the M -band decomposition generates a mixture of
logarithmic and linear frequency resolution and hence generates a more
flexible tiling of the time-frequency plane than that resulting from 2-
band wavelet. The other significant difference between 2-band wavelets
and M -band wavelets in construction lies in the aspect that the wavelet
vectors are not uniquely determined by the scaling vector and the or-
thonormal bases do not consist of dilated and shifted functions through a
single wavelet, but consist of ones by using M-1 wavelets (see[1, 6, 11]). It
is this point that brings more freedoms for optimal wavelet bases.

A tight wavelet frame is a generalization of an orthonormal wavelet
basis by introducing redundancy into a wavelet system. Tight wavelet
frames have some desirable features such as near translation invariant
wavelet frame transforms and it may also be easier to recognize patterns
in a redundant transform. A catalyst for this development is the uni-
tary extension principle (UEP) introduced by Ron and Shen [14], which
provides a general construction of tight wavelet frames for L2(Rn) in
the shift-invariant setting, and included the pyramidal decomposition



ON STATIONARY AND NON-STATIONARY ... 41

and reconstruction filter bank algorithms. The resulting tight wavelet
frames are based on a multiresolution analysis, and the generators are
often called mother framelets. The theory of tight wavelet frames has
been extensively studied and well developed over the recent years. To
mention a few references on tight wavelet frames, the reader is referred
to [2, 5, 7, 13] and many references therein. In the M -band setting, Han
and Cheng [9] have provided the general construction of M -band tight
wavelet frames on R by following the procedure of Daubechies et al. [5]
and Petukhov [13] via extension principles.

Recently, Shah and Debnath [17] have introduced a general construction
scheme for a class of stationary M -band tight framelet packets in L2(R)
via extension principles. They proved a lemma on the so-called splitting
trick and splited the wavelet spaces Wj,`, ` = 0, 1, . . . , L by means of the
framelet symbols m`(ξ), ` = 0, 1, . . . , L and then by recursive decompo-
sition, constructed various M -band tight framelet packets in L2(R). In
this paper, we construct both stationary and non-stationary M -band
tight framelet packets in L2(R) by decomposing the MRA space VJ di-
rectly for a fixed level J > 0 to the level 0 with any combined MRA
mask m = [m0,m1, . . . ,mL] satisfying the unitary extension principle

condition M(ξ)M∗(ξ) = IM , where M(ξ) =
{
m`

(
ξ + 2πp

M

)}M−1

`,p=0
.

The rest of this paper is organized as follows. In Section 2 we review
some basic facts about M -band tight wavelet frames using extension
principles. In Section 3 and Section 4, we prove our main results re-
garding the construction of stationary and non-stationary M -band tight
framelet packets.

2. Preliminaries and M-Band Wavelet Frames

We begin this section by reviewing some major concepts concerning M -
band wavelet frames. In the rest of this paper, we use N,N0,Z and R to
denote the sets of all natural numbers, non-negative integers, integers
and real numbers, respectively.

The Fourier transform of a function f ∈ L1(R) is defined as usual by:
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f̂(ξ) =
∫

R
f(x) e−iξxdx, ξ ∈ R,

and its inverse is

f(x) =
1

2π

∫
R
f̂(ξ) eiξxdξ, x ∈ R.

For given Ψ := {ψ1, . . . , ψL} ⊂ L2(R), define the M -band wavelet sys-
tem

X(Ψ) :=
{
ψ`,j,k : j, k ∈ Z, 1 6 ` 6 L

}
, (1)

where ψ`,j,k = M j/2ψ`(M j . − k). The wavelet system X(Ψ) is called
a M -band wavelet frame, or simply a M -band framelet system, if there
exist positive numbers 0 < A 6 B <∞ such that for all f ∈ L2(R)

A
∥∥f∥∥2

2
6

L∑
`=1

∑
j∈Z

∑
k∈Z

∣∣〈f, ψ`,j,k

〉∣∣2 6 B
∥∥f∥∥2

2
. (2)

The largest A and the smallest B for which (2) holds are called wavelet
frame bounds. A wavelet frame is a tight wavelet frame if A and B are
chosen so that A = B = 1 and then generators ψ1, ψ2, . . . , ψL are often
referred as M -band framelets. Moreover, if only the upper bound holds
in the above inequality, then X(Ψ) is said to be a Bessel sequence with
Bessel constant B.
The construction of framelet systems often starts with the construction
of MRA, which is built on refinable functions. A function ϕ ∈ L2(R) is
called M -refinable if it satisfies a refinement equation:

ϕ(x) =
∑
k∈Z

h0[k]ϕ(Mx− k), (3)

for some h0 ∈ l2(Z). The Fourier transform of (3) yields

ϕ̂ (ξ) = m0

(
ξ

M

)
ϕ̂

(
ξ

M

)
, (4)
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where
m0(ξ) =

1
M

∑
k∈Z

h0[k]eikξ,

is a 2π-periodic measurable function in L∞[−π, π] and is often called the
refinement symbol of ϕ. In this paper, we follow [1] for the definition of an
M -band MRA. Given a M -refinable function ϕ ∈ L2(R) with ϕ̂(0) 6= 0,
the sequence of subspaces {Vj : j ∈ Z} defined by

Vj = span
{
ϕ
(
M jx− k

)
: k ∈ Z

}
, j ∈ Z, (5)

will form an MRA for L2(R). Recall that {Vj : j ∈ Z} is called an MRA
if it satisfies (i) Vj ⊂ Vj+1 for every j ∈ Z; (ii)

⋃
j∈ZVj is dense in L2(R)

and (iii)
⋂

j∈ZVj = {0}. In this paper, we only consider the refinable
function ϕ ∈ L2(R) satisfying the following properties:

lim
ξ→0

ϕ̂(ξ) = 1, ξ ∈ R; (6)

and ∑
k∈Z

|ϕ̂(ξ + 2kπ)|2 ∈ L∞[−π, π]. (7)

Given an MRA generated by the refinable function ϕ, one can construct
(see [5]) a set of MRA-based framelets Ψ := {ψ1, . . . , ψL} ⊂ V1 which is
defined by

ψ̂` (ξ) = m`

(
ξ

M

)
ϕ̂

(
ξ

M

)
, (8)

where
m`(ξ) =

1
M

∑
k∈Z

h`[k]eikξ, ` = 1, . . . , L

are the 2π-periodic measurable functions in L∞[−π, π] and are called the
framelet symbols or wavelet masks. The so-called unitary extension prin-
ciple (UEP) provides a sufficient condition on Ψ such that the resulting
M -band system X(Ψ) forms a tight frame of L2(R). In this connection,
an explicit construction scheme is provided in [9] for the construction of
M -band tight framelets on R.
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Theorem 2.1. Suppose that the refinable function ϕ and the framelet
symbols m0,m1, . . . ,mL satisfy (4)-(7). Define ψ1, . . . , ψL by (8). Let
M(ξ) = {m` (ξ + 2πp/M)}M−1

`,p=0 such thatM(ξ)M∗(ξ) = IM , for a.e ξ ∈
σ(V0) :=

{
ξ ∈ [−π, π] :

∑
k∈Z |ϕ̂(ξ + 2kπ)|2 6= 0

}
, then M -band wavelet

system X(Ψ) forms a tight wavelet frame for L2(R) with frame bound 1.

In order to prove the main results to be presented in next sections,
we need the following lemma (see [17]) which plays a key role in the
construction of M -band tight framelet packets.

Lemma 2.2. Let g ∈ L2(R) and {gj,k : k ∈ Z} be a Bessel sequence in
L2(R) i.e., ∑

k∈Z

∣∣ĝ(ξ + 2kπ)
∣∣2 6 B, ξ ∈ R

for any fixed j ∈ Z. Let m`(ξ), ` = 0, 1, . . . , L be the framelet symbols
associated with the refinable function ϕ and the tight framelets ψ`, ` =
1, . . . , L such that they satisfy the UEP conditionM(ξ)M∗(ξ) = IM . Sup-
pose

g`(x) = M
∑
n∈Z

m`(n) g(Mx− n),

S` = span
{
g`
j−1,k : k ∈ Z

}
,

and S = span {gj,k : k ∈ Z} , for ` = 0, 1, . . . , L. Then

(i). For ` = 0, 1, . . . , L, each set
{
g`
j−1,k : k ∈ Z

}
forms a Bessel se-

quence with ‖g`‖2
2 6 B and ‖g‖2

2 6 B.
(ii). For any sequence d ∈ l2(Z), there exists L + 1 sequences {d`}L

`=0,
defined by

d`(k) =
√
M

∑
n∈Z

m`

(
n−Mk

)
d(n), k ∈ Z (9)

such that

‖d‖2

l2(Z)
=

L∑
`=0

‖d`‖2, (10)
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and ∑
k∈Z

d(k) gj,k =
L∑

`=0

∑
k∈Z

d`(k) g`
j−1,k. (11)

(iii). In particular for any f ∈ L2(R), let d(k) = 〈f, gj,k〉, k ∈ Z, then
d ∈ l2(Z) and (9)-(11) gives

d`(k) =
〈
f, g`

j−1,k

〉
, k ∈ Z, ` = 0, 1, . . . , L,

∑
k∈Z

|〈f, gj,k〉 |2 =
L∑

`=0

∑
k∈Z

∣∣∣〈f, g`
j−1,k

〉∣∣∣2 ,
and ∑

k∈Z
〈f, gj,k〉gj,k =

L∑
`=0

∑
k∈Z

〈
f, g`

j−1,k

〉
g`
j−1,k,

respectively.
(iv). S has the decomposition

S = S0 + S1 + · · ·+ SL.

By virtue of the Lemma 2.2, Shah and Debnath [17] have constructed
various stationary tight M -band framelet packets on R by the recur-
sive decomposition of wavelet spaces Wj,`, ` = 0, 1, . . . , L, j ∈ Z. For
n = 0, 1, 2, . . . , the basic M -band framelet packets associated with the
refinable function ϕ are defined as

ω̂n(ξ) = ω̂(L+1)r+`(ξ) = m`

(
ξ

M

)
ω̂r

(
ξ

M

)
, (12)

where ` = 0, 1, . . . , L, r = 0, 1, 2, . . . .

3. Stationary M-Band Tight Framelet Packets

Besides the recursive derivation of stationary tight M -band framelet
packets introduced in [17], stationary tight M -band framelet packets
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can also be constructed by decomposing the MRA space VJ directly for
a fixed level J > 0 to the level 0.

To do so, let X(Ψ) be the M -band tight wavelet frame for L2(R) con-
structed via UEP in an MRA {Vj : j ∈ Z} generated by the M -refinable
function ϕ with combined UEP mask h = [h0, h1, . . . , hL]. Then, for
each j ∈ Z, we define

Vj = span {ϕj,k : k ∈ Z} , and Wj, = span {ψ,j,k : k ∈ Z} ,  = 0, 1, . . . , L.

Therefore, in view of tight frame decomposition, we have

Vj = Vj−1 +
L

=1

Wj−1,. (13)

It is immediate from the above decomposition that these L + 1 spaces
are in general not orthogonal. Therefore, by the repeated applications
of (13), we can further split the Vj spaces as:

Vj = Vj−1+
L

=1

Wj−1, = Vj−2+
j−1

r=j−2

L

=1

Wr, = · · · = Vj0+
j−1

r=j0

L

=1

Wr,

=
j−1

r=−∞

L

=1

Wr,. (14)

Now, at the first level of decomposition, by Lemma 2.2, VJ is decomposed
into the L+ 1 spaces WJ−1,r, r ∈ Λ1 where

Λ1 =

r = (rJ , rJ−1, . . . , r1) : 0  rJ  L, rJ−1 = · · · = r1 = 0


.

For this choice of r = (rJ , rJ−1, . . . , r1), we define

r(n) = rn, n = 1, 2, . . . , J,

ωr(x) =M


n∈Z
hr(1)[n]ϕ(Mx− n),

and
WJ−1,r := span {ωr,J−1,k : k ∈ Z} .
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Therefore, for any f ∈ L2(R), we have


k∈Z
|f, ϕJ,k|2 =



r∈Λ1



k∈Z
|f, ωr,J−1,k|2.

At the second level of decomposition, by Lemma 2.2, each spaceWJ−1,r , r ∈
Λ1 is decomposed with h into spacesWJ−2,r , r ∈ Λr

2, where Λ
r
2 is a sub-

set of Λ2 defined by

Λr
2 =


r ∈ Λ2 : r(1) = r(1)


,

and Λ2 is a J-tuple index set defined by

Λ2 =

r = (rJ , rJ−1, . . . , r1) : 0  rJ−1, rJ  L, rJ−2 = · · · = r1 = 0


,

ωr(x) =M


n∈Z
hr(2)[n]ωr(Mx− n),

WJ−2,r := span

ωr,J−2,k : k ∈ Z


.

Thus, for any f ∈ L2(R), we have


k∈Z
|f, ωr,J−1,k|2 =



r∈Λr
2



k∈Z
|f, ωr,J−2,k|2.

Finally, at the p-th level (2  p  J) of decomposition, by Lemma
2.2, each space WJ−p+1,r , r ∈ Λp−1 is decomposed with h into spaces
WJ−p,r , r ∈ Λr

p, where Λr
p is a subset of Λp defined by

Λr
p =


r ∈ Λp : r(n) = r(n), for 1  n  p− 1


, (15)

and Λp is a J-tuple index set defined by

Λp =

r = (rJ , rJ−1, . . . , r1) : 0  rJ−p  L, rJ−p = · · · = r1 = 0


,

ωr(x) =M


n∈Z
hr(p)[n]ωr(Mx− n), (16)

ON STATIONARY AND NON-STATIONARY ... 47

Therefore, for any f ∈ L2(R), we have


k∈Z
|f, ϕJ,k|2 =



r∈Λ1



k∈Z
|f, ωr,J−1,k|2.

At the second level of decomposition, by Lemma 2.2, each spaceWJ−1,r , r ∈
Λ1 is decomposed with h into spacesWJ−2,r , r ∈ Λr

2, where Λ
r
2 is a sub-

set of Λ2 defined by

Λr
2 =


r ∈ Λ2 : r(1) = r(1)


,

and Λ2 is a J-tuple index set defined by

Λ2 =

r = (rJ , rJ−1, . . . , r1) : 0  rJ−1, rJ  L, rJ−2 = · · · = r1 = 0


,

ωr(x) =M


n∈Z
hr(2)[n]ωr(Mx− n),

WJ−2,r := span

ωr,J−2,k : k ∈ Z


.

Thus, for any f ∈ L2(R), we have


k∈Z
|f, ωr,J−1,k|2 =



r∈Λr
2



k∈Z
|f, ωr,J−2,k|2.

Finally, at the p-th level (2  p  J) of decomposition, by Lemma
2.2, each space WJ−p+1,r , r ∈ Λp−1 is decomposed with h into spaces
WJ−p,r , r ∈ Λr

p, where Λr
p is a subset of Λp defined by

Λr
p =


r ∈ Λp : r(n) = r(n), for 1  n  p− 1


, (15)

and Λp is a J-tuple index set defined by

Λp =

r = (rJ , rJ−1, . . . , r1) : 0  rJ−p  L, rJ−p = · · · = r1 = 0


,

ωr(x) =M


n∈Z
hr(p)[n]ωr(Mx− n), (16)



48 F. A. SHAH

WJ−p,r′ := span
{
ωr′,J−p,k : k ∈ Z

}
.

Therefore for any f ∈ L2(R), we have∑
k∈Z

|〈f, ωr,J−p+1,k〉|2 =
∑

r′∈Λr
p

∑
k∈Z

|〈f, ωr′,J−p,k〉|2.

In particular, at the J-th level of decomposition, by Lemma 2.2, each
space W1,r , r ∈ ΛJ−1 is decomposed with h into spaces W0,r′ , r′ ∈ Λr

J ,
where Λr

J is a subset of ΛJ defined by

Λr
J =

{
r′ ∈ ΛJ : r′(n) = r(n), for 1 6 n 6 J − 1

}
,

and ΛJ is a J-tuple index set defined by

ΛJ =
{
r = (rJ , rJ−1, . . . , r1) : 0 6 rt 6 L, 1 6 t 6 J

}
, (17)

ωr′(x) = M
∑
n∈Z

hr′(J)[n]ωr(Mx− n),

W0,r′ := span
{
ωr′,0,k : k ∈ Z

}
.

Thus for any f ∈ L2(R), we have∑
k∈Z

|〈f, ωr,1,k〉|2 =
∑

r′∈Λr
J

∑
k∈Z

|〈f, ωr′,0,k〉|2.

Combining all the inner product equations in the above construction,
we get

∑
k∈Z

|〈f, ϕJ,k〉|2 =
∑
r∈ΛJ

∑
k∈Z

|〈f, ωr,0,k〉|2, for any f ∈ L2(R). (18)

In other words, we obtain another representation of VJ as

VJ := span {ωr,0,k : r ∈ ΛJ , k ∈ Z} .
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Theorem 3.1. (See [2]) Suppose X(Ψ) is a M -band tight wavelet frame
constructed via UEP in an MRA and h = [h0, h1, . . . , hL] is the combined
mask satisfying the UEP condition M(ξ)M∗(ξ) = IM . Then for any
fixed J > 0, the family of functions

F =

ωr,0,k : r ∈ ΛJ


∪

ψ,j,k :  = 1, . . . , L, j  J, k ∈ Z


,

forms a tight frame for L2(R), where ΛJ is a index set defined in (17).

Proof. Since X(Ψ) is a tight wavelet frame of L2(R), then by (18), we
have

f
2
2

=


k∈Z

f, ϕJ,k
2 +

L

=1



jJ



k∈Z

f, ψ,j,k
2

=


r∈ΛJ



k∈Z

f, ωr,0,k
2 +

L

=1



jJ



k∈Z

f, ψ,j,k
2,

for any f ∈ L2(R). 
Similar to the recursive construction of stationary tightM -band framelet
packets (see [17]), we can obtain a stationary tight M -band framelet
packets by performing various disjoint partitions ΓJ of ΛJ with each
partition separating ΛJ into disjoint subsets of the form

Ij,r =

(rJ , . . . , rj+1, rj , . . . , r


1) ∈ ΛJ : r = (rJ , . . . , rj+1, 0, . . . , 0) ∈ ΛJ−j


,

i.e., ΓJ =

Ij,r :


Ij,r = ΛJ


.  (19)

Theorem 3.2. (See [2]) Suppose X(Ψ) is a M -band tight wavelet frame
constructed via UEP in an MRA and h = [h0, h1, . . . , hL] is the combined
mask satisfying the UEP condition M(ξ)M∗(ξ) = IM . Let ΓJ be a
disjoint partition of ΛJ , where ΛJ and ΓJ are defined in (17) and (19),
respectively. Then the collection

FΓJ =

ωr,j,k : Ij,r ∈ ΓJ , k ∈ Z


∪

ψ,j,k :  = 1, . . . , L, j  J, k ∈ Z


,

generates a tight frame for L2(R).
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packets by performing various disjoint partitions ΓJ of ΛJ with each
partition separating ΛJ into disjoint subsets of the form

Ij,r =

(rJ , . . . , rj+1, rj , . . . , r


1) ∈ ΛJ : r = (rJ , . . . , rj+1, 0, . . . , 0) ∈ ΛJ−j


,

i.e., ΓJ =

Ij,r :


Ij,r = ΛJ


.  (19)

Theorem 3.2. (See [2]) Suppose X(Ψ) is a M -band tight wavelet frame
constructed via UEP in an MRA and h = [h0, h1, . . . , hL] is the combined
mask satisfying the UEP condition M(ξ)M∗(ξ) = IM . Let ΓJ be a
disjoint partition of ΛJ , where ΛJ and ΓJ are defined in (17) and (19),
respectively. Then the collection

FΓJ =

ωr,j,k : Ij,r ∈ ΓJ , k ∈ Z


∪

ψ,j,k :  = 1, . . . , L, j  J, k ∈ Z


,

generates a tight frame for L2(R).
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Proof. Since ΓJ is a disjoint partition of ΛJ , for any f ∈ L2(R), we
have



Ij,r∈ΓJ



k∈Z

f, ωr,j,k
2 =



Ij,r∈ΓJ



r∈Ij,r



k∈Z

f, ωr,0,k
2

=


r∈ΛJ



k∈Z

f, ωr,0,k
2.

By applying Theorem 3.1, Theorem 3.2 is proved. 

4. Non-StationaryM-Band Tight Framelet Pack-
ets

In this section, we construct the M -band tight framelet packets on R
by recursively decomposing VJ with arbitrarily chosen combined UEP
masks to the coarsest scale 0. However, in this case we may change the
underlying MRA spaces {Vj : j ∈ Z} associated with X(Ψ) if one of the
low-pass filters in the set of combined UEP masks decomposing Vj does
not coincide with the refinement mask of ϕ which generates MRA and
all the tightM -band framelet packets obtained in this way will be called
non-stationary tight M -band framelet packets.

To do so, let X(Ψ) be the given M -band tight wavelet frame for L2(R)
constructed via UEP in an MRA {Vj}j∈R generated by the M -refinable
function ϕ. Firstly, we decompose VJ := span {ϕJ,k : k ∈ Z} associated
with the combined mask mJ = [mr : r ∈ Λ1] satisfying the UEP condi-
tion M(ξ)M∗(ξ) = IM , where Λ1 is a J-tuple index set defined by

Λ1 =

(rJ , rJ−1, . . . , r1) : 0  rJ  J , rJ−1 = · · · = r1 = 0


,

in which J is a positive constant. By invoking Lemma 2.2, we can de-
compose VJ into spaces WJ−1,r , r ∈ Λ1, where

ωr(x) =M


n∈Z
mr[n]ϕ(Mx− n),

WJ−1,r := span

ωr,J−1,k : k ∈ Z


.
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Therefore for any f ∈ L2(R), we have∑
k∈Z

∣∣〈f, ϕJ,k〉
∣∣2 =

∑
r∈Λ1

∑
k∈Z

∣∣〈f, ωr,J−1,k〉
∣∣2.

At the second level of decomposition, by Lemma 2.2, each spaceWJ−1,r , r
∈ Λ1 is decomposed with a combined UEP mask mJ−1,r = [mr′ : r′ ∈ Λr

2]
satisfying the UEP condition M(ξ)M∗(ξ) = IM ,, where  Lambdar2 is a
subset of Λ2 defined by

Λr
2 =

{
r′ ∈ Λ2 : r′(1) = r(1)

}
,

and Λ2 is a J-tuple index set defined by

Λ2 =
{

(rJ , rJ−1, . . . , r1) : 0 6 rJ 6 J , 0 6 rJ−1 6 J (rJ ), rJ−2 = · · · = r1 = 0
}
,

in which J (rJ ) is a positive constant for each (rJ) into spacesWJ−2,r′ , r′ ∈
Λr

2, where
ωr′(x) = M

∑
n∈Z

mr′ [n]ωr(Mx− n),

WJ−2,r′ := span
{
ωr′,J−2,k : k ∈ Z

}
.

Thus, for any f ∈ L2(R), we have∑
k∈Z

∣∣〈f, ωr,J−1,k〉
∣∣2 =

∑
r′∈Λr

2

∑
k∈Z

∣∣〈f, ωr′,J−2,k〉
∣∣2.

Generally, at the p-th level (2 6 p 6 J) of decomposition, by Lemma
2.2, each space WJ−p+1,r , r ∈ Λp−1 is decomposed with a combined
UEP mask mJ−p+1,r = [mr′ : r′ ∈ Λr

p] satisfying the UEP condition
M(ξ)M∗(ξ) = IM ,, where Λr

p is a subset of Λp defined by

Λr
p =

{
r′ ∈ Λp : r′(n) = r(n), for 1 6 n 6 p− 1

}
(20)

and Λp is a J-tuple index set defined by

Λp =
{

(rJ , rJ−1, . . . , r1) : 0 6 rJ 6 J , 0 6 rJ−t 6 J (rJ ,rJ−1,...,rJ−t+1),

1 6 t 6 p, rJ−p = · · · = r1 = 0
}
,
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in which J (rJ ,rJ−1,...,rJ−t+1) is a positive constant for each (rJ , rJ−1, . . . , rJ−t+1)
into spaces WJ−p,r , r ∈ Λr

2, where

ωr(x) =M


n∈Z
mr [n]ωr(Mx− n),

WJ−p,r := span

ωr,J−p,k : k ∈ Z


.

Hence, for any f ∈ L2(R), we have


k∈Z

f, ωr,J−p+1,k
2 =



r∈Λr
p



k∈Z

f, ωr,J−p,k
2.

In particular, at the J-th level of decomposition, by Lemma 2.2, each
spaceW1,r , r ∈ ΛJ−1 is decomposed with a combined UEP maskm1,r =
[mr : r ∈ Λr

J ] satisfying the UEP condition M(ξ)M∗(ξ) = IM ,, where
Λr

J is a subset of ΛJ defined by

Λr
J =


r ∈ ΛJ : r(n) = r(n), for 1  n  J − 1


,

and ΛJ is a J-tuple index set defined by

ΛJ =

(rJ , rJ−1, . . . , r1) : 0  rJ  J ,

0  rJ−t  J (rJ ,rJ−1,...,rJ−t+1), 1  t  J

, (21)

in which J (rJ ,rJ−1,...,rJ−t+1) is a positive constant for each

(rJ , rJ−1, . . . , rJ−t+1),

into spaces W0,r , r ∈ Λr
J , where

ωr(x) =M


n∈Z
mr [n]ωr(Mx− n),

W0,r := span

ωr,0,k : k ∈ Z


.

Therefore, for any f ∈ L2(R), we have


k∈Z

f, ωr,1,k
2 =



r∈Λr
J



k∈Z

f, ωr,0,k
2.
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Combining all the inner product equations in the above construction,
we obtain∑

k∈Z

∣∣〈f, ϕJ,k〉
∣∣2 =

∑
r∈ΛJ

∑
k∈Z

∣∣〈f, ωr,0,k〉
∣∣2, for any f ∈ L2(R). (22)

In other words, we obtain another representation of VJ as

VJ := span
{
ωr,0,k : r ∈ ΛJ , k ∈ Z

}
.

Theorem 4.1. (See [2]) For a given M -band tight wavelet frame X(Ψ),
the system

FN =
{
ωr,0,k : r ∈ ΛJ

}
∪

{
ψ`,j,k : ` = 1, . . . , L, j > J, k ∈ Z

}
,

is also a tight wavelet frame for L2(R), where ΛJ is an index set defined
in (4.2).

Proof. Using (4.3) and the fact that X(Ψ) is a tight wavelet frame for
L2(R), we have

∥∥f∥∥2

2
=

∑
k∈Z

∣∣〈f, ϕJ,k〉
∣∣2 +

L∑
`=1

∑
j>J

∑
k∈Z

∣∣〈f, ψ`,j,k

〉∣∣2

=
∑
r∈ΛJ

∑
k∈Z

∣∣〈f, ωr,0,k〉
∣∣2 +

L∑
`=1

∑
j>J

∑
k∈Z

∣∣〈f, ψ`,j,k

〉∣∣2 ,
for any f ∈ L2(R). This completes the proof of Theorem 4.1.
As in the stationary case constructed above, we can obtain a library of
tight M -band framelet packets of L2(R) by partitioning ΛJ into disjoint
subsets of the form

Ij,r =
{

(rJ , . . . , rj+1, r
′
j , . . . , r

′
1) ∈ ΛJ : r = (rJ , . . . , rj+1, 0, . . . , 0) ∈ ΛJ−j

}
, i.e.,

ΓJ =
{
Ij,r :

⋃
Ij,r = ΛJ

}
. � (23)
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Theorem 4.2. (See [2]) For a given M -band tight wavelet frame X(Ψ),
let ΓJ be a disjoint partition ΛJ , where ΛJ and ΓJ are defined in (21)
and (23), respectively. Then the system

FN ΓJ
=

{
ωr,j,k : Ij,r ∈ ΓJ , k ∈ Z

}
∪

{
ψ`,j,k : ` = 1, . . . , L, j > J, k ∈ Z

}
,

also generates a tight frame for L2(R).

Proof. Since ΓJ is a disjoint partition of ΛJ , for any f ∈ L2(R), we
have ∑

Ij,r∈ΓJ

∑
k∈Z

∣∣〈f, ωr,j,k〉
∣∣2 =

∑
Ij,r∈ΓJ

∑
r′∈Ij,r

∑
k∈Z

∣∣〈f, ωr′,0,k〉
∣∣2

=
∑
r∈ΛJ

∑
k∈Z

∣∣〈f, ωr,0,k〉
∣∣2.

By applying Theorem 4.1, Theorem 4.2 is proved. �
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