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Abstract. Using the fixed point method, we establish the stability of
m—Lie homomorphisms and Jordan m—Lie homomorphisms on m—Lie
algebras associated to the following additive functional equation

ouf (f; mm) _ Zf;f (u (mmi +j_§;# x])> +f (f} lixi>

where m is an integer greater than 2 and ally € T 1 := {ew ; 0<0< 377(;}
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1. Introduction

Let n be a natural number greater or equal to 3. The notion of an n—Lie
algebra was introduced by V.T. Filippov. The Lie product is taken
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between n elements of the algebra instead of two. This new bracket

is n—linear, anti-symmetric and satisfies a generalization of the Jacobi

identity.

An n—Lie algebra is a natural generalization of a Lie algebra. Namely:
A vector space V together with a multi-linear, antisymmetric n—ary

operation [ ] : A"V — V is called an n—Lie algebra, n > 3, if the

n—ary bracket is a derivation with respect to itself, i.e,

n

[z1, s Zn], Tng1, oo B2 1] = Z[I‘l, i1 [Tis T 1y ooy Tan—1], oo, T,

i=1

(1)
where x1, 9, ...,x9,—1 € V. Equation (1) is called the generalized Jacobi
identity. The meaning of this identity is similar to that of the usual
Jacobi identity for a Lie algebra (which is a 2—Lie algebra).
From now on, we only consider n—Lie algebras over the field of complex
numbers. An n—Lie algebra A is a normed n—Lie algebra if there exists
a norm || || on A such that ||[z1,x2,...,zn]|| < ||z1]|]|22]|...||2zn|| for all
1,22, ...,Tn € A. A normed n—Lie algebra A is called a Banach n—Lie
algebra, if (A, || ||) is a Banach space.

Let (A,[ ]a) and (B,[ |p) be two Banach n—Lie algebras. A
C—linear mapping H : (A,[]a) — (B, []B) is called an n—Lie homomor-
phism if H([x1x2...x5)4) = [H(z1)H (x2)...H ()] for all 21, x9, ..., x, €
A. A C—linear mapping H : (A,[]a) — (B, []n) is called a Jordan n—Lie
homomorphism if H([zx...x]a) = [H(z)H (z)...H(z)]p for all z € A.

The study of stability problems had been formulated by Ulam [5]
during a talk in 1940: Under what condition does there exist a homo-
morphism near an approximate homomorphism? In the following year,
Hyers [3] was answered affirmatively the question of Ulam for Banach
spaces, which states that if e > 0 and f : X — Y is a map with X a
normed space, Y a Banach space such that

If(x+y) = flz) - f)l <e (2)

for all z,y € X, then there exists a unique additive map 7' : X — Y such
that || f(z) —T'(x)|| < e for all z € X. A generalized version of the theo-
rem of Hyers for approximately linear mappings was presented by Ras-
sias [1] in 1978 by considering the case when inequality (2) is unbounded.
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Due to that fact, the additive functional equation f(z+y) = f(x)+ f(y)
is said to have the generalized Hyers—Ulam—Rassias stability property.
A large list of references concerning the stability of functional equations
can be found in [, 2].

In this paper, by using the fixed point method, we establish the stabil-
ity of m—Lie homomorphisms and Jordan m—Lie homomorphisms on
m—Lie Banach algebras associated to the following generalized Jensen
type functional equation

m

2uf<2mxi)—2f w | mx; + Z xj —f(Z,u:c,-)zO
i=1 i=1

=1 i#j i=1
(3)

forall p € Ta1 := {eia ; 0<0< i—:}, where m > 2. Throughout this
paper, assume that (A,[]a),(B,]]B) are two m-Lie Banach algebras.

2. Main Results

Before proceeding to the main results, we recall a fundamental result in
fixed point theory.

Theorem 2.1. [1] Let (2,d) be a complete generalized metric space and
T :Q — Q be a strictly contractive function with Lipschitz constant L.
Then for each given x € Q, either d(T™z, T 'x) = 0o for all m > 0,
or other exists a natural number mqg such that:

(i) d(T™x, T™ 1 x) < oo for all m > my;

(13) the sequence {T™x} is convergent to a fixed point y* of T;

(731) y* is the unique fized point of T in A ={y € Q: d(T™x,y) < co};
(i) d(y,y*) < 2 d(y, Ty) for all y € A.

Theorem 2.2. [2] Let V and W be real vector spaces. A mapping
f:V = W satisfies the following functional equation

2f (mez> :Zf mxi—i- Z Zj —i—f(Za:,),
i=1 i=1 i=1

=1 i

if and only if f is additive.
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We start our work with the main theorem of our paper.

Theorem 2.3. Let ng € N be a fized positive integer. Let f: A — B be
a mapping for which there ezists a function ¢ : A™ — [0,00) such that

2uf (Zm$z> —Zf p | ma; + Z zj || —f (ZM%)
=1 =1 =1 i) i=1

S @(1'17352; e 71.771) (4)

forallpe T = {ew; OSHﬁ%} and all x1,-++ ,zm € A, and that

[f([z1z2 - 2p]a) = [f(z1) f(22) -+ flzm)]BllB < (71,22, ;2m) (5)

forall xq,- -,z € A. If there exists an L < 1 such that
r1 X9 x
gp(l'l’mQ,... 7$m) éngp (7’7,... ’ﬂ) (6)
m’'m m
forallzy, -+ x, € A, then there exists a unique m— Lie homomorphism

H : A — B such that

ZL‘,0,0,"' 70)
m —mL

1 (@) — H@)] < 2 ()

for all x € A.

Proof. Let Q be the set of all functions from A into B and let d(g, h) :=
inf{C' € R : ||g(z) — h(z)||B < Cp(x,0,---,0),Vz € A}. It is easy to
show that (£2,d) is a generalized complete metric space. Now we define
the mapping J : Q@ — Q by J(h)(x) = %h(m:p) for all x € A. Note that

for all g, h € Q, with d(g,h) < C we have

lg(z) = ()] < Co(x,0,---,0)

ng(mx) B ih(mx) < Co(mz,0,---,0)
m m m

1 (mx) — lh(mgr:) < LCy(x,0 0)
mg m ()0 ) ) )

d(J(g),J(h) < LC.
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for all z € A. Hence we see that d(J(g), J(h)) < Ld(g, h) for all g, h € €.
It follows from (6) that

. @(mkml, mkl?v T 7mkxm) . k
< —

o, mF < g el ) =00 (8)
forall z1, -,z € A. Puttingp=1, 29 =z andz; =0 (5 =2,--- ,m)
in (4), we obtain

mx z,0,---,0
|10 gy < 22 0eee) )
m m
for all x € A. Therefore,
1
d(f,J(f)) = — < oo (10)

By Theorem 2.1, J has a unique fixed point in the set X; := {h € Q :
d(f,h) < co}. Let H be the fixed point of J. H is the unique mapping
with H(mz) = mH(z) for all x € A, such that |[f(z) — H(z)||p <
Cp(x,0,---,0) for all x € A and some C € (0,00). On the other hand
we have limy_,o, d(J*(f), H) = 0, and so

. 1 k
klgl;o — f(m"x) = H(z), (11)
for all z € A. Also by Theorem 2.1, we have

d(f, H) < W. (12)

From (10) and (12), we have d(f, H) < —L—. This implies the inequal-
ity (7). By (5), we have

[H([x122 - 2] a) — [H(z1)H (x2)H (23) - - - H(2m)] Bl

) H([mFzimFay - - mPa,)a)
= lim
k—ro0

B ([H (mP*z1)H(mFzo)H(mFx3) - - - H(mPz,,)] )

mmk

mmk

So(mkxla mkx% e 7mkxm)

< lim =

T k—oo mm

=0

o7
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forallz1, -+ ,zm € A. Hence H([z122 - - - Tm)a) = [H(z1)H (z2)H (x3) - - H(zm)|B
for all z1, -+, 2, € A. On the other hand, it follows from (4), (8) and
(11) that

i=1 J=1 i

' 1 m 1 m
= 2f<Zm+%>—;f Tak > mh

i=1 j=1 ji#j
k k
. m Ty, m-ro,- - ’I?’L X
S hm 90( ) k: ) m) =0
m—o0 m

for all x1,---, 2y, € A. Then
2H (mez> ZH max; + Z x| +H (sz> (13)
=1 j=1 i#j
for all 1,---,z,, € A. So by Theorem 2.2, H is additive. Letting

x; = x for all i = 1,2,--- ;m in (4), we obtain ||uf(z) — f(uz)|p <
o(z,x,--- ,x) for all x € A. Tt follows that

1 (pm*z) — pf (mFa)]|

H —uH = 1
1H () — pH(z)| = lim o
k k k
S hm So(m "r7m :’C’ ’m II:) :0
k—oo mk

forallue’]l"l ::{ O<0<2”},andall:ﬂ€A.Onecanshow

that the mapplng H A — B is C-linear. Hence, H : A — B is an
m—Lie homomorphism satisfying (7), as desired. U

Corollary 2.4. Let 0 and p be non—negative real numbers such that
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p < 1. Suppose that a function f: A — B satisfies
m m m
2uf (mez> —Zf w | mx; + Z x;
i=1 i=1

G=1 it
—f <Z Mfﬂi) <90 (Z ||$i”i> (14)
=1 =1

forallpeTi and all z1, - ;2 € A and

[ (12 - wn]a) = [f(21) f(22) - f(zm)]Bll < 0 (Z Il‘illi> (15)

=1

for all xq,--- ,xy, € A. Then there exists a unique m— Lie homomor-
phism H : A — B such that

0llz]1%
- H < 16
If (@) = H(z)| < ——~7 (16)
for all x € A.
Proof. Put p(z1,x2, + ,Zm) = 0> (||a;]|"y) for all zq,--- 2, € A

in Theorem 2.3. Then (8) holds for p < 1, and (16) holds when L =
mP~t. O
Similarly, we have the following and we will omit the proof.
Theorem 2.5. Let ng € N be a fized positive integer. Let f : A — B be
a mapping for which there exists a function ¢ : A™ — [0,00) satisfying
R i0 . 2 .

(4) for all u € T% = {eZ ; 0<6< %} and (5). If there exists an
L < 1 such that

(E’ﬂ7... ’xﬂ) S L¢(w17x27 7xm) (17)
m’'m m m
forallxy, -+, xm € A, then there exists a unique m— Lie homomorphism
H : A— B such that
Lo(x,0,0,---,0)
If(z) — H(z)|| < (18)

m —mL
for all x € A.

99



60

H. AZADI KENARY, KH. SHAFAAT AND H. KESHAVARZ

Corollary 2.6. Let 0 and p be non—negative real numbers such that
p > 1. Suppose that a function f : A — B satisfying (1) and (15).
Then there exists a unique m— Lie homomorphism H : A — B such that

m||z|’
[f(z) — H(z)|| < W_%Q (19)
for all xz € A.
Proof. Put p(z1,z2, - ,zm) == 0> (||a;][5y) for all zy,--- 2, € A

in Theorem 2.5. Then (18) holds for p < 1, and (19) holds when
L=mt?. O

Theorem 2.7. Let ng € N be a fized positive integer. Let f: A — B be
a mapping for which there exists a function ¢ : A™ — [0,00) such that

2uf (Zm%) —Zf p | ma; + Z z; —f<z,u$z'>
i=1 i=1 =1 Ji#j i=1
< Qo(xhx% to 7$m)(20)
forallpe T = {eie ; 0<0< 7272} and all x1,--- ,xm € A, and that
1f([zz---a]a) = [f(@)f(z) - f(2)]BllB < @(@, 2, ) (21)

for all x € A. If there exists an L < 1 such that

QD(:L'I,:L'Q,"' 7$m) éngD (E’ﬂ, ’xﬂ) (22)
m’m m
forallxy, -z, € A, then there exists a unique Jordan m— Lie homo-
morphism H : A — B such that
I£(2) - H@) < £00 0 (23)
- m—mL

for all x € A.

Proof. By the same reasoning as in the proof of Theorem 2.3, we can
define the mapping H(z) = lim_ 00 #f(mkx) for all x € A. Moreover,
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we can show that H is C-linear. It follows from (21) that

[H([zx---a]a) — [H(z)H(z) - H(z)]B]

5 H([mFx---mFa]s)  [H(mPz)H(mFz) - H(mFz)|p
= lim -
k—o0 mmk mmk
1
< kli)ngo W(p(mkx,mkz, wamFz) =0

for all x € A. So H([zx---x]a) = [H(z)H(z)--- H(z)|p for all x € A.
Hence H : A — B is a Jordan m — Lie homomorphism satisfying (23).
O

Corollary 2.8. Let 0 and p be non—negative real numbers such that
p < 1. Suppose that a function f: A — B satisfies

2uf (Zm%) —Zf p | ma; + Z T f(ZMUCi)
i=1 i=1

=1 i#j i=1
n
<0 ()
=1

forallpe Ty andallzy,--- ,xm € Aand || f([zz - x]a)—[f(x)f(x)---

o

f(@)]B|l < nb(||z||y) for all x € A. Then there exists a unique Jordan
m— Lie homomorphism H : A — B such that

0|y
m — mpP

If(z) = H(z)|5 < (24)

for all x € A.

Proof. It follows from Theorem 2.7 by putting ¢(z1,x2, -, Tm) =
05" (llzill%) for all 21, -+ , 2y € Aand L=mP~V. O
Similarly, we have the following and we will omit the proof.

Theorem 2.9. Let ng € N be a fixed positive integer. Let f : A — B be a
mapping for which there exists a function ¢ : A™ — [0, 00) satisfying (/)
forallpe Ty = {ew ;1 0<0< i—’;} and (5). If there exists an L < 1

such that cp(xl L2 ... x—m) < %cp(:cl,xg,--- s Tm) for all xq,- -+ ,xpy €

m’m’ ’'m
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A, then there exists a unique Jordan m— Lie homomorphism H : A — B
such that
LSO(xa 07 07 tr 70)

m — mlL

1f () = H(z)|| < (25)

for all x € A.

Corollary 2.10. Let 6 and p be non—negative real numbers such that
p > 1. Suppose that a function f : A — B satisfying (14) and (21).
Then there exists a unique Jordan m— Lie homomorphism H : A — B
such that »
0|
1f(x) = H(z)|lp < ——4 (26)

mP —m

for all x € A.

Proof. Put p(z1,22,  ,zm) = 0> (||a;]|"y) for all zq,--+ 2, € A
in Theorem 2.9. Then (25) holds for p > 1, and (26) holds when
L=mP_ 0O
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