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Abstract. The boundary element methos is applied to the Helholtltz
equation. To this end we discretized the Helmholtz equation over the
boundary Ω and conclude a system of equations. By applying the bound-
ary condition we get a new system which gives the solution of the equa-
tion.
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1. Introduction

Numerical approximation for solving a differential equation has a wide
range of application in engineering and mathematics. Some of these
methods are: finite difference methods, finite element methods and bound-
ary element method. In these methods we usually discritize the equation
and apply the governing equations on the suitable mesh. The most im-
portant thing in the numerical approximation is determination of the
size of mesh such that the approximation solution has the suitable ac-
curacy.
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The boundary element method is a powerful tool for numerical approxi-
mation for a differential equation. For the first time, in 1872, Betti pre-
sented this method in elasticity theory [11]. In 1903 Fredholm extended
this method [12], but in 1977 the boundary element method appears in
some publications of Banerjee, Butterfield, Brebbia and Dominguez [13,
14].
In this paper we want to find an approximate solution for the Helmholtz
equation by the boundary element method. This paper organized in
three sections: in the first section, we introduce some preliminaries and
also describe the structure of the boundary element method. In the sec-
ond section, we applied boundary element method for Laplace equation
which is a special case of helmholtz equation. Finally, in the third section
we approximat the boundary element solution of Helmholtz equation.

In boundary element method we use three important things.

1- The Gauss divergence theorem: If Ω ⊂ Rd be a bounded domain
and w = (w1, · · · , wd) ∈ C1(Ω)d be a vector-valued function, then
for x ∈ Rd we have [8]∫

Ω
∇ · w dv =

∫
Γ
w · nds,

where n = (n1, · · · , nd) is the outward unit normal to boundary Γ.

2- The second Green identity: Let Ω ⊂ Rd be a bounded domain and
v, w ∈ C2(Ω), then [8]∫

Ω
(w∇2u− u∇2w)dv =

∫
Γ
(w
∂u

∂n
− u

∂w

∂n
)ds.

3- The Dirac delta function: The Dirac delta function defined as [1]

δ(X −X0) =

{
∞, X = X0,

0, X 6= X0,

and has two following properties:∫ ∞

−∞
δ(X −X0) dX = 1,

∫ ∞

−∞
f(X)δ(X −X0) dX = f(X0).
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The structure of the boundary element method can be decribed as fol-
lows.
Consider the following boundary element value problem

Au := Auxx + 2Buxy + Cuyy +Du = f, inΩ,
u = ū, onΓ1,

q =
∂u

∂n
= q̄, onΓ2,

(1)

where the coefficients A,B,C,D are constant and Γ1, Γ2 are boundaries
of domain Ω, q is the derivative of potential function in direction of
n and ū, q̄ are given values of the flux and potential function on the
boundary. In boundary element method we multiply the first equation
of (1) by weight function w ∈ C2(Ω) and integrate over Ω to get the
following integral form ∫

Ω
(Au)wdv =

∫
Ω
fwdv. (2)

by choosing the fundamental solution Aw = −δ(X −X0) as the weight
function and using the second Green identity, we can convert (2) to a
continuous integral equation over the boundary. For applying the bound-
ary element method we discretize the problem over the boundary of
Ω. To this end we consider ∂Ω = ∪Nj=1∂Ωj and conclude the system of
equations HU = GQ. If we apply the boundary conditions, we get a
new system of equations as AX = B, which gives the flux and potential
u on the boundary.
In this paper we want to apply the bounday element method for the
Helmholtz equation. In (1) if we consider A = 1, B = 0, C = 1, D = k2

and by considering ∇2u = uxx + uyy, we get the Helmholtz equation as
Au := ∇2u+ k2u = 0, inΩ ⊂ R2,

u = ū, onΓ1,

q =
∂u

∂n
= q̄, onΓ2,

(3)

where k is the wave number.
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2. Boundary Element Method for the Laplace
Problem

In this section we apply the boundary element method to the Laplace
equation which is the special case of Helmholtz equation. In equation
(3) if we set k = 0, the following laplace equation is resulted:

∇2u = 0, inΩ ⊂ R2,

u = ū, onΓ1,

q =
∂u

∂n
= q̄, onΓ2.

(4)

Consider weight function w such that it satisfies

∇2w + δ(X −X0) = 0, (5)

where X0 = (ξ, η) is a singular point and δ is the Dirac delta func-

tion. Considering the polar form ∇2w =
1
r

∂

∂r
(r
∂w

∂r
), where r = |X −

X0| =
√

(x− ξ)2 + (y − η)2. In this case for r > 0, δ(X −X0) = 0, one
obtain

1
r

∂

∂r
(r
∂w

∂r
) = 0,

where A and B are arbitrary constants. Since we look for a particular
solution, we may set B = 0. Which gives after integrating twice

w = A ln r +B.

By considering a neighborhood of X0 and using the integral property

for dirac delta function, we obtain A =
1
2π

. Hence, the fundamental

solution for the Laplac equation becomes [1]

w =
1
2π

ln
(

1
r

)
.

Also note that

∂w

∂n
=
∂w

∂r

∂r

∂n
= − 1

2πr
(∇r · n) = − 1

2πr2
(rxnx + ryny),
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where rx = x− ξ and ry = y − η.
Let X0 ∈ Ω and consider a neighborhood of X0 with radius ε, namely
Ωε and consider the new domain Ω − Ωε with boundary ∂Ω ∪ ∂Ωε. In
this domain by letting q =

∂u

∂n
and q∗ =

∂w

∂n
the Green formula can be

written as

lim
ε→0



Ω−Ωε
(u∇2w − w∇2u)dv = lim

ε→0



∂Ω
(uq∗ − wq)ds

+ lim
ε→0



∂Ωε

(uq∗ − wq)ds,

by using (5) and the definition of the Dirac delta and X0 /∈ Ω−Ωε, one
obtain

lim
ε→0



Ω−Ωε
u∇2wdv = lim

ε→0


−



Ω−Ωε
uδ(X −X0)dv


= 0,

using the Laplac equation (4), result in

lim
ε→0



Ω−Ωε
(u∇2w − w∇2u)dv = 0.

On the other hand, [9]

lim
ε→0



∂Ωε

(uq∗ − wq)ds = lim
ε→0



∂Ωε

(u− u(X0) + u(X0)) q∗ds

− lim
ε→0


− ln ε
2π



∂Ωε

∂u

∂n
ds



= lim
ε→0


u(X0)

 2π

0

1
2π
dθ


+ lim

ε→0


−ε ln ε
2π

∂u(X0)
∂n

 2π

0
dθ



= u(X0).

Therefore, the boundary integral equation in Ω is:

u(X0) =


∂Ω
(wq − uq∗)ds,

which means that for given u, q on ∂Ω, the values of u can be deter-
minded for the interior point of the domain.
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Let X0 ∈ ∂Ω and consider a neighborhood of X0, namely Ωiε and con-
sider the domain Ω−Ωiε with boundary ∂Ωiε∪(∂Ω−∂Ωε). In this domain
the Green formula can be written as,

lim
ε→0



Ω−Ωiε
(u∇2w − w∇2u)dv = lim

ε→0



(∂Ω−∂Ωε)
(uq∗ − wq)ds

+ lim
ε→0



∂Ωiε

(uq∗ − wq)ds.

Since the governing equation is Laplace equation and the X0 is out of
the domain Ω− Ωiε,we have:

lim
ε→0



∂Ω−∂Ωε
(u∇2w − w∇2u)dv = 0.

On the other hand

lim
ε→0



∂Ωiε

(uq∗ − wq)ds = lim
ε→0



∂Ωε

(u− u(X0) + u(X0)) q∗ds

− lim
ε→0


− ln ε
2π



∂Ωε

∂u

∂n
ds



= lim
ε→0


u(X0)



∂Ωiε

1
2π
dθ


+ lim

ε→0


−ε ln ε
2π

∂u(X0)
∂n

 2π

0
dθ



= C(X0)u(X0),

where C(X0) is a geometry-dependent parameter. It varies between zero
and unity and equals 12 . If the point is on a smooth part of the boundary
at edges, it is related to the angle of the joining surfaces and equals

C(X0) =
internal angle

2π
. Also

lim
ε→0



∂Ωε

(uq∗ − wq)ds = lim
ε→0



∂Ω
(uq∗ − wq)ds.

So the boundary integral equation in ∂Ω is:

C(α)u(X0) +


∂Ω
uq∗ds =



∂Ω
wqds.
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To apply the boundary element method, the boundary is divided into
small elements as ∂Ω = ∪Nj=1∂Ωj where N represents the number of ele-
ments that form the boundary. The mesh is generated only on the bound-
ary and it is more flexible than in the case of finite element mesh. The
integrals are then expressed for each element and summed up in or-
der to evaluate the integral on the whole boundary. Considering con-
stant element discretization and the source points situated on a smooth
boundary, the boundary integral equation can be written as

1
2
u(X0) +

∫
∪N

j=1∂Ωj

uq∗ds =
∫
∪N

j=1∂Ωj

wqds.

where by definition

Hij =

Ĥij , i 6= j,
1
2

+ Ĥij , i = j,

and

Ĥij =
∫
∂Ωj

∂w

∂n
dsj , Gij =

∫
∂Ωj

w dsj ,

we get
N∑
j=1

Hijuj =
N∑
j=1

Gijqj .

Here we know some of uj ’s and some of qj ’s, i.e.,there are N known
quantities and N unknowns. Applying the boundary conditions to every
midpoint of the elements, we obtain the equations in the matrix-vector
form as

HU = GQ.

Rearranging this system with known quantities on one side and un-
knowns on the other, we get a linear system of equations AX = B

where X is unknown values.

Example 2.1. Consider the Laplace equation in the rectangle plate with
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mixed boundary conditions as [7]
∇2T = 0, 0 < x < 2, 0 < y < 1,
∂u

∂n
(x, 0) = 0, T (2, y) = 0,

∂u

∂n
(x, 1) = 0, T (0, y) = 1.

Using four constant element discretization with the collocation points
at the center of the elements, Hij and Gij for i 6= j, one obtain:

Hij =
∫
∂Ωj

q∗dsj = − 1
2π

∫ Xj+1

Xj

− 1
r2

(rxnx + ryny)dX

= − le
4π

4∑
k=1

wk
r2k

(rxknxk + ryknyk),

and

Gij =
∫
∂Ωj

wdsj =
1
2π

∫ Xj+1

Xj

ln
(

1
r

)
dX

=
le
4π

4∑
k=1

wk ln
(

1
rk

)
.

also for i = j, we have Hij =
1
2
, and

Gij =
1
π

∫ le
2

0
ln
(

1
r

)
dX =

le
2π

(
ln
(

2
le

)
+ 1
)
,

where le = Xj+1−Xj is the length of the element on which the integral
is calculated, wk represent the weight functions from the Gauss inte-
gration scheme and rk is the distance from the ith source point to each
integration points on the jth element. So

H =


0.5000 −0.1250 −0.2497 −0.1250
−0.2113 0.5000 −0.2113 −0.0780
−0.2497 −0.1250 0.5000 −0.1250
−0.2113 −0.0780 −0.2113 0.5000

 ,
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G =





0.3183 −0.0210 −0.0421 −0.0210
−0.0176 0.2695 −0.0176 −0.1119
−0.0421 −0.0210 0.3183 −0.0210
−0.0176 −0.1119 −0.0176 0.2695



 .

From these equations unknow values in system AX = B will be calcu-
lated as

T1 = 0.4993, T3 = 0.4993, q2 = −0.7578, q4 = 0.7575.

Consider these values of T in interior points, result in

P1 = (0.75, 0.5), P2 = (1, 0.5), P3 = (1.5, 0.5),

as

T(i) =
N

k=1

Gikqk −
N

k=1

HikTk,

where
Gik =



Γk

widsk,Hik =


Γk

∂wi
∂n

dsk,

So
TP1 = 0.5943, TP2 = 0.4869, TP3 = 0.3118,

Therefore the exact values are

T eP1 = 0.625, T
e
P2 = 0.5, T

e
P3 = 0.25.

Compared with the exact values, the solution shows quite a good approx-
imation for the internal points not only for the boundary points. Figure
1, 2

Figure 1. The effect of increasing the number of elements on
approximate solution of the Laplace equation
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-

Figure 2. The effect of increasing the number of elements on
approximate solution of the Laplace equation (zoom)

3. Boundary Element Method for the Helmholtz
Equation

In this section we apply the boundary element method to the Helmholtz
equation (3) for k = 0. Consider weight function w such that it satisfies

∇2w + k2w + δ(X −X0) = 0, (6)

where X0 = (ξ, η) is a singular point. The solutions for the homogeneous
case are the Hankel functions of the first and second kinds of order zero.
So we write

w(r) = AH
(2)
0 (kr),

where r =

(x− ξ)2 + (y − η)2 and H(2)

0 is the Hankel function of the
second kind of order zero and it is representable in terms of the 0th-order
Bessel functions of the first and second kinds J0, Y0 as

H
(2)
0 (z) = J0(z)− iY0(z) = H̄

(1)
0 (z).

By using the small-argument approximation to the Hankel function as
[2]

H
(2)
0 (kr) ≈ 1− i

2
π
log(

γkr

2
), r → 0,

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.7

0.75

0.8

0.85

0.9
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where γ = 1.781 and integrating (6) over a very small circle of radius ε
centered at the origin, one obtain

A

∫
Ω
[∇ · ∇+ k2][1− i

2
π

log(
γkr

2
)]dv = −1,

using the divergence theorem, the first term is converted to a line integral
as

−i 2
π

∫ 2π

0
∇
(

log(
γkr

2
)
)
rdφ = −4i,

the second term goes to zero, so

A = − i
4
,

Therefore, we get the following fundamental solution for helmholtz equa-
tion as [2]

w =
1
4i
H

(2)
0 (kr).

Also we note that [10]

q∗ =
∂w

∂n
=
∂w

∂r

∂r

∂n
= − 1

4i
kH

(2)
1 (kr)(∇r · n) = −nxrx + nyry

4ir
kH

(2)
1 (kr),

where rx = x − ξ and ry = y − η. To obtain the boundary integral
equation, we integrate (3) over the domain Ω with a weighting function
w to get, ∫

Ω
(∇2u+ k2u)wdv = 0.

The second Green identity, implies that∫
Ω
w∇2udv =

∫
Ω
u∇2wdv +

∫
∂Ω

(uq∗ − wq)ds,

so ∫
Ω
(∇2w + k2w)udv +

∫
∂Ω

(uq∗ − wq)ds = 0. (7)

By using the properties of Dirac delta gives∫
Ω
(∇2w + k2w)udv = −u(X0).
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So the boundary integral equation for all the interior points is

u(X0) +
∫
∂Ω
uq∗ds =

∫
∂Ω
wqds.

The boundary integral equation in general case is [3]

C(X0)u(X0) +
∫
∂Ω
uq∗ds =

∫
∂Ω
wqds,

where C(X0) =
α

2π
is a geometry-dependent parameter where α is inter-

nal angle. Assume that the boundary is discretized and represented by
N linear constant elements as ∂Ω = ∪Nj=1∂Ωj and the source points situ-
ated on a smooth boundary (α = π), so the boundary integral equation
can be written as

1
2
u(X0) +

∫
∪N

j=1∂Ωj

u
∂w

∂n
ds =

∫
∪N

j=1∂Ωj

w
∂u

∂n
ds.

Therefore
N∑
j=1

Hijuj =
N∑
j=1

Gijqj ,

where

Hij =

Ĥij , i 6= j,
1
2

+ Ĥij , i = j,

and

Ĥij =
∫
∂Ωj

∂w

∂n
dsj , Gij =

∫
∂Ωj

w dsj .

By applying these boundary conditions to every midpoint of elements,
we obtain the equations in the matrix-vector form HU = GQ. Rear-
ranging this system, a linear system of equations AX = B, where X is
unknow values will be resulted.

Example 3.1. Consider the following Helmholtz equation with k =
√

2π
4

and the domain 0 < x < 1, 0 < y < 1, the boundary conditions in [4]
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∇2u+ k2u = 0, 0 < x < 1, 0 < y < 1,
u(0, y) = 0, 0 < y < 1,

u(1, y) =
√
2
2
cos(

πy

4
), 0 < y < 1,

∂u

∂n


y=0

= 0, 0 < x < 1,

∂u

∂n


y=1

= −π
√
2

8
sin(

πx

4
), 0 < x < 1.

The exact solution of this particular boundary value problem is

u(x, y) = sin(
πx

4
) cos(

πy

4
).

In Table 1, a comparison between the exact solutions and the approx-
imate solutions for differente values of elements of equation (6) of this
element is given. Also in figure 3 and 4, these results are depicted.

Table 1. The effect of increasing the number of elements on
approximate solution helmholtz equation for interior points

Figure 3. The effect of increasing the number of elements on
approximate solution helmholtz equation
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