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1 Preliminaries

One of the attractive topics in mathematical analysis is finding the so-
lution to a functional equation, i.e., a function that satisfies the given
equation.
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A function A : R — R is called additive if the equation
Az +y) = A(z) + A(y)

holds for all z,y € R.

A function B : R x R — R is called bi-additive if B is additive in
each variable. A bi-additive function B is called symmetric if B(z,y) =
B(y,x) for all z,y € R.

Note that the additive function A : R — R is Q-homogeneous, i.e.,

A(gqr) = qA(x) (1)

for all x € R and g € Q (see [12, Theorem 5.2.1]).

The existence of discontinuous additive functions was an open prob-
lem for many years. Researchers could neither show that all additive
functions are continuous, nor give an example to a discontinuous addi-
tive function. In 1905 G. Hamel [1 1] succeded in proving that there exist
discontinuous additive functions.

Theorem 1.1. [15] Let m € Z, and assume that A : R — R is an
additive function. If the function A satisfies

A(x™) = 2™ 1A (2), z € R\{0},
then A(x) = A(1)x for every x € R.

A function p: R — R is called quadratic if the equation

p(r +y) + p(r —y) = 2p(z) + 2p(y)

holds for all z,y € R.

In [2], Aczél et al. have been proved that a function p : R — R
is quadratic if and only if, there is a symmetric bi-additive function
B : R xR — R such that p(z) = B(z, z) for all z € R. This B is unique.

Recently, some mathematicians have studied the solution of quadratic
functional equation on R under certain additional conditions (see [5, 6,

).
In 1965, Aczél [1] showed that a quadratic function p : R — R can
be associated with a symmetric and bi-additive function B: Rx R — R
given by the following formula

1

B(z,y) = 5lo(z +y) —plz) = ply)],  zyeR. (2)
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So, by using the Q-homogeneity of additive functions, we have

B(px,qy) = paB(z,y),  plez) = B(qz, qz) = ¢*p(x)

for all x,y € R and p,q € Q. Also, using (2) and induction on n, one
can show that

P<Zwi> =Y pw)+2 D Blwjw)
1=0 =0

0<j<k<n

for all n € N and wg, --- ,w, € R.

Recall that an additive function o : R — R is called derivation if
o(xy) = zo(y) + yo(x) is fulfilled for all z,y € R. Thus, every deriva-
tion o satisfies o(2?) = 2z0(x) for all x € R. Moreover, there exist
nontrivial derivations on R (see [12, Theorem 14.2.2]). Also, both o(x?)
and (o(x))? are quadratic functions [3].

Lemma 1.2. [19, 1] Let A be an additive function.

(i) The equation
A(x?) = 22 A(x) (3)

holds for all x € R\{0} if and only if A is a derivation.

(ii) The equation
A(z™) = =22 A(x) (4)

holds for all x € R\{0} if and only if A is a derivation.

Theorem 1.3. [15] Let m,n € Z, and let o # 1 be a real number such
that m = an # 0. The additive function A : R — R satisfy the condition

A(x™) = ax™ " A(z"™)
for all x € R if and only if A is a derivation.

In 1968, A. Nishiyama and S. Horinouchi [15] showed in the following
theorem under what conditions the solutions of an additive functional
equation are continuous.
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Theorem 1.4. [15] Assume that A : R — R is an additive function
such that

A(@™) =ax™ " A(z")

hold for every x € R\{0}, wherever a € R is constant and m,n € Z with
m # an. If a =1, then
A(z) = A(1)x

for every x € R. If a # 1, then A(x) =0 for every x € R.
Let the unit circle denoted by
St={(z,2) eR?: 2* + 2> = 1}.

Below are the theorems proved by Boros and Erdei [1], which will be
used in the proof of the main results.

Theorem 1.5. Let A € R and A : R — R be an additive function such
that

TA(z) + zA(z) = A (5)
holds for all (z,z) € S*. Then F(x) = A(x) — Az is derivation.
Theorem 1.6. Let A: R — R be an additive function such that

zA(z) — zA(x) =0 (6)
holds for all (z,z) € S. Then A is linear.

We also need the following Lemma:

Lemma 1.7. [7] Let m € N and K be a field. Assume that S is a set,
W C K contains at least m+1 elements, and the functions Aj : S — K,
j=0,1,...,m, satisfy

Z Aj (.%‘)tj =0
7=0

forallze S andt € W. Then Aj(x) =0 for allz € S and 0 < j < m.
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Numerous authors have conducted research on functional equations,
including additive, quadratic, Drygas and Pexider equations, as well as
their generalized form ([3, 4, 5, 6, 7]). In this paper, motivated by [4, 5],
we characterize the solutions of the following Pexider functional equation

f@+2) + falw —2) = f3(x) + fa(z),  =,z€R, (7)

under additional conditions that leads to continuous additive or deriva-
tion functions, where f; : R — R, for j = 1,2,3,4, are functions. The
general solutions of (7), which we will use in the proof of main results,
ere obtained by Ebanks et al. in [9, Theorem 4] as follows.

Theorem 1.8. The general solutions f; : R — R for j = 1,2,3,4 of
(7) are given by

(Fi(2) = LBz, 2) — 1(Al CA)(@) +
B(I 33) — *(Al + AQ)(.’L‘) + Co

(z,2) = Ar(x) + 3
(93) B(x,x) + As(x) + ¢4

bgw\»—wxw

for every x € R, where A1, A3 : R — R are additive functions and
B :R xR — R is a symmetric bi-additive function and c¢1 +co = c3+c4.

2 Main Results

First, we discuss the conditions under which the functions f;’s become
derivations.

Theorem 2.1. Let m,n € Z, and let o # 1 be a real number such that
m=an #0. Let fj : R =R for j =1,2,3,4 satisfy the equation (7).
Then f;(0) =0 and the conditions
fi(@™) = az™ " f1(z"), (8)
fa (&™) = az™ " f3 (") (9)

hold for all x € R if and only if f;, (j =1,2,3,4), are derivation on R.
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Proof. If f;, j = 1,2,3,4, are derivation functions, then by applying
induction and using Lemma 1.2, it follows that

fi (@) = wa" 1 fi(x)

where x € Z. So, the equations (8) and (9) are verified.
To prove the converse of the theorem, we consider the following cases:
Case 1. m >0, n > 0.
Replace x by tx in (8), where t € Q, apply Theorem 1.8 together ith
the assumption f;(0) = ¢; = 0.
Then we obtain

t"x" [tsz (2™, ™) —t™ (A — A2) (2™)] = t"ax™ [tan (a™,2") — t"(Ay — Ag) (a™)]

for all x € R, where A7, A : R — R are additive functions and B :
R xR — R is the following identity symmetric bi-additive function. So,

t2m+nan (xm, xm) _ tm+2na$mB (xn’ wn)
+ " (@™ (A — Ag) (2™) — 2™ (A — Ag) (2™)] = 0.
By Lemma 1.7, considering the coefficient of ™" we conclude that

"B (z™,2™) = 0 and so B(z,z) = 0 for every z € R.
Thus, by Theorem 1.3

(A1 — A2)(z)

file) =3

is a derivation.
Similarly,

(A1 + A2)(z)

falw) =~

is a derivation. Hence,

fa(w) = —Ai(x) = filz) + falx),  falz) = Az(2) = fi(z) = fal@)
are derivations.
Case 2. m <0, n <0.
Replace z by 7! in (8) and (9), we get
fi(z7™) = ez M i@,
fo(z™™) = aa™m" M fo (a7,



SOLUTIONS OF PEXIDERIZED FUNCTIONAL EQUATION ON ...

where 0 # —m = a(—n), a # 1, —m > 0 and —n > 0. By applying
Case 1, we gain the desired result.

Case 3. m < 0,n > 0.

Substitute 2™ and then z" in place of z in (8), to obtain

fl (wmQ) _ axm(m—n)fl(xnm)’

fl (xnm) _ axn(m—n)fl ($n2>

for all x € R. From the resulting equations, we arrive at
2 _
Ai@™) = a2™ " fi(a")
and similarly,

f2(2™) = @22 fo(a™)

whence m2 = a’n? and m? £ 0. If a? # 1, the result follows by Case 1.
If > = 1, then o = —1 (since o # 1) and hence m = (—1)n.
Therefore, equations (8) and (9) become

72nf1 xn)?

(z7") =
fa (x7) = =272 fo(z").

1 ("

For arbitrary 9 > 0, set ¥ = 2" with € R\{0}, so

fi (7Y = =972 f1(9),
fo (071 = =072 fo().
Also, these equations hold for ¥ < 0, since f1 and f> are odd functions.
Thus, according to Lemma 1.2, the result follows.
Case 4. m >0, n < 0.

In this case, equations (8) and (9), reduce to the same form as in
case 3

fi (@) = Zanom gy @),
fo (a7) = Zanm iy (e,

—=Q

This completes the proof. O
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Example 2.2. Let j = 1,2,3,4. Define f; : R — R by

fi(z) =o(z)
fo(zx) ==

fa(x) =x+ o(x)
faw) =o(x) —=

for all € R, where o is nontrivial derivation on R. Then, f; satisfying
the equation (7) and f;(0) = 0. However, fo does not satisfy condition

9).

Theorem 2.3. Let j = 1,2,3,4. Assume that the functions f; : R — R
satisfy the equation (7), f;(0) =0 and the conditions

fi(@™) = ax™ " fi(z"), (10)
fa (2™) = ax™ " fo(z") (11)

hold for every x € R\{0}, where o € R is constant and m,n € Z with
m# an. If a =1, then

filx) =Mz
fa(z) = Aoz
f3(z) = (M1 + A2)z
fa(@) = (A1 — Ao)z

for allz € R, where Ay = fi1(1) and A2 = fo(1). If o # 1, then fj(x) =0
for every x € R.

Proof. Let « =1 and m # an.

Ifm=0orn=0,from (10), (11) and f;(0) =0 for j = 1,2,3,4, then
fi(x) = xfi1(1) and fo(x) = zf2(1) for all z € R. Therefore, by Theorem
1.8, fs(z) = fi(z) + fo(z) = x(f1 + f2)(1) and fu(z) = fi(z) — fa(z) =
z(f1 — f2)(1) for all x € R.

Now, suppose that m # 0 and n # 0. By a similar methods in the
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proof of Theorem 2.1, it can be shown that
fi(z) =

Fale) = —5 (A1 + A2)(2)

f3(z) = —Ai(z) = fi(z) + fo(2)
(fa(x) = Az(z) = fi(z) — fo(x)

are additive functions. Hence, by Theorem 1.4, the result is verified in
this case.

Let @« # 1 and m # an and take z = 1 in (10) and (11). Then
fi(1) = f2(1) = 0, since a # 1.

If m=0orn=0,then fi(x) = azxfi(1) and fa(z) = azxf2(1) for all
x € R. Thus f;j(z) =0,1 < j <4, for every z € R.

In the case m # 0 and n # 0, by Theorem 1.4, the proof is complete.
O

In the sequel, we find the solution of the system (7) on the restricted
domain S*.

—5 (41— A2)(@)

Theorem 2.4. Let A\, A2 € R. Suppose that f; : R — R forj =1,2,3,4
satisfy equation (7), with f;(0) =0 and assume that for all (z,z) € S

ofi () + 2fi(2) = M, (12
xfa (z) + zfa(z) = Ao (13)
Then
Fi(r) = fi(z) — Mz
Fa(r) = fa(w) — Aow
Fa(x) = f3(x) — (A1 + A)
Fa(x) = fa(z) — (M1 = Ao)z

are derivations.

Proof. Using Theorem 1.8, (12) and (13), we have
1
i[xB(x, x) —x(A1 — A2)(z) + 2B(z,2) — 2(A1 — A2)(2)] = A1, (14)

%[$B($, x) —x(A1 + A2)(z) + 2B(z,2) — 2(A1 + A2)(2)] = A2 (15)
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for all (z,z) € S', where A;, A : R — R are additive functions and
B :R xR — R is a symmetric bi-additive function.
Subtracting (15) from (14), we obtain

rAs(z) + 2zA2(2) = A1 — Mg, (z,2) € S!

Substitute —x for  and —z for z in (14), we obtain

SlaB(r,7) — oA — A)(x) — 2B(z,2) — 2(A1 — A)()] = A1, (16)
for all (z,z) € S'. Adding (15) and (16), we see that

CEAl(LU) + ZAl(Z) = *()\1 + )\2) (17)

for all (z,z) € S'. Thus by Theorem 1.5, Aj(x) + (A1 + A2)z and
Ag(x) — (A1 — \2)z are derivations.
Adding (14) and (15) and applying (17), we get

zB(z,x) + 2B(z,2) =0
for all (z,z) € St
Now, set z =v/1 — 22 in the above equation. Then
xB(z,x) +V/1— 2B (\/1 - a;Q,\/l - xQ) =0 (18)

for all z € R.
Replacing = with —z in (18), we get

—xB(x, z) +\/1 — 22B (\/1 - xQ,\/l - x2> =0 (19)

for all z € R.
Subtracting (19) from (18), we obtain xB(z,z) = 0 for all z € R.
Hence, B(z,x) = 0 for all x € R. Therefore by Theorem 1.8,

.

Fi(z) = —5(A1(@) + (A1 + o)z — Aa(z) + (M — A)x) = fi(w) — M

1
)
Folz) = —%(Al(@ + O+ o)+ Ao(@) — (M = A)) = folx) — hoz
./T3(:L’) =-A (37) — ()\1 + )\z)m = fg(l’) — ()\1 + )\Q)CC
(Fa(z) = Asg(z) — (A1 — A2)z = fa(x) — (M1 — A2)z

are derivations. O
In Theorem 2.4, by taking A\ = Ao = 0 we get the following result.
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Corollary 2.5. Assume that f; : R — R for j =1,2,3,4, satisfy equa-
tion (7), f;(0) =0 and

xfi (z) + 2fi1(z) =
xfg (x) + ng(z) =

hold for all (z,z) € S'. Then f;, j = 1,2,3,4, are derivations.

)

Theorem 2.6. If f; : R = R, j =1,2,3,4, satisfy the Pexider equation
(7), f;(0) =0 and

zf1(z) — zfi(x) =0, (20)
wfa(z) — zfa(x) =0 (21)
hold for all (z,z) € St, then f;, j =1,2,3,4, are linear.

Proof. Since f;(0) = 0 for j = 1,2, 3,4, then by Theorem 1.8, ¢; = 0.
Conditions (20) and (21) yields

xB(z,z) —x(A1 — A2)(2) — 2B(x,z) + z(A1 — A2)(z) =0,  (22)
xB(z,2) —x(A1 4+ A2)(2) — 2B(x,z) + 2(A1 + Ag)(x) =0 (23)

for all (z,z) € S!, where A1, A : R — R are additive functions and
B :R xR — R is a symmetric bi-additive function.
Subtracting (23) from (22), we get

xAg(z) — zA2(x) =0

for all (z,2) € S'. Thus by Theorem 1.6, Ay is linear.
Now, substitute (—xz, —z) for (z,z) in (22), we obtain

—xB(z,2) —x(A1 — A2)(2) + 2B(z,x) + 2(A1 — Az)(x) =0, (24)

for all (z,z) € St
Adding (23) with (24), we obtain

xA1(z) — zA1(x) =0, (z,2) € St

Therefore, by Theorem 1.6, we conclude that A; is linear.
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Adding (22) to (23) we get
xB(z,2) — z2B(z,z) = 2A1(z) — zA1(z) = 0

for all (z,2) € S'. Hence

zB (\/l—xQ,\/l—x2> :\/1—mQB(x,m) (25)

for all x € R.
Substituting —z in place of x in (25), we have

B <\/1 2201 x2) —/1— 22B(x, z) (26)

for all z € R.
From (25) and (26), we get B(z,z) =0forallz € R. So f; :R = R
for j =1,2,3,4 are linear. U

Conclusion

We obtain the additive solutions of the Pexider functional equation (7)
under conditional equations that leads to continuous additive or deriva-
tion functions.
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