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Endo-Artinian Modules
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Abstract. Let R be a commutative ring. A right R-module M is said
to be endo-Artinian if it is Artinian with regard to the left L-module
structure, where L = EndR(M). This study demonstrates that if R
is a Dedekind domain, then all injective R-modules with finitely many
simple components, all unfaithful modules, and arbitrary direct sums
of an endo-Artinian module are endo-Artinian modules. Moreover, the
following result is established: if R is a Dedekind domain and M is an
indecomposable injective torsion right R-module, then M is an Artinian
module. It can therefore be demonstrated, on the basis of the preceding
arguments, that if S is a simple R-module, then its injective hull E(S)
is an Artinian module. Finally, assuming that the ring R is a Dedekind
domain, we will present a necessary and sufficient condition for an R-
module to be an endo-Artinian module.
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1 Introduction

Throughout this paper, R is assumed to be a commutative ring with
identity. A ring R is said to be right (resp. left) hereditary if every right
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(resp. left) ideal of R is projective as a right (resp. left) R-module. In
commutative algebra, a Dedekind domain is defined to be a commuta-
tive hereditary domain. By [5, Theorem 2.17], it follows that Dedekind
domains must be Noetherian domains. Dedekind domains may be char-
acterized as commutative Noetherian domains that are integrally closed
with Krull dimension ≤ 1. Alternatively, Dedekind domains may also
be characterized as commutative domains in which every ideal is a finite
product of prime ideals. The injective hull of an R-module M , denoted
by E(M), is defined to be the maximal essential extension of M , which
may be equivalently expressed as the minimal injective module over M .
It is known that indecomposable injective modules over a commutative
Noetherian ring R, are not necessarily right Artinian. For instance, Zp∞

can be expressed as an example. But, if this property holds for all inde-
composable injective R-modules, it follows that all prime ideals of the
ring R must be maximal, equivalently, the Krull dimension of R being
equal to one. This is because for each prime ideal P of R, the mod-
ule E(R/P ) is an indecomposable injective R-module. In [5, Corollary
3.86], it is demonstrated that, if R is a commutative Noetherian ring,
then the necessary and sufficient condition for the indecomposable in-
jective R-modules to be Noetherian is that the ring R is Artinian. In [7,
Theorem 5], the sufficient and necessary condition for the injective hull
of a simple R-module S to have finite length is that RP is an Artinian
ring, where P = annR(S).

In the section 2, we begin by establishing the necessary condition for
the injective hull of an indecomposable injective module M to be Ar-
tinian simplified. In the following section, we present evidence that this
phenomenon occurs on certain specific rings. The third section of this
study is primarily concerned with examining modules that satisfy the
descending chain condition on their fully invariant submodules. These
modules, which are known as endo-Artinian modules, are of particular
interest. Endo-Artinian abelian groups have been investigated in [3]. In
order to access the classical definitions and theorems that are not given
in this article, the reader is invited to refer to the references [2], [4],
and[5].
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2 When Are Indecomposable Injective R-Modules
Right Artinian?

Let R be an integral domain that is not a field, and let Q be the field of
fractions of R. It is clear that Q is an indecomposable injective torsion-
free R-module that is not a right Artinian module. In this section, we
will attempt to answer the following question: Under what conditions are
indecomposable injective torsion modules Artinian? In the case where
R is a Noetherian integral domain, Matlis’ theorem ([5, Matlis’ Theorem
3.62]) implies that indecomposable injective R-modules are isomorphic
to E(R/P ), where P is a prime ideal of R. If we accept the assumption
that indecomposable injective torsion R-modules are Artinian, then we
have that non-zero prime ideals of R are maximal ideals. Consequently,
it can be demonstrated that, in the event that R is a Noetherian do-
main with Krull dimension at least two, there exists an indecomposable
injective torsion R-module that is not Artinian. Consequently, for the
purposes of this discussion, it is necessary to assume that the rings in
question are Dedekind domains. The following section will demonstrate
that, in the case of R being a Dedekind domain, the injective hull of
each simple R-module is an Artinian module.

Proposition 2.1. Let R be a Dedekind domain and E be an injective R-
module. Then there exists the family {Ei}i∈I of indecomposable injective
submodules of E such that E = ⊕i∈IEi. Moreover, for each i ∈ I, either
Ei is isomorphic to the injective hull of a simple R-module S or Ei is
isomorphic to the field of fraction of R.

Proof. By [5, Theorem 3.48], since R is a Noetherian ring, E is a
direct sum of indecomposable injective submodules. On the other hand
by Matlis’ Theorem [5, Theorem 3.62] the indecomposable injective R-
module T is isomorphic to the injective hull R/P , for some prime ideal P
of R. Since krull.dimR ≤ 1, either krull.dimR = 0 or krull.dimR = 1.
If krull.dimR = 0, then any prime ideal is a maximal ideal and hence
R/P is a simple R-module. As desired. If krull.dimR = 1, then either
P = (0) or P is a non-zero prime ideal. In case that P = (0), T ∼= E(R)
which is isomorphic to the field of fraction R. Otherwise, P is a maximal
ideal and T is isomorphic to the injective hull of simple R-module R/P .
□
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Remark 2.2. Suppose R is a Dedekind domain and E an injective right
R-module. In Proposition 2.1, we have proved that E is decomposed to
direct sum of indecomposable injective submodules Ei (i ∈ I), such
that for each i ∈ I, either Ei

∼= E(S), where S is a simple R-module
or Ei

∼= Q(R), where Q(R) is the field of fraction R. For a simple
R-module S, set Ω(E,S) =

∑
{Ei;Ei

∼= E(S)} as the S-component
(simple component with respect to S) of E, and Q(E) =

∑
{Ej : Ej

∼=
Q(R)}. It is evident that for any simple submodule S of E, there exists
an index set IS such that Ω(E,S) is isomorphic to (E(S))(IS). In this
case, there exists a family S of simple submodules of E such that E is
isomorphic to the direct sum of the following: ⊕S∈S(E(S))(IS) ⊕Q(E).
By Lemma 3.2, for each simple R-module S belonging to E, Ω(E,S) is
a fully invariant submodule of E because both HomR(Ω(E,S),Q(E)) =
(0) and for any two non-isomorphic simple submodules S and S′ of E,
HomR(Ω(E,S),Ω(E,S′)) = (0).

Definition 2.3. Let R be a commutative ring and M be a right R-
module. For each non-zero element a ∈ R, define the map fa : M → M
by fa(x) = xa for all x ∈ M . It is readily apparent that fa ∈ EndR(M).

Proposition 2.4. Let R be a Dedekind domain, S a simple right R-
module, and E(S) be the injective hull of S. Let P be the annihilator
of S as an R-module, and let RP be the localization of R at P . The
following assertions hold.

1. For each a ∈ R \ P , fa is an isomorphism.

2. E(S) has a structure as a right RP -module.

3. E(S) as an RP -module is injective.

4. Every RP -submodule of E(S) is an R-submodule.

5. If N is an RP -submodule of E(S), then HomRP
(E(S)/N,E(S)) =

HomR(E(S)/N,E(S))

6. EndR(E(S)) = EndRP
(E(S)).

Proof. The initial three statements are presented in [5, Proposition
3.77]. In light of the proceeding statements, however, it is necessary to
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construct this structure anew.
(1) Let a ∈ R \ P . The injectivity of E(S) implies that Im fa = Ma =
M . Assume x ∈ E(S) is a non-zero element of ker fa. Since S is an
essential submodule of E(S), it follows that there exists r ∈ R such that
0 ̸= xr ∈ S ⊆ E(S). Then 0 = (xa)r = (xr)a implies a ∈ annR(xr) =
annR(xrR) = annR(S) = P , it is a contradiction.
(2) For each r

s ∈ RP and m ∈ E(S), inasmuch as fs : M → M is an
isomorphism, there exists a unique element x(mr,s) ∈ E(S) such that
fs(x(mr,s)) = x(mr,s)s = mr. Define the map ϕ : E(S) × RP −→ E(S)
with,

ϕ((m,
r

s
)) := m ⋆

r

s
= x(mr,s), for all m ∈ E(S) and

r

s
∈ RP .

It is enough to show that ϕ is a function. For, assume that (m, rs) and

(m, bt ) are two elements of E(S) × RP which are equal. There exists
an element u ∈ R \ P such that u(rt − bs) = 0. Since R is a domain,
(rt − bs) = 0. Thus mrt = mbs. Inasmuch as x(mr,s)s = mr and
x(mb,t)t = mb, then

x(mr,s)st = mrt = mbs = x(mb,t)ts.

This implies that x(mr,s)−x(mb,t) ∈ ker fts. By (1), x(mr,s)−x(mb,t) = 0.
Thus x(mr,s) = x(mb,t), as desired.
(3) This assertion was stated and proven in the proof of [5, Proposition
3.77].
(4) Assume N is an PP -submodule of E(S). It is sufficient to show that
for each x ∈ N and r ∈ R, xr ∈ N . It is clear that xr = x ⋆ r

1 , which is
contained in N.
(5) AssumeN is anRP -submodule of E(S) and f ∈ HomR(E(S)/N,E(S)).
We show that f ∈ HomRP

(E(S)/N,E(S)). For, it is enough to show
that for each m̄ ∈ E(S)/N and r

s ∈ RP , f(m̄ ⋆ r
s) = f(m̄) ⋆ r

s . For,

f(m̄ ⋆
r

s
)s = f((m̄ ⋆

r

s
)s) = f( ¯x(mr,s)s) = f(m̄r) = f(m̄)r.

On the other hand,

(f(m̄) ⋆
r

s
)s = x(f(m̄)r,s)s = f(m̄)r.
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By above argument, s ∈ annR(f(m̄ ⋆ r
s) − f(m̄) ⋆ r

s). Again by (1),
f(m̄⋆ r

s)−f(m̄)⋆ r
s = 0. Conversely, assume f ∈ HomRP

(E(S)/N,E(S)).
We show that f ∈ HomR(E(S)/N,E(S)). For, it is enough to show that
for each m̄ ∈ E(S)/N and r ∈ R, f(m̄r) = f(m̄)r. For, we have

f(m̄r) = f(x(m̄r,1)) = f(m̄ ⋆
r

1
) = f(m̄) ⋆

r

1
= x(f(m̄)r,1) = f(m̄)r.

As desired.
(6) In accordance with the aforementioned assertion, it becomes evident
that the matter addressed in this statement is readily apparent. □

Remark 2.5. For the sake of argument, let us assume that R is a
commutative P.I.D. and that S is a simple right R-module. Given that
R is a PID, it follows that P = annR(S) = pR for some p ∈ R. For each
positive integer n, put En = annE(p

n) and E = E(S). It is evident that
the following ascending chain exists:

0 ⊆ E1 ⊆ E2 ⊆ · · · ,

and E = ∪n≥0En. Since p ∈ annR(En/En−1), for each n ≥ 1, En/En−1

is a simpleR-module. By induction, it can be demonstrated that for each
y ∈ En − En−1, En =< y >,En−1 =< yp >, · · · , E1 = S =< ypn−1 >.
To see this, it is clear that ypn−2 ∈ E2 \ E1 and ypn−1 ∈ E1 \ {0}.
Then E1 =< ypn−1 > and E2/E1 =< ¯ypn−2 >. For any z ∈ E2,
z̄ ∈ E2/E1 and hence for some r, s ∈ R, z − ypn−2r = ypn−1s. Thus
z = ypn−2(r−ps) ∈< ypn−2 >. By induction, the claim is proved. Now,
for a submodule N of E(S), set O(N) = {m ∈ N : ypm = 0, for some y ∈
N}. If O(N) is an infinite subset of N, then the preceding arguments
imply that N = E(S). Otherwise, N = Ek, for some positive integer k.
Consequently, E(S) is a uniserial right R-module.

Definition 2.6. Let R be a Dedekind domain, S be a simple R-module,
P = annR(S) and E = E(S). For each R-submodule N of E(S), the
closure of N in E(S) is denoted by N̄ and it is defined by

N̄ = {x(n,t) : n ∈ N and t ∈ R \ P}

Lemma 2.7. Let R be a Dedekind domain, S a simple R-module, P =
annR(S) and E = E(S). Then,
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1. For each R-submodule N of E(S), N̄ is an RP -submodule (and
hence an R-submodule) of E(S) which contains N .

2. If N is a proper submodule of E(S), then N̄ is also a proper sub-
module.

Proof. (1) For each x(n1,t1), x(n2,t2) and x(n,t) in N̄ and r
s ∈ RP , we

have x(n1,t1) + x(n2,t2) = x(n1t2+n2t1,t1t2) and x(n,t) ⋆
r
s = x(nr,ts) which

are contained in N̄ . On the other hand, for each n ∈ N , n = x(n,1) ∈ N̄ .
(2) On the contrary, assume N̄ = E(S). Then for each y ∈ E(S),
there exist n ∈ N and t ∈ R \ P such that y = x(n,t). Consequently,
yt = n ∈ N . Given that R is a hereditary ring and that N is a proper
submodule of E(S), it follows that E(S)/N is an injective R-module that
contains a simple submodule, such as N1/N , which is isomorphic to S.
Let us suppose that x ∈ N1 \ N . By the aforementioned assumptions,
there exist an element n ∈ N and an element t ∈ R \ P such that
xt = n ∈ N . This implies that t ∈ annR(x + N) = annR(N1/N) = P .
This is a contradiction. □

Proposition 2.8. Let (R,P ) be a local Dedekind domain and S a simple
right R-module. Then for each proper submodule N of E(S), E(S)/N ∼=
E(S).

Proof. By Remark 2.5, there exists a positive integer m such that N =
Em =< y >, for some y ∈ Em \ Em−1. Therefore fpm : E(S) → E(S)
is a non–zero homomorphism with ker fpm = annE(p

m) = Em = N .
Inasmuch as R is a right hereditary ring, then Im fpm ∼= E(S)/N is an
injective R-module. Hence Im fpm is a direct summand of E(S). Since
E(S) is an indecomposable R-module, Im fpm = E(S). As desired. □

Theorem 2.9. Let R be a Dedekind domain and S a simple right R-
module. Then the following assertions hold.

1. Every proper R-submodule of E = E(S) is a module of finite
length.

2. E(S) is a right Artinian R-module.

3. Every proper factor of E(S), is an indecomposable injective R-
module.
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4. For every proper submodule N of E(S), E(S)/N is isomorphic to
E(S).

Proof. (1) Let us assume that x is a non-zero element of S and that
P = annR(x) is a maximal right ideal of R. Since R is a domain, for
each positive integer n, it follows that Pn ̸= (0). Let En be defined as
the annihilator of Pn in E. By [5, Corollary 3.85], for each n, En is
an R-module of finite length. Clearly, we have the following ascending
chain

0 ⊆ E1 ⊆ E2 ⊆ · · · ,

and E = ∪n≥0En. Since R is a Dedekind domain and P is a maximal
right ideal of R, RP is a local Dedekind domain with unique maximal
ideal MP = S−1P , and using [2, Proposition 9.2], RP is a principally
integral domain (P.I.D). By Proposition 2.4, E(S) has a structure as
an RP -module. Using materials mentioned in Remark 2.5, E(S) as an
RP -module is uniserial and (0) ⊆ E∗

1 ⊆ E∗
2 ⊆ · · · is the unique (ascend-

ing) chain of its RP -submodules, where for each n, E∗
n = annE((MP)

n).
Using [2, Proposition 9.2], we know there exist p0 ∈ P and t0 ∈ R \ P
such that for each positive integer n, (MP )

n =< (p0t0 )
n >.

Now, we show that for each positive integer n, E∗
n ⊆ En. For, sup-

pose y ∈ E∗
n and {p1, p2, · · · , pn} is a subset of P . Clearly,

∏n
i=1 pi
1 ∈

(MP )
n =< (p0t0 )

n >. Thus, there exists r
s ∈ RP such that

∏n
i=1 pi
1 =

pn0
tn0

r
s .

Therefore,

y(

n∏
i=1

pi) = x(y(
∏n

i=1 pi),1)
= y ⋆

∏n
i=1 pi
1

= y ⋆ (
pn0
tn0

r

s
) = (y ⋆

pn0
tn0

)
r

s
= 0

This implies that Pn ⊆ annR(y) or equivalently y ∈ annE(P
n) = En.

As desired.
Now suppose that N be a proper R-submodule of E(S). By Lemma

2.7, N̄ is a proper RP submodule of E(S). Then for some positive in-
teger k, N̄ = E∗

k . Therefore N ⊆ N̄ = E∗
k ⊆ En. Inasmuch as En is an

R-module of finite length, then N is also a module of finite length.
(2) Any descending chain of R-submodules of E(S), such as N1 ⊇ N2 ⊇
· · · , terminates because N1 is an Artinian R-module.
(3) Assume A and B are submodules of E(S) such that E(S) = A+B.
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Using materials mentioned in proof of part (1), there exists positive in-
tegers n and m, such that A ⊆ En and B ⊆ Em. This implies that for
some positive integer k, E(S) ⊆ Ek. It is a contradiction. Moreover,
since R is a right hereditary ring, every proper factor of an injective
R-module is injective.
(4) By before argument, E(S)/N is an injective R-module. By Propo-
sition 2.1 and Remark 2.2, there exists a family {Si}i∈I of simple R-
modules such that E(S)/N ∼= [⊕i∈IΩ(E,Si)] ⊕ Q(E). Inasmuch as for
each y ∈ E(S), there exists a positive integer n such that y ∈ En, thus
yPn = 0. This implies that E(S)/N ∼= Ω(E,S). Since by part (3),
E(S)/N is indecomposable, E(S)/N ∼= E(S). □

3 Endo-Artinian Modules

Let R be a commutative ring, M a right R-module, and L = EndR(M).
It is evident that M possesses a structure as a left L-module. The
primary objective of this section is to ascertain when M is an Artinian
L-module. In light of the fact that the L-submodules of M are precisely
the fully invariant R-submodules, the aforementioned question can be
posed in the following manner: When does M satisfy the descending
chain condition with respect to the fully invariant submodules? Such a
module is referred to as an ”endo-Artinian” R-module. In this section,
we will provide a necessary and sufficient condition for an R-module
to be endo-Artinian, assuming that the ring R is a Dedekind domain.
It is evident that Artinian modules are endo-Artinian. It is advisable
to provide examples of endo-Artinian modules that are not necessarily
Artinian before plotting and verifying the results.

Example 3.1. 1. Every right Artinian module is endo-Artinian. The
converse is not true generally. For, see the following.

2. Assume F is a field and V an infinite dimensional F -vector space
with L = EndF (V ). Clearly, V as a left L-module is simple but V
as a right F -module is not Artinian.

3. The abelian group Q as a Z-module is not Artinian but it is clearly
an endo-Artinian module.
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4. For each prime number p, the abelian group (Zp∞)(N) is an endo-
Artinian Z-module (see Proposition 3.6 and Corollary 3.7).

5. For each Artinian R-module M and index set I, M (I) is an endo-
Artinian R-module.

For a better study of endo-Artinian modules, it is necessary to state
and prove some known lemmas (citing the source) and other basic results
that play important roles in the analysis of such modules.

Lemma 3.2. [6, Lemma 1.9] Let a module M = M1 ⊕M2 be a direct
sum of submodules M1 and M2. Then M1 is a fully invariant submodule
of M if and only if HomR(M1,M2) = 0.

Lemma 3.3. [6, Lemma 2.1] Let a module M = ⊕IMi be a direct sum
of submodules Mi (i ∈ I) and N a fully invariant submodule of M . Then
N = ⊕I(N ∩Mi).

Lemma 3.4. 1. Let a module M = M1 ⊕ M2 be a direct sum of
submodules M1 and M2. If N is a fully invariant submodule of
M , then N ∩M1 is a fully invariant submodule of M1.

2. Let N ⊆ K be submodules of right R-module M . If N is a fully
invariant submodule of K and K is a fully invariant submodule of
M , then N is a fully invariant submodule of M .

Proof. (1). Assume f ∈ EndR(M1). Define f̄ ∈ EndR(M), by f̄(x +
y) = f(x) for each x ∈ M1 and y ∈ M2. Since N is a fully invariant
submodule, f̄(N) ⊂ N . This implies that for each x ∈ N ∩M1, f̄(x) =
f(x) ∈ N ∩M1. As desired.
(2). The verification is immediate. □

Proposition 3.5. Let R be a ring, M a right R-module and {Mi}ni=1 a
family of endo-Artinian submodules of M such that M = ⊕n

i=1Mi. Then
M is an endo-Artinian module. Moreover, if for each 1 ≤ t ≤ n, Mt is
a fully invariant submodule of M , then the converse is true.

Proof. Assume N1 ⊇ N2 ⊇ · · · is a descending chain of fully invariant
submodules of M . By Lemma 3.3, for each t ≥ 1, Nt = ⊕n

i∈1(Nt ∩Mi)
and by Lemma 3.4 part (1), for each t ≥ 1 and 1 ≤ i ≤ n, set N(t,i) =
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Nt∩Mi, which is a fully invariant submodule of Mi. For each 1 ≤ i ≤ n,
there exists positive integer mi such that N(mi,i) = N(mi+1,i) = · · · .
If we set m = max{m1,m2, · · · ,mn}, then Nm = Nm+1 = · · · . The
second part is elementary because for each 1 ≤ t ≤ n, fully invariant
submodules of Mt are also fully invariant submodules of M . □
The following statement plays a pivotal role in the identification and
construction of endo-Artinian modules.

Proposition 3.6. Let R be a ring and M an R-module. Then N is a
fully invariant submodule of M (I) if and only if N = A(I), where A is a
fully invariant submodule of M .

Proof. Let us assume that N is a fully invariant submodule of M (I).
It is evident that, by defining Mi = ιi(M) for each i ∈ I, we have
M = ⊕i∈IMi. For each i ∈ I, define Ai = {m ∈ M : ιi(m) ∈ N}. We
will now demonstrate that for each distinct elements i, j ∈ I, Ai = Aj .
To do so, suppose x ∈ Ai. Since N is a fully invariant submodule of
M (I), ιi(x) ∈ N and ιj ◦πi ∈ EndR(M

(I)), it follows that ιj ◦πi(ιi(x)) =
ιj(x) ∈ N , which implies that x ∈ Aj . This implies that Ai ⊆ Aj . With
the same arguments, one can show that Aj ⊆ Ai. Set A = Ai, for some
i ∈ I. For each x ∈ N and i, j ∈ I, we have ιi ◦ πj(x) ∈ N . This implies
that πj(x) ∈ A for each j ∈ I. We now proceed to demonstrate that A
is a fully invariant submodule of M . Let x ∈ A and f ∈ EndR(M). Fix
an element i ∈ I and define g = ιi ◦ f ◦ πi ∈ EndR(M

(I)). Since x ∈ A,
it follows that ιi(x) ∈ N . On the other hand, N is a fully invariant
submodule of M (I). Therefore, g(ιi(x)) = ιi ◦ f ◦ πi(ιi(x)) = ιi(f(x)) ∈
N , which implies that f(x) ∈ A. Conversely, let us suppose that A is a
fully invariant submodule of M , x ∈ A(I) and f ∈ EndR(M

(I)). There
exist two finite subsets, I0 and I1, of I, a finite subset {xi}i∈I0 of A and a
finite {yt}t∈I1 , of M such that x =

∑
i∈I0 ιi(xi) and f(x) =

∑
t∈I1 ιt(yt).

For each t ∈ I1,

yt = πt(f(x)) = πt(f(
∑
i∈I0

ιi(xi))) = πt(
∑
i∈I0

f◦ιi(xi)) =
∑
i∈I0

πt◦f◦ιi(xi) ∈ A.

This implies that f(x) ∈ A(I). As desired. □

Corollary 3.7. Let R be ring and M a right endo-Artinian R-module.
For each index set I, M (I) is an endo-Artinian module (It is not neces-
sarily a right Artinian module).
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Proof. According to the Proposition 3.6, the proof is obvious. □

In the subsequent phase of the discussion, our objective is to exam-
ine the structure of endo-Artinian modules on Dedekind domains. To
achieve this objective, we will initially introduce two crucial classes of
such modules. The theorem 3.14, explicitly demonstrates that these
two classes of modules can describe the structure of any endo-Artinian
module.

Definition 3.8. Let R be a commutative ring and M an R module.
M is said to be totally bounded provided that there exists a non-zero
element a ∈ R such that Ma = (0).

Definition 3.9. Let R be a commutative ring, P a prime ideal of R
and M an R-module. M is said to be a P -module if for each m ∈ M ,
there exists a positive integer n, such that annR(m) = Pn. A P -module
M is called bounded provided that

{n ∈ Z+ : for some x ∈ M, annR(x) = Pn},

is finite.

The following proposition demonstrates that, over Dedekind domains,
totally bounded modules can be decomposed into the finite direct sum
of their fully invariant bounded P -submodules.

Proposition 3.10. Let R be a Dedekind domain and M a totally bounded
R-module. Then there exist a finite subset {P1, P2, · · · , Pk} of distinct
prime ideals of R and fully invariant bounded Pi-submodules Mi, for
each 1 ≤ i ≤ k, of M , such that M = ⊕k

i=1Mi.

Proof. Since R is a Dedekind domain, every non-zero ideal of R, has
a unique factorization as a product of prime ideals. Then there exist a
finite subset {P1, P2, · · · , Pk} of distinct prime ideals of R and positive
integers n1, n2, · · · , nk, such that aR = Pn1

1 Pn2
2 . . . Pnk

k . By the same
arguments, for each non-zero element x ∈ M , annR(x) has a unique
factorization as a product of prime ideals such as

∏d
i=1 (P

′
i )

mi . By as-

sumption,
∏k

i=1 P
ni
i ⊆

∏d
i=j (P

′
j)

mj . Inasmuch as any non-zero prime
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ideal of R is a maximal ideal, then for every 1 ≤ j ≤ d, there ex-
ists 1 ≤ i ≤ n such that P ′

j = Pi. In other words, we have shown
that for each non-zero element x ∈ M , there exist non-negative integers
m1,m2, · · ·mk, such that annR(x) =

∏k
i=1 P

mi
i . Now, we show that for

each 1 ≤ i ≤ k, mi ≤ ni. On the contrary, suppose for some 1 ≤ i ≤ k,

mi > ni. Since Pi’s are maximal ideals, P
(mi−ni)
i and

∏k
i ̸=j=1 Pj are

co-prime (co-maximal). So P
(mi−ni)
i +

∏k
i ̸=j=1 P

nj

j = R. This implies
that

Pni
i ⊆ Pmi

i +

k∏
j=1

P
nj

j ⊆ Pmi
i +

k∏
j=1

P
mj

j ⊆ Pmi
i ⊆ Pni

i .

This implies that Pni
i = Pmi

i = Pni
i .P

(mi−ni)
i . Since Pni

i is a finitely

generated right ideal, there exists x ∈ R such that 1−x ∈ P
(mi−ni)
i and

Pni
i .x = 0. It is a contradiction because R is a domain.
Now, for each 1 ≤ i ≤ k, putMi = {x ∈ M : P t

i ⊆ annR(x), for some 1 ≤
t ≤ ni}. It is clear that Mi’s are submodules of M . We show that,
M = ⊕n

i=1Mi. Assume x ∈ M . Since Pn1
1 and

∏k
j=2 P

nj

j are co-prime,

there exist b ∈ Pn1
1 and b′ ∈

∏k
j=2 P

nj

j such that b + b′ = 1. Then
xb + xb′ = x. By view of xb′Pn1

1 = 0, then xb′ ∈ M1. Again, since Pn2
2

and
∏k

j=3 P
nj

j are co-prime, there exist c ∈ Pn2
2 and c′ ∈

∏k
j=3 P

nj

j such
that c + c′ = 1. Then xbc + xbc′ = xb. Inasmuch as xbc′Pn2

2 = 0, then
xbc′ ∈ M2. Thus x = xb + xb′ = xbc + xbc′ + xb′, where xb′ ∈ M1 and
xbc′ ∈ M2. By induction, we can show that M =

∑k
i=1Mi. Since for

each 1 ≤ i ≤ k, HomR(Mi,⊕k
(i ̸=)j=1Mj) = (0), by using Lemma 3.2,

Mi’s are fully invariant submodules of M . □

Lemma 3.11. Let R be a Dedekind domain and P a prime ideal of R.
Then bounded P -modules are endo-Artinian.

Proof. Supposing M is a right bounded P -module. Then M has a
structure as an RP -module. Inasmuch as RP is a P.I.D., there exist
positive integers n1, n2, · · · , nk and index sets I1, I2, · · · , Ik such that

M ∼= (
R

Pn1
)(I1) × (

R

Pn2
)(I2) × · · · × (

R

Pnk
)(Ik).

Considering that, for each 1 ≤ t ≤ k, R
Pnt has finitely manyR-submodule,

it is an Artinian R-module. By Corollary 3.7, ( R
Pnt )

(It) is an endo-
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Artinian module. Hence by Proposition 3.5, M is an endo-Artinian
R-module. □

Corollary 3.12. Let R be a Dedekind domain. Then totally bounded
R-modules are endo-Artinian.

Proof. The verification is immediate by applying Proposition 3.5,
Proposition 3.10 and Lemma 3.11. □

Proposition 3.13. Let R be a Dedekind domain and E be an injective
R module. Then E is an endo-Artinian module if and only if the number
of simple components of E is finite.

Proof. In light of the aforementioned Remark 2.2, it follows that there
exists a finite family of simple submodules of the R-module E, namely
S, such that E ∼= ⊕S∈S(E(S))(IS) ⊕ Q(E). This is consistent with
the desired outcome. Conversely, by Theorem 2.9 and Corollary 3.7,
for each simple submodule S of E, the simple component due to S,
Ω(S,E), is an endo-Artinian module. Consequently, the Remark 2.2
and the proposition 3.5 will yield the desired result. □

Theorem 3.14. Let R be a Dedekind domain and M a right R-module.
The following statements are equivalent.

1. M is an endo-Artinian module.

2. There exist a fully invariant injective with finitely many simple
component D(M) and a totally bounded submodule T (M) of M
such that M = D(M)⊕ T (M).

Proof. (1) ⇒ (2) If there exists a non-zero element a ∈ R such that
Ma = (0), then the proof is complete upon defining T (M) = M . Now,
let us assume that for each non-zero element c ∈ R, Mc ̸= (0). For
any non-zero element a ∈ R, define the mapping fa : M → M by
fa(m) = ma for all m ∈ R. It is evident that the image of fa is Ma and
the kernel of fa is annM (a). These are fully invariant submodules of M .
Since MR is an endo-Artinian module, the set S = {Ma : a ∈ R \ {0}}
has a minimal element, which may be taken to be Ma0, for some non-
zero element a0 ∈ R. For each non-zero element b ∈ R, it follows that
Ma0b ⊆ Ma0, and thus (Ma0)b = Ma0. This implies that Ma0 is
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a divisible right R-module. Since R is a Dedekind domain, it follows
from [5, Corollary 3.24] that divisible right R-modules are injective.
Let D(M) = Ma0 denote the divisible part of M . Then there ex-
ists a submodule T (M) of M such that M = D(M) ⊕ T (M). Since
T (M)a0 ⊆ Ma0 ∩ T (M), it follows that T (M)a0 = (0), which im-
plies that T (M) has no injective submodule. We now demonstrate that
HomR(D(M), T (M)) = (0). Otherwise, suppose that f is a non-zero el-
ement of HomR(D(M), T (M)) = (0). Since R is a right hereditary ring,
the quotient of any right injective R-module is injective. Consequently,
Im f is an injective submodule of T (M) because Im f ∼= D(M)/ ker f .
This is a contradiction. By Lemma 3.2, D(M) is a fully invariant sub-
module of M . It follows that all fully invariant submodules of D(M) are
fully invariant submodules of M , and thus D(M) is an endo-Artinian
module. Proposition 3.13 indicates that the number of simple compo-
nents of D(M) must be finite, as desired.
(2) ⇒ (1) In light of Assumption 2, it is sufficient to demonstrate that
D(M) and T (M) are endo-Artinian modules. These consequences are
also the results of Proposition 3.5, Corollary 3.12, and Proposition 3.13.
□
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