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Abstract. Let H(D) be the set of analytic functions on D and for
1 < p < o0, HP be the Hardy space. For m € N suppose that I be
mth iteration. Let ¢ = (go,--- ,gm_1) where {g; mob C H(D) and
I(f) = [ f(w)dw. If I"™ for m € N be the mth iteration, then the
generalized Volterra-type operators I%L on H(D) is defined as follows

m—1
g =1 ).

i=0
In this paper, we investigate boundedness and compactness of general-
ized Volterra-type operators from Hardy space into iterated weighted-
type spaces, Vo = {f € H(D) : sup,p(1 — |2[*)[ /™ (2)| < oo}.
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1 Introduction

Let D be an open unit disc in the complex C and H(D) be the set of
analytic functions on D. For 1 < p < oo, the Hardy space HP consists
of all analytic functions f € H(ID) such that

1

Il = s (5 [ 15 pan)” < oo

O<r<1 \2T

Also H® is the space of bounded analytic functions on D with the norm
| fllHee = sup,ep |f(2)]. More information about such spaces can be
found in [9]

Another space used in this paper is nth weighted-type space. Let u
be a weight (continuous and positive function on D) and n € Ny. The
nth weighted-type space Vi, consists of all analytic functions f € H (D)
such that by (f) = sup,ep ()| f™(2)| < co. This space is a Banach
with the following norm

n—I1
1l =3 1 FD(0) | +byp(f) < oo
=0

For a > 0 and u(z) = (1 — |2?)%, we use V% V,, and || - ||,, instead

of Vi, VI and || - ;1. The space V¥ contains a large class of analytic
functions. For example when a > 0, V§* = A~%(growth space), V* = B¢
(Bloch type space), Vi* = Z% (Zygmund type space), Vi = B (classic
Bloch space) and Vo = Z (classic Zygmund space). The space V, is
called iterated weighted-type space. In [7] Colonna et al. considered
iterated weighted-type spaces and obtained some properties for these
spaces, especially they showed

i CVppCVpC---CWBCZCH®CBC AL

The closed subspace of V' containing of all f € V;)' such that
lim, w(2)| £ (2)] = 0 is denoted by Vo and is called little nth
weighted-type space. For more information about (little) nth weighted-
type spaces, see [1, 2, 4, 7, 12, 141].
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Let m € N, I"(f) = foz 0z1 '--foszl f(2)dzdz - - - dzp—1, and
7 = (90,91, » gm—1) where {g; ;’;61 C H(D). The generalized Volterra-
type operator on H (D) defined as follows

m—1
mf) =13 fOg,)
=0

For m = 1 and go = ¢/, we get Volterra type operator (J,f)(z) =

fo w)dw and When m = 1 and gyp = 1, we obtain the classic
Volterra operator (If)(z fo w)dw. Also if we set ¢; = am_;_19"™"?
(0<i<m-—1), WheregéH(ID))and = (ag,  * ,am-1) € C™, w
have generalized integration operator Ig ", defined by Chalmoukis in | ]
Since
m—1 m—1 m—1
Y Pg) =Y 1 (g =Y L),
i=0 i=0 i=0

so for considering properties of operator I7¢, firstly we investigate prop-

erties of operators I"l” where 0 <7 <m — 1.
Chalmoukis in [6] considered boundedness and compactness of I;”?
HP — HY where (0 < ¢ < p < 00) and posed a conjecture that g must

be in Har. Yang et al. provided a positive answer to the aforemen-
tioned conjecture in [13]. Arroussi et al. investigated boundedness and
compactness of I : AP — A9 where AP is Bergman space. They
extended Chalmoukis’ result to Bergman spaces and showed that the
Bergman space version of Chalmoukis’ conjecture is true (see [5]). Also
some authors characterized boundedness and compactness of general-
ized integration operators among some other analytic function spaces
[8, 10]. In [14], Zhu investigated Bloch-type spaces and uncovered nu-
merous properties associated with these spaces. Later, Stevi¢ expanded
on this concept by generalizing Bloch-type spaces and introducing the
nth weighted-type spaces, as detailed in [1 1, 12]. In recent years, exten-
sive research has been conducted on such spaces, with one of the most
notable references in this area being [7].

In this paper, firstly we investigate boundedness and compactness of
the operators I, (0 < i < m) from Hardy space into iterated weighted-
type spaces and we find some characterizations for boundedness and
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compactness of such operators. Then we consider boundedness and
compactness of the operator I8 : HP — V,, and we show that the oper-

ator I% : H? — V,, is bounded (compact) if and only if each operator
I HP — V(0 < i < m —1) is bounded (compact).

In this work, we shall use the notation A < B to mean that for some
c>0, A<cB, whereas A < B means A < B and B < A.

2 Boundedness and Compactness of Operator
[;?’i : HP — 'V,

In this section, we investigate boundedness and compactness of the oper-
ators Iy from Hardy space HP(1 < p < 00) into iterated weighted-type
spaces and we obtain some characterizations for boundedness and com-
pactness of such operators. We begin with the following lemma.

Lemma 2.1. Let n,k € N. For any f € V,,, we have
n+k—2

[[£lln = Z |F(0 |+Sup( = [)F D).

Proof. For n =1, V; = B. So by using Proposition 8 in[14], we get

£l = HfHBAZU”) !+Sup(1—|2| )L ()],

For any n € N, V,, C V,,—1 [6, Proposition 2.1]. Hence, for any f € V,,,
f(=1) e B. By replacing f with f("~1) in the above equation, we obtain

[FTD(0)] + sup(1 — [2)] f™) (=) =
n+k—2

> 1190 !+sup(1—\2\ LD ().

i=n—1
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Hence,
n—2 '
£l =D 1FD©0)] + 1D (0)) +Slelg(1 — [z *) [ fM(2) |
i=0 z
n—2 n+k—2
=001+ 30 10O+ sup(1 |2 ) FH0G) |

=0 i=n—1

n+k—2

Z 1(0) !+Sup(1—|2| LD ().

The proof is complete. O
; (4)
Let m > n. It is clear ( (f)) (0) = (I;n’z(f)) (0) = 0, when

0<i<m-—1,soforany f € H(D), by using Lemma 2.1, we have

Il =S (@)Y O +sup(t = 2P g ()| ()
k=0

zeD

= sup(1 — |22~ [ fDg(2)]
zeD

Lemma 2.2. Let 1 < p < oo. Then for any f € HP and k € Ny,

e+ 1
sup(L — [=[)" % [f® ()] 2 | fllae-
2€D
Proof. From Proposition 5.1.2 of [14], we have H*> C B and for any
feH®

sup(L — [2[%)|f'(2)] < ||l #ree.

zeD
Applying Lemma 2.1, for each k € Ny and f € H*, we obtain

Slelg(l — 2P @) < F 1l < 20 llaee <11 F Il zree

Similar results for 1 < p < oo follow easily using results from [9]. O

Theorem 2.3. Let 1 < p < oo, m,n € N such that m > n and g; €

H(D). Then for each 0 < i < m, the operator I"" : HP — V,, is bounded
o1

if and only if sup,cp(1l — 12|25 gi(2)| < 0o. Moreover, in this

case

—m—i—L141
1251 = sup(l — |z AT gi2)-
z
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Proof. Let the operator I;?’i : H? — 'V, be bounded and f;(z) =
mezl’ where 0 < i <m and w € D — {0}. For p = oo,

(1-wz)"" P

1—|wf?

1 —wz

i 2Yi
1
<s ( |wl|?)

=9
zep (1 —[w])!

80, SUPyep || fiwllme < 2° and when 1 < p < oo, from Lemma 2 [11],
there exists positive constant Cj, such that sup,cp || fiwl|ar < Cip.
Applying (1) for f;.,, we have

L7 (i) I = sup (L — 22| £ (2)gi(2)

z€D
> (1= )™ " 7D (w)]|gi (w))
1—1
] - 1 m—n—i—2
=@ TG+ + D01 = fuwl?) g (w)).
=0

Therefore,

—m—i—i41 . .
sup(1— [w|*)™ ™" 75 gi(w)] =g (fiw)lln < 15 | sup || fil 10
weD weD

< CiplIgl.-

.1
Conversely, we assume that sup,p(1 — 12[)™ "5 gi(2)| < oo, by
using (1), Lemmas 2.1 and 2.2, for any f € HP, we obtain

11 ()l =< sgg(l — |2H)m T 0 (2) gi(2))|

i1 . i1
< sup(1 — |2[*) "7 [ £O(2)| sup(1 — |2)" "0 gi(2)]
zeD zeD
i1
2 I fllae sup(1 — |21 T8 gi(2)).
z€D

Therefore, the operator Igf’i . H? — V, is bounded and || <
sup,ep(l — |z|2)m_n_i_%+1|gi(z)|. The proof is complete. [

To investigate compactness of operators I;n’i : HP — V(0 <1 < m),
we need the following lemma, since the proof of it is similar to the proof
of [7, proposition 3.11], so it is omitted.
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Lemma 2.4. Let 1 <p < oo, myn € N, {g;}7";' ¢ HD) and T = m

or IgZ’i(O <1 <m). Then the bounded operator T : HP — V,, is compact
if and only if for any bounded sequence {fi} in HP which converges to
zero uniformly on compact subsets of D, limy_,o0 || T(f%)||n = 0.

Theorem 2.5. Let 1 < p < oo, m,n € N such that m > n and g; €
H(D)(0 < i <m). Then for each 0 < i < m, the operator 1" : HP —

1
Vi is compact if and only if lim), (1 — 12[2)™ " 5 gi(2)| = 0.

Proof. Let the operator I;?’i : HP — V,, be compact. Forany 0 <i<m
and w € D — {0} the functions f;,(z) = Lw'i)ll are bounded and

(1—wz) 'P
converge uniformly to zero on compact subsets of D when |w| tends to
1, so by applying Lemma 2.4 limy,— [ Ig;"*(fiw)lln = 0. Now by using
(1), we obtain

1L i) I = (1= |22 £ (2)]|ga(=)]

1 .
= (1= )" ol ga(w).
In the above inequality, let |w| — 1. Then, we obtain limj, (1 —

—n—i—1
[w[2)™ 0 gi(w)| = 0.

: ovm—n—i—L41
Conversely, suppose that lim,|,;(1 — [2|%) » " gi(2)| = 0.
Hence, for any ¢ > 0 there exists 0 < 6 < 1 such that for each § < |z| < 1,

(1= 2™ "5+ gy(2)| < e. 2)

Now by using (1) and Lemma 2.1, for any bounded sequence {fx} C HP
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which converges uniformly to zero on compact subsets of D, we obtain

1 (fi)lln = sup(1 - 1212 £ (2)]|gi (2)]

< sup (1 — 22" £ (2)]1gi (2))]

|2|<6
+ sup (1= 229 (2)|gi(2)]
i<|z|<1
< sup (1 — |22 [ £9(2)] sup (1 = |2])™ 775 |gi(2)]
|z|<6 |2|<6
+ sup (1= 2P fY) sup (1—[22)™ "5 gi(2)]
0<z|<1 0<]z|<1
=: X1 + Xo.

By using Cauchy’s estimates, for any ¢ € Ny, the sequence { f,gl)} con-
verges uniformly to zero on compact subsets of D, therefore

lim X; < sup(1— ]z\Z)mfnfifiﬂlgi(z)\ lim sup \f,gz)(z)| = 0.
k—r00 12|<6 k=00 |2|<6

Also applying Lemma 2.2 and (2), we get

—n—j—1
m—n—i p+1

lim Xy < lim || fillge sup (1—|[2[?) |9i(2)]
k—o0 k—o0

0<|z|<1

< esup || fil mr-
keN

So, limj_ye0 |10 (fi)|ln = 0. By using Lemmas 2.4, the operator I;?’i :
HP — V,, is compact. The proof is complete. O

Putting n = 1 and n = 2 in Theorems 2.3 and 2.5, we get the
following corollaries.

Corollary 2.6. Let 1 <p <oo, m €N and g; € H(D). Then for each

0 < i < m, the operator I;?’i : HP — B is bounded (compact) if and
. Y

. m—z—% m—i—o
only if g; € Vy (9 € Voo )
Corollary 2.7. Let 1 < p < 0o, m € N such that m > 2 and g; € H(D).
Then for each 0 < i < m, the operator Ig" : HP — Z is bounded

m—i—1_1

P S |
(compact) if and only if g; € Vom T (9 €Voo 7 )
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3 Boundedness and Compactness of Operator
I%”‘ :HP — V),

In this section, we will consider boundedness and compactness of the op-
erator I% from Hardy spaces into iterated weighted-type spaces. Espe-
cially we show that if the operator I% : HP — V, is bounded (compact)

then for each 0 < ¢ < m — 1, the operator I;?’i : HP? — V,, is bounded
(compact). For this purpose, we need the following lemma which comes
from [2, Lemma 2.5] and [3, Lemma 2.3].

Lemma 3.1. Let 1 <p<oo. Forany0#¢ €D andic {0,1,---,n},
there exists a function v; ¢ € HP with the following conditions:

a) vig(z) = Z?Ll c;'-fi,g(z), where fi¢(z) = % and c§ is indepen-
(1-€)""P
dent of choice &.
b) supgep [|vigllmr < 0o and

- —T, k=14,
v (§) = { (1-je)*»
0, k.

c) For any sequence {&} C D such that limg_,o || = 1, the sequence
{vig, } converges to zero uniformly on compact subsets of .

Let m > n. For any f € H(D), applying Lemma 2.1, we get

m—1
I3l = 3 |(10) " @) + sup - 2y ()™
k=0
)
m—1 A
= sup(1 ~ [2)" |3 £ (2)gy(2)|
z€D =0

Theorem 3.2. Let 1 < p < o0 and m,n € N such that m > n. Then
the following conditions are equivalent:
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a) The operator I% : HP — V), is bounded.
b) For each 0 <i < m — 1, the operator Ig:’i : HP — V,, s bounded.
¢) For each 0 <i<m—1, sup,p(l — ]z|2)m_n_i_%+1\gi(z)| < 0.

Proof. (b)= (a) Since I} = S LI and all operators I 0 HP —
Vn(0 < ¢ < m — 1) are bounded, hence the operator I3 HP — Vi is
bounded.

(b)< (c) Theorem 2.3.

(a)= (c) Let the operator I2 : H? — V;, be bounded. For each
i€{0,---,m—1} and £ € D — {0}, let v; ¢ be function found in Lemma
3.1, by using (3), we have

m—1
il = sup(1 = o) Y v g @)
z =0

m—1
> (1= [Py S 0 (€)g; ()]
j=0

> (1= )+ ol (©)lgi (€)]

(1l o)

— &1 — €)™ gy(0)).

Applying Lemma 3.1(b), we get

m—i—L11
sup(1 — €)™ "5 gi( O] < 115 (vie) v, < 115 sup [oie | o < oo
£ehD £eb

The proof is complete. O

Theorem 3.3. Let 1 < p < o0 and m,n € N such that m > n. Then
the following conditions are equivalent:

a) The operator I%”‘ : H? = V,, is compact.

b) For each 0 <i < m — 1, the operator Igf’i : HP — V,, is compact.
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¢) For each 0 < <m —1, lim, (1 - \z|2)m7"7i*%+1\gi(z)| = 0.

Proof. (b)= (a) It is clear when for each 0 < i < m — 1, the operator
Iz« HP — V,, is compact, then 12 = Z?:ol Ig"" is compact.

(b)< (c) Theorem 2.5.

(a)= (c) Assume that the operator I H? — V;, is compact. For
eachi € {0,--- ,m—1} and £ € D— {0}, the sequence {v; ¢} is bounded
and converges to zero uniformly on compact subsets of D when |{]| tends
to 1 (Lemma 3.1), so by using Lemma 2.4, lim¢_; HI%(’U,g)Hn = 0.
Now it is enough to let |£| tends to 1 in the inequality (4), therefore
limjg1 (1 — |§]2)m_"_2_%+1]gi(§)\ = 0. The proof is complete. [

Let m € N, @ = (ag, -+ ,am—1) € C™ and g € H(D). Applying
Theorems 3.2 and 3.3, we obtain similar results for the Chalmoukis
operator

L f(z) = 1" (S + ar flg ™D 4o 4 S0y
acting from the Hardy space into iterated weighted-type spaces.

Corollary 3.4. Let 1 <p<oo,meN, a= (ag, - ,am-1) € C"™ and
g€ H(D). Then

a) the operator 1%« H? — Vi, is bounded if and only if

m—1 . 1+1
m—n—i—=
P
g€ [ ] Vi .
=0

b) the operator I« HP — Vi, is compact if and only if

m—1 .
m—n—z—;—l—l
g € ﬂ V., i0 .
=0

Remark 3.5. By choosing suitable parameters m, p,n and 7, the re-
sults obtained in this paper, can be stated for some well-known operators
and spaces.
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