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Abstract. This research introduces a Ritz method to address two-
dimensional variable-order fractional optimal control problems (2D-VO
FOCPs) with nonlinear dynamical system. The system incorporates
variable-order Caputo-type fractional derivatives, which are widely rec-
ognized in modeling memory-dependent and nonlocal behaviors. To
construct the solution, shifted Gegenbauer polynomials are employed
as orthogonal basis functions to approximate the state and control vari-
ables. These approximations are substituted into the performance index
and the governing equations, resulting in a system of algebraic equa-
tions. Solving this system yields the numerical solution to the (2D-
VOFOCPs). We conduct a rigorous convergence analysis is conducted
to verify the stability and reliability of the proposed method. Further-
more, two numerical examples are provided to demonstrate the accu-
racy and computational efficiency of the technique in comparison with
existing integer-order approaches.
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1 Introduction

Fractional calculus is recognized as a powerful mathematical framework
for modeling complex dynamical systems with memory and hereditary
properties. Compared to integer-order models, fractional-order formu-
lations offer more accurate representations of phenomena such as heat
conduction in materials and fluid flow in porous media ([30], [12], [27]).
Optimal control theory plays a vital role across various scientific and en-
gineering disciplines, including physics, quantum dynamics and porous
media flow ([39],[6].[23]).

Optimal control theory has been extensively studied and applied
across various scientific and engineering disciplines, including physics
and quantum systems ([28], [9], [5]). Within the framework of frac-
tional calculus, fractional optimal control problems (FOCPs) constitute
a prominent class of problems in which both the dynamic constraints
and the cost functionals may involve derivatives and integrals of integer
and fractional orders ([1], [13]).

Fractional optimal control problems (FOCPs) can be formulated us-
ing various definitions of fractional derivatives, among which the Caputo
and Riemann–Liouville types are the most widely used. In this paper,
the Caputo definition is adopted due to its suitability for initial value
problems and physical interpretations. Extensive research has been con-
ducted in this area([37], [34], [8], [17]).

In another study [18], a general method for solving time-varying lin-
ear optimal control problems based on Chebyshev wavelet is proposed.
In [33], an operational matrix method based on Gegenbauer polynomi-
als was developed to solve a specific class of fractional optimal control
problems. Two-dimensional fractional optimal control problems (2D-
FOCPs) arise in various applications, such as porous media flow, steam
heating, and air drying processes [21]. Numerical methods have been
extensively employed to solve these problems, and recent studies have
introduced novel techniques for addressing 2D-FOCPs.

In [24], the use of eigenfunctions was pioneered for the fractional op-
timal control of two-dimensional distributed systems. Subsequent con-
tributions by [35] and [4] extended this approach by utilizing continuous-
time two-dimensional and multi-dimensional systems, along with opera-
tional matrices, to transform 2D-FOCPs into systems of algebraic equa-
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tions. In [20], a numerical technique based on the Legendre spectral
method was introduced to solve a class of two-dimensional variational
problems. Furthermore, [22] proposed a numerical method that inte-
grates the Ritz approach with fractional operational matrices to address
two-dimensional fractional optimal control problems.

Variable fractional operators offer a powerful tool for modeling com-
plex phenomena across various scientific and engineering disciplines, in-
cluding mechanical [29], telegraph [14] and diffusion-wave [7].
Two-dimensional variable-order fractional optimal control problems (2D-
VOFOCPs) represent a novel frontier in optimal control theory. To date,
this field remains relatively unexplored. While some researchers have
delved into variable-order fractional optimal control problems, their fo-
cus has primarily been on one-dimensional systems. For instance, [38]
utilized non-standard finite difference scheme for solving 2D-VOFOCPs.
Also [15] a new numerical method utilizing Chebyshev cardinal functions
is presented for the solution of variable-order fractional optimal control
problems. The practical importance of two-dimensional variable-order
fractional optimal control problems 2D-VOFOCPs has led to increased
research efforts. [16] solved the 2D-VOFOCPs by representing the state
and control variables using Legendre cardinal functions in matrix form.
In [32], a numerical method based on the Gegenbauer operational matrix
is proposed for solving a class of two-dimensional variable-order frac-
tional optimal control problems. This paper investigates 2D-VOFOCPs
characterized by nonlinear fractional dynamical systems and subject to
a quadratic performance index We employ Gegenbauer polynomials and
their operational matrix to solve these problems.

References [22] and [15] provide rigorous investigations into the ex-
istence and uniqueness of solutions for problems structurally analogous
to the one considered in this study.

The focus of this work is on the following 2D-VOFOCPs is consid-
ered:

Minimize J(u) =
1

2

∫ 1

0

∫ L

0
rt(a1z

2(r, s) + a2u
2(r, s))drds, (1)

subject to the dynamic constraint defined by a nonlinear variable-order
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fractional derivative

∂η(r,s)z(r, s)

∂sη(r,s)
= α(

∂2z(r, s)

∂r2
+

t

r

∂z(r, s)

∂r
) + u(r, s), (2)

with conditions

z(L, s) = 0, s > 0 , z(r, 0) = z0(r), 0 < r < L. (3)

Let, r and s denote the spatial and temporal variables, respectively.
The functions a1 and a2 are arbitrary, while 0 < η(r, s) ≤ 1 is a positive
function. The control and state functions are represented by u(r, s) and
z(r, s), respectively, with L being a positive constant. Both z(r, s) and
u(r, s) are assumed to be smooth and α is a positive number. For simplic-
ity, we consider values of s less than or equal to 1, although any positive
value is permissible. In numerical examples, we typically use t = 1 or

t = 2. The term ∂η(r,s)u(r,s)

∂sη(r,s)
the variable-order fractional derivative is

described by the Caputo definition, with being a positive constant. To
approximate the control and state functions, we employ shifted Gegen-
bauer polynomials with unknown coefficients. This method employs
the Ritz method and Gegenbauer polynomials to approximate the con-
trol and state functions. To enhance computational efficiency, a novel
fractional operational matrix is introduced. Finally, the solution of the
nonlinear algebraic equation system is obtained, which is solved numeri-
cally using Newton’s iterative method. For the existence and uniqueness
of the solutions, see references [10] and [2]. The remaining part of this
paper is organized as follows: section 2 reviews fundamental concepts
of variable-order fractional calculus and the properties of Gegenbauer
polynomials. In section 3 presents a new function approximation for
fractional optimal control problems. Section 4 introduces the shifted
Gegenbauer operational matrix of Caputo derivatives. In section 5 de-
tails the numerical implementation of the proposed method. Section 6
analyzes the convergence of the method. At last, our presents numerical
results for two examples, comparing our method with other techniques
in section 7.
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2 Preliminaries and Notations

This section revisits the concept of the partial fractional Caputo deriva-
tive and delves into the fundamental properties of Gegenbauer poly-
nomials, which serve as the foundational basis functions for the Ritz
method.

2.1 Two-dimensional variable-order fractional derivative

Definition 2.1. Let n − 1 < η(r, s) ≤ n, where n ∈ N . The Caputo
fractional derivative of order β(r, s) of the function u(r, s) with respect
to the variable s is defined as follows [16]:

∂η(r,s)u(r, s)

∂sη(r,s)
=


1

Γ(n−η(r,s))

∫ s
0 (s− β)n−η(r,s)−1 ∂

nu(r,β)
∂βn dβ,

n− 1 < η(r, s) ≤ n,
∂nu(r,s)

∂sn , η(r, s) = n.

(4)

The following properties of the Caputo-type variable-order fractional
derivative are presented in [16]:

∂η(r,s)sk

∂sη(r,s)
=

{
Γ(k+1)

Γ(k−η(r,s)+1)s
k−η(r,s), k ∈ N, k ≥ n,

0, k ∈ N, k < n.
(5)

∂η(r,s)(w1u1 + w2u2)(r, s)

∂sη(r,s)
= w1

∂η(r,s)u1(r, s)

∂sη(r,s)
+ w2

∂η(r,s)u2(r, s)

∂sη(r,s)
,

where w1 and w2 are constants.

2.2 Shifted gegenbauer polynomials and properties

In this section, we begin by introducing the Gegenbauer polynomials.
Subsequently, we derive the shifted Gegenbauer polynomials through
an appropriate variable transformation. The Gegenbauer polynomials,
denoted by Cη

n(t) a family of orthogonal polynomials on the interval [-1,
1] with degree n ∈ Z+ and parameter η > −1

2 . These polynomials are
defined by [36] and [11]

Cη
n(s) =

[n
2
]∑

k=0

(−1)kΓ(n− k + η)

k!Γ(η)(n− 2k)!
(2s)n−2k.
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Another way to generate the Gegenbauer polynomials is to use the fol-
lowing recurrence formula

(n+ 2η)C
(η)
n+1(s) = 2(n+ η)sC(η)

n (s)− nC
(η)
n−1(s),

starting with

C
(η)
0 (s) = 1, C

(η)
1 (s) = s.

The Gegenbauer polynomials are orthogonal with respect to the L2-
space on the interval [−1, 1] and their orthogonality relation is given by
[31].

We define the shifted Gegenbauer polynomials on the interval [0, 1]
by applying the linear transformation 2s − 1, s ∈ [0, 1] to the stan-

dard Gegenbauer polynomials [8]. Let C
(η)
n (2s − 1) denote the shifted

Gegenbauer polynomial of degree n, which is defined as: C
(η)
S,n(s), so

C
(η)
S,0(s) = 1, C

(η)
S,1(s) = 2s− 1.

The explicit form of the shifted Gegenbauer polynomial of degree n can
be produced using the following methods, as referenced in [8] and [36]:

C
(η)
S,n(s) =

Γ(η + 1
2)

Γ(2η)

n∑
k=0

(−1)(n−k)Γ(n+ k + 2η)

(n− k)!k!Γ(k + η + 1
2)

sk.

The shifted Gegenbauer polynomials are defined on the interval [0, 1].
Their orthogonality condition with respect to the L2-space on the inter-
val [0, 1] can be obtained from [8].∫ 1

0
C

(η)
S,m(s)C

(η)
S,n(s)ϑ

(η)(s)dt = λ(η)
n δm,n,

where
ϑ(η)(s) = (s− s2)(η−

1
2
),

λ(η)
n = (

1

2
)2ηη(η)n .

It should be noted that these polynomials can be adapted for use on the
interval [0, L] by replacing the variable s with 2s

L − 1 , 0 ≤ s ≤ L, as
follows:

C
(η)
S,j (s) = C

(η)
j (

2s

L
− 1), C

(η)
S,0(s) = 1, C

(η)
S,1(s) =

2s

L
− 1.
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The explicit form of the shifted Gegenbauer polynomial can indeed be
found in reference [3]. This form is crucial for various applications, such
as:

C
(η)
S,j (s) =

j∑
k=0

(−1)(j−k) Γ(η + 1
2)Γ(j + k + 2η)

Γ(2η)Γ(j + 1
2 + η)(j − k)!k!Lk

sk,

C
(η)
S,j (0) = (−1)(j)

Γ(j + 2η)

Γ(2η)j!
.

To numerically evaluate the double integral of a sufficiently smooth func-
tion, we employ the 2D Legendre-Gauss quadrature rule [22] as follows:

∫ b

a

∫ b′

a′
g(r, s)drds ≃ (b′ − a′)(b− a)

4
QTGQ′ (6)

where G is an l × l‘ matrix and entries are defined by

Gij = g(a′ + (mi + 1)
(b′ − a′)

2
, a+ (nj + 1)

(b− a)

2
),

where 1 ≤ i ≤ l, 1 ≤ j ≤ l′ denote the nodes of LG on the intervals
[a′, b′] and [a, b] respectively. The column vectors Q and Q′ contain the
corresponding Christoffel numbers of size l and l′, respectively.

3 Function Approximation Based on Gegenbauer
Polynomials

Let H = C2([0, 1] × [0, 1]), we define K = {C(β)
S,i (r)C

(β)
S,j (s)}

m,n
i,j=0 ⊆

C2([0, 1] × [0, 1]),m, n ∈ N ∪ {0} be the set of the Gegenbauer poly-
nomial products.
With the help of the following lemma, a two-dimensional function is ap-
proximated in terms of Gegenbauer polynomials.
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Lemma 3.1. Let Γmn = span < C
(β)
S,0 (r)C

(β)
S,0 (s), ..., C

(β)
S,m(r)C

(β)
S,n(s) >

and Θ(r, s) ∈ C2([0, 1]× [0, 1]), if Θmn(r, s) is the best approximation of
Θ(r, s) out of Γmn then

Φm(r) =


C̄

(β)
0 (r)
...
...

C̄
(β)
m (r)

 ,Φn(s) =


C̄

(β)
0 (s)
...
...

C̄
(β)
n (s)


where C̄

(β)
i (r) = C

(β)
S,i (r) and C̄

(β)
j (s) = C

(β)
S,j (s), i = 0, ...,m, j = 0, ..., n

Θ(r, s) ≃ Θmn(r, s) =

m∑
i=1

n∑
j=1

eijC̄
(β)
i (r)C̄

(β)
j (s) = ΦT

m(r)EΦn(s).

Proof. [32] □

4 Operational Matrices

In this section, we will present a novel approach for solving the 2D-
VOFOCP defined by Eqs.(1)-(3) based on shifted Gegenbauer poly-
nomials. To effectively handle the variable-order fractional derivative
∂η(r,s)z(r,s)

∂sη(r,s)
we will construct a dedicated operational matrix. As will be

demonstrated later, this operational matrix plays a crucial role in effi-
ciently solving the 2D-VOFOCP. According to the previous discussion
and the Ritz method, the state function can be represented in terms of
shifted Gegenbauer polynomials in the following form:

z(r, s) ≃ v(r, s)Φm(r)TEΦn(s) + w(r, s). (7)

Where v(r, s) and w(x, t) are trial functions and shall be chosen in a way
that the estimated function satisfies boundary conditions (3). Hence,
the function v(r, s) is selected to satisfy homogeneous initial-boundary
condition (v(r, 0) = v(0, s) = 0) and w(r, s) to satisfy inhomogeneous
initial-boundary conditions. Therefore, these auxiliary functions may be
taken as v(r, s) = rs, w(r, s) = rz(r,0)+sz(L,s)

r+s . If the point r0 := ra is
selected, we put v(r, s) = (r − ra)s.
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E = [eij ] for i = 0, 1, ...,m and j = 0, 1, ..., n is an unknown matrix.
Also, the vectors Φn(s) and Φm(r) are represented as:

Φm(r) = [C̄
(η)
0 (r), C̄

(η)
1 (r), ..., C̄(η)

m (r)]T = AMm(r), (8)

Φn(s) = [C̄
(η)
0 (s), C̄

(η)
1 (s), ..., C̄(η)

n (s)]T = BMn(s), (9)

where

Mm(r) = [1, r, ..., rm]T ,Mn(s) = [1, s, ..., sn]T = [ν0(s), ν1(s), ..., νn(s)]
T ,

νj(s) = sj , j = 0, 1, 2, ..., n

and

A =


a00 a01 · · · a0m
a10 a11 · · · a1m
...

... · · ·
...

am0 am1 · · · amm

 , B =


a00 a01 . . . a0n
a10 a11 . . . a1n
...

...
...

...
an0 an1 . . . ann

 ,

aij =

{
(−1)(i−j)Γ(η+ 1

2
)Γ(i+j+2η)

(i−j)!j!Γ(2η)Γ(j+η+ 1
2
)

, i ≥ j,

0, i < j.

Fractional derivative of νj(s) of variable-order 0 < η(r, s) ≤ 1 in
Caputo fractional derivative sense is shown as below:

∂η(r,s)νj(s)

∂sη(r,s)
=

{
Γ(j+1)

Γ(j+1−η(r,s))s
j−η(r,s), j = 1, 2, ..., n,

0, j = 0.

Lemma 4.1. Let Φn(s) be the vector function as defined in Eq. (9), and
let 0 < η(r, s) ≤ 1 be a positive continuous function over [0, L] × [0, 1].
The Caputo fractional derivative of order η(r, s) of the function Φn(s)
is expressed as:

∂η(r,s)z(r, s)

∂sη(r,s)
≃ ΦT

m(r)E
∂η(r,s)Φn(s)

∂sη(r,s)
= ΦT

m(r)EBOη(r,s)
s Mn(s),
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where O
η(r,s)
s is the (n+1)× (n+1) variable-order fractional derivatives

operational matrix of order η(r, s) given by

Oη(r,s)
s = s−η(r,s)


0 0 . . . 0
0 1

Γ(2−η(r,s)) . . . 0

0 0 . . . 0
...

...
...

...

0 0 . . . n!
Γ(n+1−η(r,s))

 .

Proof. We substitute Eq. (5) into Eq. (9)

∂η(r,s)Φn(s)

∂sη(r,s)
= B ∂η(r,s)Mn(s)

∂sη(r,s)

= B[0, 1
Γ(2−η(r,s))s

1−η(r,s), ..., n!
Γ(n+1−η(r,s))s

n−η(r,s)]T

= Bs−η(r,s)[0, 1
Γ(2−η(r,s))s, ...,

n!
Γ(n+1−η(r,s))s

n]T ,

and the remainder of the proof follows directly. □
The first and second order derivatives of the state function z(r, s) as
defined in Eq. (7), can be calculated as follows:

∂Φm(r)

∂r
= A

∂Mm(r)

∂r
= AO1Mm(r),

∂z(r,s)
∂r ≃ ∂ΦT

m(r)EΦn(s)
∂r = ∂MT

m(r)
∂r ATEΦn(s)

= MT
m(r)(D1)TATEΦn(s),

(10)

similarly, in (10), one can find

∂2z(r, s)

∂r2
≃ MT

m(r)(O2)TATEΦn(s),

so that the (m+1)× (m+1) matrices O1, O2 are referred to as the op-
erational matrices of the first and second order derivatives, respectively,
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and are defined by:

O1 =


0 0 0 . . . 0
0 1

r 0 . . . 0
0 0 2

r . . . 0
...

...
... . . .

...
0 0 0 . . . m

r

 , (11)

O2 =


0 0 0 . . . 0
0 0 0 . . . 0

0 0 (2)(1)
r2

. . . 0
...

...
... . . .

...

0 0 0 . . . (m)(m−1)
r2

 . (12)

5 Numerical Treatment

In this part, our proposed method for solving the 2D-VOFOCP (1)-(3)
is explained.

Min J(u) =
1

2

∫ 1

0

∫ L

0
rt(a1z

2(r, s) + a2u
2(r, s))drds,

To do this, we approximate the functions z(r, s) and u(r, s) by Gegen-
bauer polynomials as:

z(r, s) ≃ v(r, s)Φm(r)TEΦn(s) + w(r, s).

u(r, s) ≃ −∂η(r,s)z(r, s)

∂sη(r,s)
+ α(

∂2z(r, s)

∂r2
+

t

r

∂z(r, s)

∂r
). (13)

By obtaining u(r, s) and z(r, s) from Eqs. (7)-(13) By inserting it
into the cost functional J , we can approximate it as:

J(u) =
∫ 1
0

∫ L
0 F (r, s, enm)drds, (14)
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F (r, s, enm) = G(r, s, v(r, s)Φm(r)TEΦn(s) + w(r, s),

−∂η(r,s)z(r,s)

∂sη(r,s)
+ α(zrr(r, s) +

t
rzr(r, s)))

The approximate derivatives of the state function z(r, s) can be ex-
pressed as:

zr(r, s) ≃ MT
m(r)(O1)TATEΦn(s),

zrr(r, s) ≃ MT
m(r)(O2)TATEΦn(s),

∂η(r,s)z(r, s)

∂sη(r,s)
≃ ΦT

m(r)EBOη(r,s)
s Mn(s).

The double integral in equation (14) is evaluated using the Legendre-
Gauss quadrature rule as described in equation (6). Furthermore, the
following necessary conditions for the extremum must hold:

∂J∗

∂eij
= 0, j = 0, 1, ...,m, i = 0, 1, ..., n. (15)

In this manner, the 2D-VOFOCP defined by Eqs. (1)-(3) is reduced to
a system of nonlinear algebraic equations, namely Eq. (15). This sys-
tem can then be efficiently solved using Newton’s iterative method. A
brief description of the proposed pseudocode algorithm is given by the
following steps:
Inputs: Consider η(r, s), and define a constantJ , which must be a very
small positive real number. As a result, the functions z(r, s) and u(r, s)
are approximated, Additionally, define a constant ϵJ , which must also
be a very small positive real number.
Step 1: Construct the basis vectors from the shifted Gegenbauer poly-
nomials Φn(s) and Φm(r) utilizing Eqs. (8), (9) for appropriate values
of z(r, s) and u(r, s), define the unknown matrix E, and compute the op-
erational matrice O1, O2 and Oη(r,s) utilizing Eqs. (11), (12) and (10).
Step 2: Solve the system of equations in the necessary conditions (15)
using the dynamic method System (2) and approximate state and con-
trol functions (7), (13), boundary and initial conditions (3).
Step 3: Obtain the optimal functions z(r, s) and u(r, s) from equations
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(7), (13) and find the optimal function J subject to constraints (1).
Step 4: Increase the values of n and m, and repeat Steps 1 through 3.
Step 5: If |Jnew − Jold| < ϵJ , the optimal solutions by this method are
obtained; otherwise, go back to Step 4.

The outputs of this pseudocode algorithm are the approximate op-
timal solutions J , z(r, s) and u(r, s).

6 The Convergence Analysis

This section investigates the convergence behavior of the proposed method.
We demonstrate that as the degrees of approximation parameters m and
n increase in Eqs. (7)-(13), the estimated value of the cost functional
J converges to its optimal value. This result is formally established in
Theorem 6.3.

Let C2([0, 1] × [0, 1]) denote the Banach space of all twice con-
tinuously differentiable functions defined on the domain [0, 1] × [0, 1],
equipped with the uniform norm. This space is equipped with the uni-
form norm defined by:

||Ω(r, s)|| = ||Ω(r, s)||∞ + ||∂Ω(r,s)
∂r ||∞

+||∂Ω(r,s)
∂s ||∞ + ||∂

2Ω(r,s)
∂r2

||∞.

The following lemma demonstrates the continuity of the cost functional
J , on the defined Banach space.

Lemma 6.1. Suppose that J : C2([0, 1] × [0, 1]) −→ R is uniformly
continuous .

Proof. Assuming 0 < η ⩽ 1, we apply the definition of the Caputo
derivative to Eq. (4), which yields:

||∂ηh
∂sη || ≤

1
Γ(1−η) maxr∈[0,a] |

∫ s
0

1
(1−β)η ||

∂h
∂β ||∞dβ|

≤ a(1−η)

Γ(2−η) ||
∂h
∂s ||∞.

(16)
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Suppose any ϵ > 0 is given and let δ > 0 and h ∈ C2([0, 1]× [0, 1]). Now
suppose that f ∈ C2([0, 1]× [0, 1]), such that

||h− f || = ||h− f ||∞ + || ∂∂r (h− f)||∞

+|| ∂∂s(h− f)||∞ + || ∂
∂r2

(h− f)||∞ < δ.

By using Eq. (16), we have

||∂
ηh

∂sη
− ∂ηf

∂sη
|| = ||∂

η(h− f)

∂sη
||∞ ≤ a(1−η)

Γ(2− η)
||∂h
∂s

− ∂f

∂s
||∞.

Since the function h and its first and second derivatives are contin-
uous, it follows that Ω(r, s, h, ∂h∂r ,

∂ηh
∂sη ,

∂2h
∂r2

) is a continuous function [26].
So there exists δ > 0 with ||f − h1|| < δ such that:

||Ω1(r, s, h,
∂h

∂r
,
∂ηh

∂sη
,
∂2h

∂r2
)− Ω0(r, s, h,

∂h

∂r
,
∂ηh

∂sη
∂2h

∂r2
)|| < ϵ,

and we have
|J(h)− J(f)| < ϵ.

□
The function f(x, y) can be approximated by a series of two-dimensional
Gegenbauer polynomials by the following lemma:

Lemma 6.2. Let p1(r, s) denote the set of all continuous functions on
the unit square and ϵ > 0 is given, then there exists a set of polynomials
{pm,n(r, s)}m,n∈N satisfies the following conditions:

∀m,n ≥ N, |p1(r, s)− pmn(r, s)| < ϵ.

Proof. [26]. □

The following theorem establishes the convergence of the approxi-
mating method for Gegenbauer polynomials.

Theorem 6.3. Let θmn denote the minimum of the cost functional J on
the subspace C2([0, 1]× [0, 1])∩Γmn and let θ denote the global minimum
of J on the space C2([0, 1] × [0, 1]). Then, the following relationship
holds:

θmn −→ θ.
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Proof.
Let ϵ > 0 be given. Since J is a continuous functional, and there

exists g∗ ∈ C2([0, 1]×[0, 1]) such that J [g∗] < θ+ϵ, we can apply Lemma
6.1. This implies that for any f ∈ (C2([0, 1]× [0, 1]∩ θmn) provided that
||f − g∗|| < δ with ||f − g∗|| < δ, we have J [g∗] < θ + ϵ. By Lemma 6.2,
for sufficiently large m and n, there exists pmn such that ||pmn−g∗|| < δ.
Denoting J [pmn] by θmn, we can then show that

θ ≤ θmn = |J [pmn]− J [g∗] + J [g∗]| ≤ |J [pmn]| − |J [g∗]|+ |J [g∗]|
< θ + 2ϵ,

since ϵ > 0 is an arbitrary, we have

lim
(m,n)→(∞,∞)

θmn = lim
(m,n)→(∞,∞)

J [pmn] = θ.

□

Figure 1: Approximate solution z(r, s) is presented for η(r, s) = 1,
m = 3, n = 10 in Example 1
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Table 1: : J values are approximated for different selections of m, n
and η(r, s) in Example 1.

m×n 2× 2 2× 4 2× 6 2×7 3×7 3×9 3× 10

η(r, s) = 1− 0.7cos(rs) 0.072 0.035 0.02023 0.01674 0.01665 0.000394 0.000310

β(r, s) = 1− 0.02e(−(rs)) 0.05 0.020 0.0104 0.0087 0.00812 0.00132 0.00118

Table 2: : J values are approximated for the method in [19], [25] and
proposed scheme for η(r, s) = 1 in Example 1.

m×n 1× 4 2×4 2×6 2× 7 3× 7 3 ×9 3 × 10

Method in [19] 0.081044 0.028790 0.018283 0.016484 0.013027 0.010405 0.007569
Method in [25] 0.015864 0.014089 0.013968 0.014015 0.0047307 0.0047063 0.0046844

7 Illustrative Examples

This section presents two illustrative examples demonstrating the ac-
curacy of the results is compared with those produced by established
methods. All numerical computations were performed using MATLAB
2018.

Example 7.1. Consider the following problem:

Min J(u) =
1

2

∫ 1

0

∫ 1

0
r(z2(r, s) + u2(r, s))drds,

The constraint involves a nonlinear dynamical system with a variable-
order fractional derivative

∂η(r,s)z(r, s)

∂sη(r,s)
= (

∂2z(r, s)

∂r2
+

1

r

∂z(r, s)

∂r
) + u(r, s),

subject to the conditions

z(1, s) = 0, s > 0, z0(r) = 1− r2, 0 < r < 1.
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Figure 2: Approximate solution u(r, s) is presented for η(r, s) = 1,
m = 3, n = 10 in Example 1
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According to the proposed method, an approximation of the state
function is obtained as

z(r, s) ≃ (r − 1)sΦm(r)TEΦn(s) + 1− r2.

To address the numerical solution, the Ritz spectral method is em-
ployed. Following approximation of the state function, the control input
is determined from the system dynamics. Subsequently, by substituting
the approximated functions into the cost functional, an unconstrained
minimization problem arises. The objective is to determine the unknown
coefficient matrix emn.

Min J(u) = 1
2

∫ 1
0

∫ 1
0 r(((r − 1)sΦm(r)TEΦn(s) + 1− r2)2(r, s)

+(∂
η(r,s)z(r,s)

∂sη(r,s)
− (∂

2z(r,s)
∂r2

+ 1
r
∂z(r,s)

∂r ))2(r, s))drds.

After employing the two-dimensional Legendre–Gauss quadrature rule
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Figure 3: Approximate solution z(r, s) is presented for β(r, s) = 1,
r = 0.5, in Example 1.
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to evaluate the double integral, Newton’s iterative method is then ap-
plied to solve the resulting system. The numerical example is solved for
the specific parameters m=1, n=4 and η(r, s) = 1.

E=

[
4.19092119088 −4.5723815941 2.97851005569 −1.5163527164 0.43054751883
1.54371694607 −1.8887960334 1.4960895875 −1.0149774235 0.38465020123

]

D
η(r,s)
s = s−η(r,s)


0 0 0 0 0
0 1

Γ(2−η(r,s)) 0 0 0

0 0 2
Γ(3−η(r,s)) 0 0

0 0 0 6
Γ(4−η(r,s)) 0

0 0 0 0 24
Γ(5−η(r,s))

 .

The statement indicates that the algorithm has been executed, and
the approximate value of the cost functional J is 0.03861. Table 1
presents the achieved values of the cost functional J for various choices
of the variable-order parameter η(r, s) and different values ofn and m.
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Figure 4: Approximate solution u(r, s) is presented for β(r, s) = 1,
r = 0.5, in Example 1.
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Table 2 compares the values of J for various combinations of n and m
with η(r, s) = 1 obtained via the approaches in [20] and [25], as well as
the proposed method. A comparison of the results indicates that the
proposed numerical scheme achieves higher accuracy than the methods
presented in [20] and [25]. Figures 1 and 2 show the surface plots of
the state function and the control function for η(r, s) = 1, m = 3 and
n = 10. For η(r, s) = 1 and r = 0.5, figure 3 shows the plot of the ap-
proximate state function for different values of n and m. Figure 4 shows
the plot of the approximate control function for different values of n and
m, η(r, s) = 1 and r = 0.5. Figures 3 and 4 illustrate that increasing the
number of shifted Gegenbauer basis functions leads to a convergence of
the approximate state and control functions towards the zero solution.
The cost functional J values obtained using the proposed method, for
both constant (η(r, s) = 1) and variable η(r, s) and various combina-
tions of n and m, consistently yield consistently lower values compared
to those obtained using the methods presented in [20] and [25]. These
results indicate that the proposed method provides more accurate and
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Figure 5: Approximate solution z(r, s) is presented for η(r, s) = 1,
m = 7, n = 8, in Example 2
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reliable results and more accurate solutions.

Example 7.2. Consider the following 2D-VOFOCP:

Min J(u) =
1

2

∫ 1

0

∫ 1

0
r2(z2(r, s) + u2(r, s))drds,

subject to the dynamic constraint with nonlinear variable-order frac-

Table 3: : J values for different selections ofm, n and η(r, s) in Example
2.

m×n 4× 5 5× 5 5× 6 6×6 6×7 7× 7 7× 8

η(r, s) = 1− 0.3(r2 + s2) 1.179 1.1161 0.8146 0.7305 0.5633 0.4031 0.2601

η(r, s) = 1− 0.2e((rs)) 1.1326 1.060 0.767 0.7009 0.5412 0.5303 0.2284
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Figure 6: Approximate solution u(r, s) is presented for η(r, s) = 1,
m = 7, n = 8, in Example 2
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tional derivative

∂η(r,s)z(r, s)

∂sη(r,s)
= (

∂2z(r, s)

∂r2
+

2

r

∂z(r, s)

∂r
) + u(r, s),

and the conditions:

z(1, s) = 0, s > 0, z(r, 0) = sin(2πr), 0 < r < 1.

The proposed method employs an approximation for the state func-
tion, given by:

z(r, s) ≃ (r − 1)sΦm(r)TEΦn(s) + sin(2πr).

The problem is numerically solved subject to the specified boundary
conditions.

in J(u) = 1
2

∫ 1
0

∫ 1
0 r(((r − 1)sΦm(r)TEΦn(s) + 1− r2)2(r, s)

+(∂
η(r,s)z(r,s)

∂sη(r,s)
− (∂

2z(r,s)
∂r2

+ 2
r
∂z(r,s)

∂r ))2(r, s))drds.
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Table 4: : A comparison of J values is conducted with η(r, s) = 1,
using both the method presented in [19] and the proposed method for
Example 2.

m×n 4× 5 5× 5 5× 6 6×6 6×7 7× 7 7× 8

Proposed method 0.7287 0.650 0.4193 0.3586 0.2508 0.2472 0.09675
Method in [19] 2.72722 1.92027 1.27424 0.91850 0.55287 0.54935 0.36868

Figure 7: Approximate solution z(r, s) is presented for η(r, s) = 1,
m = 7, n = 8, in Example 2
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Table 3 presents the computed values of the cost functional J , ob-
tained using the proposed numerical method for various combinations of
the parameters n, m and the variable-order function η(r, s). The state
and control functions for η(r, s) = 1, m = 7 and n = 8 are plotted in
Figure 5 and 6. Figure 7 and 8 display the plot of the approximate, state
and control functions fo η(r, s) = 1 and r = 0.5. Table 4 presents the
approximate state and control functions for various values of n, m. As
evidenced by the results, the proposed method consistently outperforms
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Figure 8: Approximate solution u(r, s) is presented for η(r, s) = 1,
m = 7, n = 8, in Example 2
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the integer-order approach introduced in [20].

8 Conclusions

The article presents a valuable contribution to the field of fractional opti-
mal control by introducing the Ritz method based on shifted Gegenbauer
polynomials for solving 2D-VOFOCPs. This method effectively trans-
forms the complex 2D-VOFOCPs into an unconstrained optimization
problem, significantly simplifying its solution. The method’s effective-
ness is demonstrated through numerical examples. Furthermore, the
authors identify a promising avenue for future research by suggesting
the inclusion of time-delay in these problems.
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