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Abstract. For a locally compact group G with a closed subgroup H, we
define and study Beurling-Fourier algebras on the homogeneous space
G/H, which consists of the left cosets of H in G. The cornerstone of
our approach is the definition of Beurling-Fourier algebras in terms of
the weight inverses. For G with closed subgroup H and weight ω : G →
[1,∞), we study Beurling-Fourier algebras on G/H. We show that our
construction on G/H, denoted by A(G : H,ω) and equipped with the
norm ∥.∥ω, forms a Banach algebra. In particular, we establish a version
of Leptin theorem: if H is compact, then G is amenable, if and only if
Beurling-Fourier algebra on G/H has a bounded approximate identity.
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1 Introduction

The study of the Fourier algebra on a topological group, not necessar-
ily abelian, began in the early twentieth century. Fourier and Fourier-
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Stieltjes algebras on group G (A(G) and B(G) respectively), were born
by Eymard [5], in his PhD thesis (1964). For a locally compact abelian
group G the Fourier transform provides an isometrically isomorphism
from L1(G) onto A(Ĝ), where Ĝ is the Pontryagin dual of G. An-
other group algebra is the Fourier–Stieltjes algebra, which for a locally
compact abelian group G the Fourier–Stieltjes transform provides an
isometrically isomorphism to M(Ĝ), the Borel regular complex measure
algebra on Ĝ.

There have been many generalizations of the Fourier algebra. Herz
[12], Figa-Talamanca [7], Runde [19], Amini, etc, have all attempted
to generalize the Fourier algebra from a different perspective. These
generalizations include changing the underlying space from groups to
semigroups, hypergroups, and quantum groups, as well as changing the
techniques of Banach spaces to operator algebras and p-operator spaces.
The complete order amenability of Fourier algebras was first studied
in [21]. Later developments extended these ideas to p-operator spaces,
revealing new functorial properties of p-analogs of Fourier-Stieltjes alge-
bras [1, 2].

Homogeneous spaces play a significant role in various fields of mathe-
matics, especially in geometry, topology, and algebra. Some of the main
aspects of their importance include symmetry and group actions [11],
geometric analysis of invariant structures [4], and the foundational the-
ory of Lie groups and their homogeneous quotients [20]. In summary,
homogeneous spaces are crucial for understanding symmetry, geometric
structures, and algebraic properties across various branches of mathe-
matics and its applications.

In [8], it has been introduced and investigated Fourier algebra A(G :
H) and Fourier-Stieltjes algebra B(G : H) on homogeneous spaces G/H
of left cosets of H in G, where H is a closed subgroup of locally compact
group G. Also, assuming that H is a compact subgroup of G, it is shown
that G is amenable if and only if A(G : H) has a bounded approximate
identity.

Weights and weighted function spaces play an important role in
mathematical analysis, functional theory, and differential equations. In
principle, weights allow us to study the behavior of functions around a
certain point, to ignore their fluctuations at infinity, or, conversely, to
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enhance the asymptotic behavior of a function. This concept has numer-
ous applications in numerical mathematics and is often used for precise
applications (signal theory, Gabor analysis, sampling theory,· · · ), for ex-
ample [10, 6]. On the other hand, weights appear naturally in analysis:
in inequalities relating the norm of a function to the norm of its deriva-
tives, and in extension theorems, · · · One area where weighted spaces
are used intensively is the theory of boundary value problems for partial
differential equations (see [9]).
Constructing the Fourier algebra using weight functions is very compli-
cated due to the nature of the definition of these functions, and there are
various approaches to it. In [17], [14], Beurling algebras and Beurling–
Fourier algebras have been introduced, which are functions that exhibit
a suitable average behavior under the influence of weight. In [14], Lee
and Samei introduced the notion of a Beurling–Fourier algebra. If G
is a locally compact group and ω : G → [1,∞) is a weight, then mul-
tiplication with ω defines a closed, densely defined operator on L2(G),
which is bounded if and only if ω is bounded, i.e. L1(G,ω) is trivial.
Consequently, Lee and Samei define what they call a weight on the dual
of G as a closed, densely defined operator on L2(G) affiliated with the
group von Neumann algebra V N(G). The resulting theory of Beurling–
Fourier algebras is particularly tractable for what Lee and Samei call
central weights on the duals of compact groups. These weights and their
corresponding Beurling–Fourier algebras were also introduced and inves-
tigated by Ludwig, Spronk and Turowska [15]. In [17], their approach is
not to define Beurling algebras in terms of weights, i.e., possibly contin-
uous functions, but rather in terms of their inverses, which are bounded
continuous functions. Motivating, we mention some examples in Sec-
tion 3. Precisely, on Sn = SO(n+ 1)/SO(n), weighted Fourier algebras
analyze functions with rotational symmetry. Weights on Rn ∼= Rn/{0}
model decay at infinity [9, 10].
In this paper, we aim is to replace the underlying space from a group to
a homogeneous space, to construct a new Fourier–type algebra. Using
the Oztop [17] technique, which involves the weight inverses, we intro-
duce a new algebra called the Beurling–Fourier algebra on homogeneous
spaces denoted by A(G : H,ω).
The paper is organized as follows: In Section 2, we review Beurling-
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Fourier algebras on locally compact groups, weight inverses and Beurling–
Fourier algebras [17]. In Section 3, we first recall the Fourier alge-
bras on coset spaces, [8], and then introduce Beurling–Fourier algebras
on homogeneous spaces, using the inverse of weights. In Proposition
3.6, we show that our construction is a Banach algebra. In Theorem
3.13, for Beurling-Fourier algebras on homogeneous spaces, we prove a
Leptin–type theorem: if H is compact, then G is amenable if and only if
Beurling-Fourier algebra on G/H has a bounded approximate identity.

2 Preliminaries

The structure of Beurling and Fourier-Beurling algebras will be ex-
plained in this section. This is discussed in detail in reference [17].
Beurling algebras have long been studied in harmonic analysis, espe-
cially for abelian groups (see, for example, [14] and [18]).

2.1 Fourier algebras on the locally compact groups

Suppose G is a locally compact group, and C∗(G) represent the full
group C∗-algebra, which is the enveloping C∗-algebra of L1(G). Ad-
ditionally, suppose

∑
G denote the set of equivalence classes of weakly

continuous unitary representations of G. For a representation π ∈
∑

G

and vectors ξ, η ∈ Hπ, where Hπ is the Hilbert space related to π, the
function defined by u(x) = ⟨π(x)ξ, η⟩ is referred to as a coefficient func-
tion of π. The dual space of C∗(G) can be identified with B(G), which
encompasses all coefficient functions associated withG . The space B(G)
forms a commutative Banach algebra under the dual norm and point-
wise multiplication, and it is known as the Fourier–Stieltjes algebra of
G.

One of the well-known representation on a locally compact group G,
is the left regular representation (λ, L2(G)), which is defined through
the following relations, for x, y ∈ G and ξ ∈ L2(G),

λ : G → B(L2(G)), λ(x) : L2(G) → L2(G), λ(x)(ξ) ∈ L2(G),

λ(x)(ξ) : G → C, λ(x)(ξ)(y) = ξ(x−1y).
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The space of all coefficient functions of the left regular representation
forms an algebra which is called Fourier algebra, denoted by A(G), which
can be considered as ⟨B(G) ∩ Cc(G)⟩ or {f ∗ g̃ : f, g ∈ L2(G)}. The
Fourier algebra A(G) is a closed ideal in B(G). Indeed, the Fourier
algebra A(G) consists of all coefficient functions of the left regular rep-
resentation λ of G, i.e.

A(G) = {w = (λξ, η) : ξ, η ∈ L2(G)}.

This is a regular, commutative Banach algebra with pointwise multipli-
cation and the norm ∥w∥ = inf{∥ξ∥∥η∥ : w = (λξ, η)}.

Using integration, λ can be ”extended” to a ∗-representation of the
group algebra L1(G) on the Hilbert space L2(G), and we will continue
to use the notation λ for this extension. The reduced group C∗-algebra,
C∗
r (G), and the group von Neumann algebra of G, V N(G), are defined

as follows:

C∗
r (G) := λ(L1(G))

∥.∥
and V N(G) := λ(L1(G))

weak∗

,

The Fourier algebra A(G) serves as the predual of V N(G) [5]. This
duality is defined as follows:

Φ : V N(G) −→ (A(G))∗

Φ(T ) :=ΦT , ΦT ((f ∗ g̃)) = ⟨T (f), g⟩.

As the predual of the (left) group von Neumann algebra V N(G) , A(G)
has the canonical operator space structure.

Consider the unitary operator W ∈ B(L2(G × G)), which is given
by:

(Wξ)(x, y) := ξ(x, xy) (ξ ∈ L2(G×G), x, y ∈ G).

Then

Γ̂ : B(L2(G)) −→ B(L2(G×G)), T 7→ W−1(T ⊗ 1)W

is a co-multiplication, satisfying (will be shown in the following.):

Γ̂λx = λx ⊗ λx (x ∈ G). (1)
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So we have the co-multiplication

Γ̂ : V N(G) −→ V N(G)⊗̄V N(G) ∼= V N(G×G),

where ⊗̄ means the tensor product of von Neumann algebras, and ∼= de-
noted von Neumann isometric isomorphism. Thus this co-multiplication
turns A(G) into a completely contractive Banach algebra. Indeed co–
multiplication Γ̂, encodes group operation and ensures convolution com-
patibility.

To see the equation 1 we have:

Γ̂λx = W−1(λx ⊗ id)W (x ∈ G).

Now for ξ1, ξ2 ∈ L2(G), and t, s ∈ G, we have

(λx ⊗ id)(W (ξ1 ⊗ ξ2))(t, s) = W (ξ1 ⊗ ξ2)(x
−1t, s)

= ξ1(x
−1t)ξ2(x

−1ts).

On the other

W (λx ⊗ λx)(ξ1 ⊗ ξ2)(t, s) = (λx ⊗ λx)(ξ1 ⊗ ξ2(t, ts))

= Lxξ1(t)Lxξ2(ts)

= ξ1(x
−1t)ξ2(x

−1ts).

Therefore, W−1(λx ⊗ id)W = λx ⊗ λx.
The existence of Γ̂ on V N(G) induces a product on A(G), which is

represented by ∗̂. For any f, g ∈ A(G) and x ∈ G, we have

⟨f ∗̂g, λx⟩ = ⟨f ⊗ g, Γ̂λx⟩ = ⟨f ⊗ g, λx ⊗ λx⟩ = f(x)g(x),

i.e., ∗̂ is pointwise multiplication.
For a von Neumann algebra N , its predual N∗ naturally forms an N -
bimodule through the relationship:

⟨x, yf⟩ := ⟨xy, f⟩ = ⟨y, fx⟩ (f ∈ N∗, x, y ∈ N). (2)

Moreover, there exists a canonical, weak∗ continuous, complete con-
traction θ : V N(G × G) −→ (A(G)⊗̂A(G))∗, such that the preadjoint
(θΓ̂)∗ : A(G)⊗̂A(G) −→ A(G) represents pointwise multiplication (here,
⊗̂ denotes the operator space projective tensor product ).
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2.2 Weight inverses and Beurling–Fourier algebras

A weight on a locally compact group G is defined as a measurable and
locally integrable function ω : G −→ [1,∞) that satisfies the condition

ω(xy) ≤ ω(x)ω(y) (x, y ∈ G).

The associated Beurling algebra ([18], Definition 3.7.2) is defined as

L1(G,ω) :=
{
f ∈ L1(G) : ωf ∈ L1(G)

}
.

This algebra is a subalgebra of L1(G) and forms a Banach algebra
with respect to the norm ∥f∥L1(G,ω) := ∥ωf∥1 for f ∈ L1(G,ω). We can
assume without loss of generality that ω is continuous (see [18], Theo-
rem 3.7.5). Beurling algebras have been a significant focus in abstract
harmonic analysis for an extended period, particularly in the case of
abelian groups G (see [13] and [18], for example).
The generalization of this structure to Fourier algebras has been pursued
by mathematicians. Using the concept of weight or the weight inverse
of in [14] and [17] has been two approaches in this direction.
Oztop approach in [17] provides Beurling–Fourier algebra such that, if G
is a locally compact abelian group with dual group Ĝ, then the achieved
algebra correspond–via the Fourier transform–to the Beurling algebras
on Ĝ.

Oztop’s main idea is not to define the ”dual” concept of weight but
rather to define the inverse concept of weight. This approach allows for
the definition of Beurling–Fourier algebras without relying on the theory
of von Neumann algebras, which [14] heavily depends on.

If G is a locally compact group and ω : G −→ [1,∞) is a weight, then
ω is bounded if and only if L1(G,ω) = L1(G) with an equivalent norm.
In other words, unless L1(G,ω) is trivial, the multiplication operator
induced by ω on L2(G) is unbounded. However, the inverse of ω–with
respect to pointwise multiplication–is bounded on G. This means that
the corresponding multiplication operator on L2(G) is bounded and thus
lies in the multiplier algebra of C0(G) , the C∗-algebra of all continuous
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functions on G vanishing at infinity (represented on L2(G) as multipli-
cation operators). For a locally compact group G, we denote by Cb(G)
the C∗-algebra of all connected functions in G.

The following theorem discussed in [14] motivates use the weight
inverses to construct Beurling–Fourier algebras.

Proposition 2.1 ([17]). Let G be a locally compact group. Then
the following are equivalent for non-negative α ∈ Cb(G) with ∥α∥∞ ≤
1:

(i) there is a weight ω : G −→ [1,∞) such that α = ω−1;

(ii) (a) the map

C0(G) −→ C0(G), f 7→ αf (3)

has dense range;

(b) there is Ω ∈ L∞(G×G) with ||Ω|| ≤ 1 such that

α(x)α(y) = α(xy)Ω(x, y) (x, y ∈ G). (4)

Moreover, if ω is as in (i), then

L1(G,ω) = {αf : f ∈ L1(G)}

and

∥αf∥ω = ∥f∥1 (f ∈ L1(G)).

The key takeaway from Proposition 2.1 is that Beurling algebras can
be defined without referencing a weight– a possibly unbounded continu-
ous function–. Instead, they can be defined using the inverses of weights,
which are bounded continuous functions, i.e., multipliers of C0(G).

For a C∗-algebra A, an element α Belongs to B(H), where H is the
Hilbert space related to A, is said to be a left (resp. right) multiplier of
A if αA ⊂ A (resp. Aα ⊂ A). If α is a left and right multiplier of A,
then it is called merely a multiplier. The set of all multipliers of A is
denoted by M(A) and it is called the multiplier algebra of A.
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Definition 2.2. Let G be a locally compact group. An element ω−1 be-
longing to M(C∗

r (G)) is termed a weight inverse, if it satisfies ||ω−1|| ≤ 1
and the following conditions hold:

(a) the maps
C∗
r (G) −→ C∗

r (G), x 7→ xω−1 (5)

and
C∗
r (G) −→ C∗

r (G), x 7→ ω−1x (6)

both have dense ranges;

(b) There exists an element Ω ∈ V N(G×G) with ||Ω|| ≤ 1, such that

ω−1 ⊗ ω−1 = (Γ̂ω−1)Ω.

The associated Beurling–Fourier algebra is defined as follows:

A(G,ω) := {ω−1f : f ∈ A(G)}.

This algebra with respect to the norm ∥ω−1f∥A(G,ω) := ∥f∥A(G) for
f ∈ A(G) is a Banach algebra.

Remark 2.3. The condition ∥ω−1∥ ≤ 1 ensures contractivity of the map
f 7→ ω−1f (Theorem 2.3). For ∥ω−1∥ > 1, one may define an equivalent
norm ∥f∥′ω := ∥ω−1f∥A(G), but boundedness of Ω in Definition 2.2(b)
may fail. Relaxing this requires further technical assumptions (e.g.,
positivity of ω−1). It can be said that central weights on compact groups
or polynomial weights on Rn satisfy this assumption:

1. Compact groups: For G = SU(n), central weights ω(g) = (1 +
∥g∥)α (α ≥ 0) yield bounded ω−1 in M(C∗

r (G)) via the operator
norm.

2. Rn : ω(x) = (1+ |x|)α (α > 0) gives ω−1 ∈ Cb(Rn) ⊂ M(C∗
r (Rn)).

Theorem 2.4. (Theorem 2.6;[17]) Let G be a locally compact group,
and let ω−1 ∈ M(C∗

r (G)) be a weight inverse. Then A(G,ω) is a dense
subalgebra of A(G). Moreover, if A(G,ω) is equipped with the unique
operator space structure turning the bijection

A(G) −→ A(G,ω), f 7→ ω−1f.

into a complete isometry, then it is a completely contractive Banach
algebra.
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3 Beurling-Fourier algebras on coset spaces

A homogeneous space (or a homogeneous space of a topological group)
refers to a space that can be uniformly covered using the action of a
topological group on itself. In other words, if G is a topological group
and X is a topological space, then X is homogeneous, if for any two
points x, y ∈ X , there exists an element g ∈ G such that g · x = y .
Here are several examples of homogeneous spaces:

1. Lie Groups: The space G/H , where G is a Lie group and H is
a closed subgroup. This space is known as the homogeneous space
of G with respect to the action of G on itself G/H .

2. Euclidean Space: The space Rn is considered as a homogeneous
space because any point can be moved to any other point using
vector addition and scalar multiplication.

3. Sphere: The sphere Sn is regarded as a homogeneous space,
because any point can be moved to any other point using rotations
(by act of the the group SO(n)).

4. Projective Space: The projective space Pn(R) is also a ho-
mogeneous space, because it can be acted upon by general linear
groups (by act of the the group PGL(n+ 1,R)).

5. Hyperbolic Space: Hyperbolic space is another example of a
homogeneous space, as it can be acted upon by hyperbolic groups
(by act of the the group PSL(2,R) ).

These examples illustrate the diversity of homogeneous spaces in math-
ematics and topology, each possessing its own unique characteristics.
In this section, we aim to define Beurling–Fourier algebras on coset
spaces and study some properties of these algebras. This section em-
ploys the techniques described in [17]. To gain a better understanding,
we first remind the Fourier–Stieltjes and Fourier algebras on coset spaces
(B(G : H) and A(G : H) respectively), defined by Forrest [8].

Let H be a closed subgroup of G. The symbol G/H will denote
the homogeneous space formed by the left cosets of H. x̃ denotes the
left coset of xH as an element of G/H. The canonical map from G to
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G/H is denoted by φ. A continuous function ũ defined on G/H, can
be associated with the continuous function u on G given by u = ũ ◦ φ.
This establishes an isomorphism between the space of continuous func-
tions C(G/H) and the subalgebra C(G : H) of C(G), which consists of
functions that are constant on the cosets of H in G.

To define and describe the basic properties of Fourier algebras on
coset spaces, we refer to [8] and begin by defining the Fourier–Stieltjes
algebra and the Fourier algebra on coset spaces, denoted as B(G : H)
and A(G : H) , respectively.

Definition 3.1. Suppose that H is a closed subgroup of a locally compact
group G.
Put B(G : H) = {u ∈ B(G) | u(xh) = u(x) for every x ∈ G, h ∈ H}.
Additionally, put

A(G : H) = {u ∈ B(G : H) | φ(supp u) is compact in G/H}−||·||B(G) .

Proposition 3.2. (Proposition 3.1; [8])

(i) Both B(G : H) and A(G : H) are closed subalgebras of B(G). Fur-
thermore, A(G : H) is a closed ideal within B(G : H).

(ii) B(G : H) is unital.

(iii) A(G : H) ∩A(G) ̸= {0} if and only if H is compact.

(iv) A(G : H) = B(G : H) if and only if G/H is compact.

Proposition 3.3. (Proposition 3.2; [8]) Let H be a closed normal sub-
group of G. Then B(G : H) and A(G : H) are isometrically isomorphic
to B(G/H) and A(G/H), respectively.

Proposition 3.4. (Corollary 3.4; [8]) Let G be a locally compact group,
and let H be its compact subgroup. The mapping PH defined as

PH : B(G) −→ B(G : H), PH(ϕ)(x) =

∫
H
ϕ(xh)dh, (7)

is a continuous projection on B(G) onto B(G : H). The restriction PH

to A(G) is a projection from A(G) onto A(G : H).
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Now we are ready to define our new space of Fourier-type on a coset
space, using weight inverses.

Definition 3.5. Let H be a closed subgroup of a locally compact group
G, and let ω−1 be a weight inverse. We define

A(G : H,ω) :=
{
ω−1f : f ∈ A(G : H)

}
and

∥ω−1f∥ω := ∥f∥ (f ∈ A(G : H)),

where, ∥.∥ refers to ∥.∥A(G).

We recall that the notation ω−1f , refers to the module action defined
in 2.

In the following we show that A(G : H,ω) is a Banach algebra and
we call it Beurling-Fourier algebra on the homogeneous space G/H.

As we see in the following proposition, A(G : H,ω) is multiplica-
tively closed because the co-multiplication Γ̂ and the operator Ω (from
Definition 2.2(b)) ‘absorb’ the weight inverse, preserving the coset in-
variance. For instance, if ω−1 is central, Ω = 1, simplifying the product
to pointwise multiplication.

Proposition 3.6. Let H be a closed subgroup of G and ω−1 be a weight
inverse. Then A(G : H,ω) with respect to the norm ∥.∥ω is a Banach
algebra.

Proof. First we show ω−1f + ω−1g = ω−1(f + g). Let f, g ∈ A(G : H)
and x ∈ G and λx the translation operator on L2(G), which belongs to
V N(G); then we have

(ω−1f + ω−1g)(x) = ⟨ω−1f + ω−1g, λx⟩
= ⟨ω−1f, λx⟩+ ⟨ω−1g, λx⟩
= ⟨λxω

−1, f⟩+ ⟨λxω
−1, g⟩

= λxω
−1(f + g) = ⟨ω−1(f + g), λx⟩

= ω−1(f + g)(x).
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In the follwing we use the notation f ⊗ g for f, g ∈ A(G), to denote the
canonical element belongs to A(G × G), and ω−1 ⊗ ω−1 is the tensor
product of two operator in V N(G), that belongs to V N(G×G).

To see that A(G : H,ω) is multiplicatively closed, notice that we
have:

⟨(ω−1f)(ω−1g), λx⟩ = ⟨(ω−1 ⊗ ω−1)(f ⊗ g), λx ⊗ λx⟩
= ⟨(Γ̂ω−1)Ω(f ⊗ g), Γ̂λx⟩
= ⟨Ω(f ⊗ g), Γ̂(λxω

−1)⟩
= ⟨(Γ̂)∗(Ω(f ⊗ g)), λxω

−1⟩
= ⟨ω−1(Γ̂)∗(Ω(f ⊗ g)), λx⟩;

Now we show that (Γ̂)∗(Ω(f ⊗ g)) ∈ A(G : H).
It is enough to say ⟨(Γ̂)∗Ω(f ⊗ g), λxh⟩ = ⟨(Γ̂)∗Ω(f ⊗ g), λx⟩ for x ∈ G
and h ∈ H.
According to the Definition 2.2, Ω is an element in V N(G × G) with
||Ω|| ≤ 1 such that ω−1 ⊗ ω−1 = (Γ̂ω−1)Ω.
So we have

⟨(Γ̂)∗Ω(f ⊗ g), λxh⟩ = ⟨Ω(f ⊗ g), λxh ⊗ λxh⟩
= ⟨Ω, (f ⊗ g)(λxh ⊗ λxh)⟩
= ⟨Ω, (f ⊗ g)(λx ⊗ λx)⟩
= ⟨Ω(f ⊗ g), λx ⊗ λx⟩
= ⟨(Γ̂)∗Ω(f ⊗ g), λx⟩.

The reason of the third equality is the functions f and g are constant
on the cosets. So (ω−1f)(ω−1g) = ω−1(Γ̂)∗(Ω(f ⊗ g)) ∈ A(G : H,ω).
Therefore, A(G : H,ω) is closed under multiplication.

It is clear that ∥ · ∥ω is a norm. To show that A(G : H,ω) is complete,
let

{
ω−1fn

}
be a Cauchy sequence in A(G : H,ω). We must show there

exists f in A(G : H), such that ω−1fn converges to ω−1f . Since
{
ω−1fn

}
is a Cauchy sequence in A(G : H,ω), then according to the given norm
definition, {fn} is a Cauchy sequence, and since A(G : H) is complete,
so there exists f belongs to A(G : H) such that ∥fn − f∥A(G) −→ 0.
Therefore, it is clear that ∥ω−1fn − ω−1f∥ω −→ 0. □
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Remark 3.7. Unlike weighted Lp-spaces, A(G : H,ω) encodes non-
commutative harmonic analysis via the group von Neumann algebra. For
H = {e}, it generalizes Figà–Talamanca-–Herz algebras[12, 7], but dif-
fers by using weight inverses to ensure bounded multipliers. For abelian
group G, A(G,ω) Fourier-dualizes to L1(Ĝ, ω̌) [17, Theorem. 2.6].

Remark 3.8. 1. A(G : H,ω) embeds contractively in A(G). Since,
for f ∈ A(G : H), ∥ω−1f∥ ≤ ∥ω−1f∥ω:

∥ω−1f∥ = sup
Φ∈V N(G)
∥Φ∥⩽1

∥Φ(ω−1f)∥ ≤ sup
Φ∈V N(G)
∥Φ∥⩽1

∥f∥∥Φω−1∥

≤ sup
Φ∈V N(G)
∥Φ∥⩽1

∥f∥∥Φ∥∥ω−1∥ ≤ ∥f∥,

so, by the definition of the norm ∥.∥ω, we have ∥ω−1f∥ ≤ ∥ω−1f∥ω.

2. A(G : H,ω) is dense in A(G). For that, let λx ∈ V N(G) be
such that ⟨f, λx⟩ = 0 for f ∈ A(G : H,ω), i.e., ⟨ω−1f, λx⟩ =
⟨f, λxω

−1⟩ = 0 for f ∈ A(G : H). Therefore λxω
−1 = 0. As

(6) has dense range in C∗
r (G), the set {ω−1λy|λy ∈ V N(G)} is

weak∗-dense in V N(G), so that λxV N(G) = {0}. Since V N(G)
is unital, we conclude that λx = 0, so that A(G : H,ω) is dense in
A(G) and also in A(G : H) by the Hahn–Banach theorem.

Let H be a closed subgroup of G. Let V NH(G) denote the weak-
star-closure of the linear span of the set {λh|h ∈ H}, where λ is the left
regular representation of G. Then V NH(G) is a von Neumann algebra,
contained in V N(G).

Proposition 3.9. Let H be a closed subgroup of G, and let ω−1 ∈
V NH(G) be a weight inverse. Then A(G : H,ω) with respect to the
norm ∥.∥A(G) is a dense subalgebra of A(G : H).

Proof. We establish two claims:
i: A(G : H,ω) ⊆ A(G : H).
ii: A(G : H,ω) is dense in A(G : H).
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Proof of i: Let v be an element in A(G : H,ω). We show that v belongs
to A(G : H). By the definition v = ω−1f for some f ∈ A(G : H), we
verify two properties:

(a) v is constant on H-cosets: v(gh) = v(g) for all g ∈ G, h ∈ H.

(b) v ∈ {u ∈ B(G : H) | φ(supp u) is compact in G/H}−||·||B(G) .

Proof of (a): Since ω−1 ∈ V NH(G), it is generated by left translations
{λh : h ∈ H}. Consider two cases:

Case 1. ω−1 =
n∑

i=1
αiλhi

for some hi ∈ H and i = 1, ..., n.

In this case for g ∈ G and h, hi ∈ H and i = 1, ..., n. we have

v(gh) = ω−1f(gh) = ⟨ω−1f, λgh⟩⟨f,
n∑

i=1

αiλhigh⟩

= ⟨
n∑

i=1

αiλhi
f, λg⟩ = ⟨ω−1f, λg⟩ = ω−1f(g).

Case 2. ω−1 = limn→∞ Tn, where {Tn} is a sequence as case1 and
converges is in weak operator topology to ω−1 , then

v(gh) = ω−1f(gh) = ⟨ω−1f, λgh⟩ = ⟨f, lim
n→∞

n∑
i=1

αiλhi
λgh⟩

= ⟨ lim
n→∞

n∑
i=1

αiλhi
f, λg⟩ = ⟨ω−1f, λg⟩ = ω−1f(g).

Proof of (b): We show v = ω−1f satisfies the support condition:
(i) let f ∈ A(G : H) and f ∈ Cc(G : H). We show that supp ω−1f ⊆
supp f . Let f(g) = 0 for some g ∈ G, it is enough to show that
ω−1f(g) = 0.
We follow some cases;
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Case 1. ω−1 =
n∑

i=1
αiλhi

for some hi ∈ H, i = 1, ..., n.

ω−1f(g) = ⟨ω−1f, λg⟩ = ⟨f,
n∑

i=1

αiλhi
λg⟩

=
n∑

i=1

αif(hig) =
n∑

i=1

αif(g) = 0.

Case 2. ω−1 = limn→∞ Tn and where {Tn} is sequence as case1 and to
the convergence is in W.O.T or weak∗-Topology,

ω−1f(g) = ⟨ω−1f, λg⟩ = ⟨f, lim
n→∞

n∑
i=1

αiλhi
λg⟩

= lim
n→∞

n∑
i=1

αif(hig) = lim
n→∞

n∑
i=1

αif(g) = 0.

So, for f ∈ A(G : H) and f ∈ Cc(G : H), we have the equation
v = ω−1f ∈ A(G : H).

(ii) Let f ∈ A(G : H) and there exists a sequence {fn} belongs

to Cc(G) such that fn
∥.∥A(G)−−−−→ f . Since {ω−1fn} satisfies condition

(a), it follows that {ω−1fn} belongs to A(G : H). Thus, we have
ω−1f ∈ {u ∈ B(G : H) | φ(supp u) is compact in G/H}−||·||B(G) . There-
fore, we conclude that v = ω−1f ∈ A(G : H).

The density comes from Remark 3.8. □

Theorem 3.10. Let G be a locally compact group, and let ω−1 ∈ M(C∗
r (G))

be a weight inverse. Then the following are equivalent:

(i) the inclusion map from A(G : H,ω) into A(G : H) is surjective;

(ii) ω−1 is left invertible in M(C∗
r (G)).



BEURLING-FOURIER ALGEBRAS ON THE ... 17

Proof. (ii) ⇒ (i) hold trivially.
(i) ⇒ (ii):Assume that the inclusion map

Φ : A(G : H,ω) −→ A(G : H), ω−1f 7→ f

is surjective. So the composition of this map with A(G : H) → A(G :
H,ω); f → ω−1f , gives a bijection from A(G : H) to itself. So going
to the dual spaces we have the bijection V NH(G) to itself, that takes
each element x to xω−1. Since V NH(G) is a unital algebra we have the
result. □

Lemma 3.11. Let f ∈ A(G) and f ∈ B(G : H). Then f belongs to
A(G : H).

Proof. Since A(G) = ⟨B(G) ∩ Cc(G)⟩, there exists a sequence {un}n∈Λ
belong to B(G) ∩ Cc(G) such that ∥un − f∥B(G) −→ 0. For each n,
since un belongs to Cc(G), the support of un is compact. Therefore, for
every n, φ(supp un) is compact. This implies that f belongs to the set
{u ∈ B(G : H) | φ(supp u) is compact in G/H}−||·||B(G) . □

Lemma 3.12. Let H be a closed subgroup of G. Then L2(G)∗L2(G : H)
is a subset of A(G : H).

Proof. Let f ∈ L2(G) and g ∈ L2(G : H). Now, for x ∈ G and h ∈ H,

f ∗ g(xh) =
∫

f(y)g(y−1xh)dy =

∫
f(y)g(y−1x)dy = f ∗ g(x).

On the other hand, since f ∗ g ∈ A(G), according to the above lemma
f ∗ g ∈ A(G : H), so L2(G) ∗ L2(G : H) is a subset of A(G : H). □

Now we are ready to give the main result, that is a version of Leptin
theorem, for our construction.

Theorem 3.13. Let H be a compact subgroup of G and ω−1 ∈ M(C∗
r (G))

be a weight inverse. Then the following are equivalent:
(i) G is amenable;
(ii) Beurling-Fourier algebra on homogeneous space G/H, A(G : H,ω)
has a bounded approximate identity.
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Proof. (i) ⇒ (ii): technique is similar to that outlined in Proposition
4.5 from [17]. Since G is amenable, it has Reiter’s property (P1) ([16],
Proposition 6.12), meaning there exists a (P1)-net (ξα)α∈I

in L1(G). Let
the net (eα(x))α∈I be defined as

eα(x) := ⟨λx−1(Pξα)
1/2, ˜(Pξα)1/2⟩ (x ∈ G,α ∈ I),

where P is defined as it is in equation (7). By Lemma 3.12, the net
(eα(x))α∈I

belongs to A(G : H). According to ([17], Proposition 4.5),

the net (⟨ω−1, 1⟩−1ω−1eα)α∈I in A(G : H,ω) serves as a weak approx-
imate identity for A(G : H,ω). A well-known result in the theory of
Banach algebras (see [3], Proposition 11.4) states that this implies the
existence of a bounded approximate identity for A(G : H,ω).

(ii) ⇒ (i): According to Proposition 3.8, since A(G : H,ω) is dense
in A(G : H) and the inclusion is (completely) contractive, any bounded
approximate identity for A(G : H,ω) will also serve as an approxi-
mate identity for A(G : H). As a result, we conclude that G must
be amenable, as shown in [8, Theorem 4.2]. □

Remark 3.14. It would be interesting to generalize the results to the
quantum state. For a quantum group G with co-subgroup H, one might
define A(G : H, ω) using the weight inverse ω−1 ∈ M(C∗

r (G)) and a
co-multiplication Γ̂. The condition ω−1 ⊗ ω−1 = (Γ̂ω−1)Ω (Definition
2.2(b)) naturally generalizes to this setting via Hopf algebra construc-
tions [23, 22].
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