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Abstract. In this paper we establish necessary and sufficient op-
timality conditions for a nondifferenriable, nonconvex semi-infinite
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1. Introduction

A semi-infinite vector optimization problem (SIVOP for short) is the
simultaneously minimization of finitely many scalar objective functions
subject to an arbitrary (possibly infinite) set of constraint functions. To
the best of our knowledge, there are only a very few works available
dealing with optimality conditions for SIVOP; see, e.g., [2] in differen-
tiable cases, [5] in convex cases, and [3, 7] in nonsmooth cases. In [3], a
limiting constraint qualification in terms of Mordukhovich subdifferen-
tial is introduced. The authors in [7] considered three various constraint
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qualifications such as Abadie, basic, and regular constraint qualifications
using Clarke subdifferential.
In this paper, we study a non-differentiable non-convex SIVOP with
locally Lipschitz functions, and introduce a new constraint qualification
for the problem. Then we establish a necessary and a sufficient optimality
conditions for SIVOP.
The paper is organized as follows. In Section 2, we introduce some no-
tations, basic definitions, and preliminaries, which are used throughout
the paper. In Section 3, after defining a new constraint qualification, we
prove an optimality result by terms of the Clarke subdifferential.

2. Notations and Preliminaries

In this section we present few definitions and auxiliary results that will
be needed in the sequel.
Let A be a nonempty subset of Rn, denote by Ā, conv(A), and cone(A),
the closure of A, the convex hull, and the convex cone (containing the
origin) generated by A, respectively. Also, the polar cone and strict polar
cone of A are defined respectively by:

A0 :=
{
d ∈ Rn | 〈x, d〉 6 0 ∀x ∈ A

}
,

A− :=
{
d ∈ Rn | 〈x, d〉 < 0 ∀x ∈ A

}
,

where 〈., .〉 exhibits the standard inner product in Rn. Notice that A0

is always a closed convex cone. It is easy to show that if A− 6= ∅ then
A− = A0. The bipolar Theorem states that A00 = cone(A); see [1, 6].
Let us recall the following theorems which will be used in the sequel.

Theorem 2.1. ([6,9]) Let A be a nonempty compact subset of Rn. Then

(I) conv(A) is a closed set.

(II) cone(A) is a closed cone, if 0 /∈ conv(A).

We recall that for A ⊆ Rn and x̂ ∈ A, the contingent cone to A at x̂ is
defined by

T (A, x̂) :=
{

d ∈ Rn | ∃(tk, dk) → (0+, d), such that x+tkdk ∈ A ∀k ∈ N
}

.
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Notice that T (A, x̂) is closed cone (generally nonconvex) in Rn.
Let x̂ ∈ Rn and let ϕ : Rn −→ R be a locally Lipschitz function. The
Clarke directional derivative of ϕ at x̂ in the direction d ∈ Rn introduced
in [4] is given by

ϕ0(x̂; d) := lim sup
y→x̂, t↓0

ϕ(y + td)− ϕ(y)
t

,

and the Clarke subdifferential of ϕ at x̂ is given by the set

∂cϕ(x̂) :=
{
ξ ∈ Rn | 〈ξ, d〉 6 ϕ0(x̂; d) for all d ∈ Rn

}
.

The Clarke subdifferential is a natural generalization of the derivative
since it is known (see [4]) that when function ϕ is continuously differ-
entiable at x̂, then ∂cϕ(x̂) = {∇ϕ(x̂)}. Moreover when a function ϕ is
convex, the Clarke subdifferential coincides with the subdifferential in
the sense of convex analysis.
In the following theorem we summarize some important properties of
the Clarke directional derivative and the Clarke subdifferential from [4]
which are widely used in what follows.

Theorem 2.2. Let ϕ and φ be functions from Rn to R which are locally
Lipschitz near x̂. Then, the following assertions hold:

(i) One has always that

ϕ0(x̂x; v) = max
{
〈ξ, v | ξ ∈ ∂cϕ(x̂)

}
,

∂c
(
max{ϕ, φ}

)
(x̂) ⊆ conv

(
∂cϕ(x̂)

⋃
∂cφ(x̂)

)
,

∂c(λϕ)(x̂) = λ∂cϕ(x̂), ∀ λ ∈ R,

∂c(ϕ + φ)(x̂) ⊆ ∂cϕ(x̂) + ∂cφ(x̂).

(ii) The function v −→ ϕ0(x̂; v) is finite, positively homogeneous, and
subadditive on Rn, and

∂
(
ϕ0(x̂; .)

)
(0) = ∂cϕ(x̂),

where ∂ denotes the subdifferential in sense of convex analysis.

(iii) ∂cϕ(x̂) is a nonempty, convex, and compact subset of Rn.
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3. Necessary Conditions

In the rest of this paper, we consider the following semi-infinite vector
optimization problem:

inf
(
f1(x), . . . , fm(x)

)
s.t. gj(x) 6 0, i ∈ J, (P)

x ∈ Rn,

where the functions fi : Rn → R∞ := R ∪ {+∞} and gj : Rn → R∞,
with i ∈ I := {1, . . . ,m} and j ∈ J , are locally Lipschitz, and J is an
arbitrary set, not necessarily finite (but nonempty). Denote by S the
feasible region, i.e.,

S :=
{
x ∈ Rn | gj(x) 6 0, ∀j ∈ J

}
.

For a given x̂ ∈ S, let J(x̂) denotes the index set of all active constraints
at x̂,

J(x̂) :=
{
j ∈ J | gj(x̂) = 0

}
.

A point x̂ is said to be a weakly efficient solution to problem (P) iff there
is no x ∈ S satisfying fi(x) < fi(x̂), i ∈ I.
Recall the following definition from [7, Definition 3.2]:

We say that (P) satisfies the regular constraint qualification (RCQ,
briefly) at x̂ ∈ S if( m⋃

i=1

∂cfi(x̂)
)−

∩
( ⋃

j∈J(x̂)

∂cgj(x̂)
)0

⊆ T (S, x̂).

The theorem below is proved in [7, Theorem 3.4].

Theorem 3.1. (KKT Necessary Condition) Let x0 be a weakly efficient
solution of (P) and RCQ holds at x0. If in addition cone

( ⋃
j∈J(x̂) ∂cgj(x̂)

)
is a closed cone, then there exist αi > 0 (for i ∈ I) with

∑m
i=1 αi = 1,

and βj > 0 (for j ∈ J(x0)) with βj 6= 0 for at most finitely many indexes,
such that

0 ∈
m∑

i=1

αi∂
cfi(x̂) +

∑
j∈J(x̂)

βj∂
cgj(x̂). (1)
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At this point, we introduce a new qualification condition for (P).

Definition 3.2. Let x̂ ∈ S. We say that (P) satisfies the Cottle con-
straint qualification (CCQ, in brief) at x̂, if J is a compact subset of
Rp, and the function (x, j) → gj(x) is upper semicontinuous on Rn× J ,
and ∂cgj(x) is an upper semicontinuous mapping in j for each x, and( ⋃

j∈J(x̂) ∂cgj(x̂)
)−

6= ∅.

Lemma 3.3. Let x̂ ∈ S. If CCQ holds at x̂, then conv
( ⋃

j∈J(x̂) ∂cgj(x̂)
)

and cone
( ⋃

j∈J(x̂) ∂cgj(x̂)
)

are closed sets.

Proof. Firstly, we claim that
⋃

j∈J(x̂) ∂cgj(x̂) is a compact set. Let
{ξk}∞k=1 be a sequence in

⋃
j∈J(x̂) ∂cgj(x̂). If |∂cgj∗(x̂)∩{ξk}∞k=1| = ∞ for

some j∗ ∈ J(x̂), then there exists subsequence {ξkp} which converges to
some ξ̂ ∈ ∂cgj∗(x̂) (by compactness of ∂cgj∗(x̂)). If |∂cgj(x̂)∩{ξk}∞k=1| <
∞ for all j ∈ J(x̂), then without loss of generality we can assume that
ξk ∈ ∂cgjk

(x̂) for all k ∈ N, and hence, jkp → ĵ ∈ J(x̂) for some
subsequence {jkp} of {jk} (by compactness of J(x̂)). Since the map-
ping j → ∂cgj(x̂) is upper-semicontinuous, there exists a subsequence
of {ξkp} which converges to ξ̂ ∈ ∂cgĵ(x̂). Therefore, our claim is proved,
i.e.,

⋃
j∈J(x̂) ∂cgj(x̂) is a compact set.

This implies that conv
( ⋃

j∈J(x̂) ∂cgj(x̂)
)

is closed by Theorem ??(I). Now,
because of(

conv
( ⋃

j∈J(x̂)

∂cgj(x̂)
))−

=
( ⋃

j∈J(x̂)

∂cgj(x̂)
)−

6= ∅,

it follows that 0 /∈ conv
( ⋃

j∈J(x̂) ∂cgj(x̂)
)
. Thus, cone

( ⋃
j∈J(x̂) ∂cgj(x̂)

)
is a closed set by Theorem ??(II).
Now suppose that CCQ holds at x ∈ S and define

G(x) := max
j∈J

gj(x), ∀x ∈ S.

It follows readily that G is locally Lipschitz, since each gj is (see [4,
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Theorem 2.8.2]). The proof of the estimate

G0(x̂; d) 6 max
j∈J(x̂)

g0
j (x̂; d) ∀d ∈ Rn, (2)

is presented in [4, Theorem 2.8.2, step 1]. Note that the function j →
g0
j (x̂; d) is upper-semicontinuous and J(x̂) is compact, so that the nota-

tion “max” is justified in (2). �

Lemma 3.4. If CCQ holds at x̂ ∈ S, then one has

∂cG(x̂) ⊆ conv
( ⋃

j∈J(x̂)

∂cgj(x̂)
)
.

Proof. Let ξ ∈ ∂cG(x̂). The inequality in (2) implies that

max
j∈J(x̂)

ĝj(d) >
〈
ξ, d

〉
∀d ∈ Rn,

where ĝj(d) := g0
j (x̂; d). Since each ĝj(.) is convex and ĝj(0) = 0, we

can conclude that ξ ∈ ∂Ĝ(0), where Ĝ defined for each d by Ĝ(d) :=
maxj∈J(x̂) ĝj(d). On the other hand, for every j, ĝj is continuous at
d̂ := 0, and for every d, the function j → ĝj(d) is upper-semicontinuous.
So, the well-known Pshenichnyi-Levin-Valadire Theorem ([6, pp. 267])
can be applied to obtain that

∂Ĝ(0) = conv
( ⋃

j∈Ĵ(0)

∂ĝj(0)
)
,

where, Ĵ(0) :=
{
j ∈ J(x̂) | ĝj(0) = Ĝ(0) = 0

}
. But this gives

the announced result because Ĵ(0) = J(x̂) and ∂ĝj(0) = ∂cgj(x̂) and

conv
( ⋃

j∈J(x̂) ∂cgj(x̂)
)

is closed by Lemma 3.4. �

Theorem 3.5. The CCQ implies RCQ at x̂.

Proof. Let d ∈
( ⋃

j∈J(x̂) ∂cgj(x̂)
)−

. Since( ⋃
j∈J(x̂)

∂cgj(x̂)
)−

=
(
conv

( ⋃
j∈J(x̂)

∂cgj(x̂)
))−

,
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Lemma 3.4. leads to

d ∈
(
conv

( ⋃
j∈J(x̂)

∂cgj(x̂)
))−

⊆
(
∂cG(x̂)

)−
.

Hence, G0(x̂; d) < 0, and consequently, there exists a scalar δ > 0 such
that

G(x̂ + βd) < G(x̂) 6 0, ∀ β ∈ (0, δ].

Thus, for all j ∈ J and for all β ∈ (0, δ], we conclude

gj(x̂ + βd) < 0.

Therefore, for all β ∈ (0, δ] we have x̂ + βd ∈ S, which implies

d ∈ T (S, x̂).

We have thus proved ( ⋃
j∈J(x̂)

∂cgj(x̂)
)−

⊆ T (S, x̂).

Since
( ⋃

j∈J(x̂) ∂cgj(x̂)
)−

6= ∅, we obtain that

( ⋃
j∈J(x̂)

∂cgj(x̂)
)0

=
( ⋃

j∈J(x̂)

∂cgj(x̂)
)−

⊆ T (S, x̂) = T (S, x̂),

and the proof is complete. �

As an immediate consequence of Theorems 3.1 and 3.5, and Lemma 3.3,
we can obtain the following theorem.

Theorem 3.6. (KKT Necessary Condition) Let x̂ ∈ S be a weakly effi-
cient solution of (P) and CCQ holds at x̂. Then there exist αi > 0 (for
i ∈ I) with

∑m
i=1 αi = 1, and βj > 0 (for j ∈ J(x̂)) with βj 6= 0 for at

most finitely many indexes, such that

0 ∈
m∑

i=1

αi∂
cfi(x̂) +

∑
j∈J(x̂)

βj∂
cgj(x̂).
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The following example shows that the assumption of closedness of
cone

( ⋃
j∈J(x̂) ∂cgj(x̂)

)
can not be waived in Theorem 3.1.

Example 3.7. Consider the following problem;

(P1) inf
(
f1(x), f2(x)

)
s.t. gj(x) 6 0, j ∈ J := N ∪ {0}

x ∈ R2,

where f1(x) = f2(x) = −x1 and gj(x) is the support function of the
following set

Uj =
{
x ∈ R2 | x2

1 + (x2 − 1− j)2 6 (1 + j)2, x1 > 0, x2 > 0
}
.

The set of feasible solutions for the problem (P) is

S = {x ∈ R2 | gj(x) 6 0 ∀j ∈ J} = {x ∈ R2 | x1 6 0, x2 6 0}.

It is easy to verify that x̂ = (0, 0) is an optimal solution for (P1). We
observe that

T (S, x̂) = S , ∂cgj(x̂) = Uj , ∂cf1(x̂) = f2(x̂) = {(−1, 0)},( ⋃
j∈J(x̂)

∂cgj(x̂)
)0

= S.

Note that cone
( ⋃

j∈J(x̂) ∂cgj(x̂)
)

is not closed. It should be observed
that (RCQ) holds at x̂. It is easy to see that there is no sequence of
scalars as in Theorem 3.1. satisfying (1).
The following example shows that the assumption of compactness of J

is not necessary in Theorem 3.6.

Example 3.8. Consider the following problem:

inf
(
f1(x), f2(x)

)
s.t. gj(x) 6 0 j ∈ J := N, (P2)

x ∈ R2,
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where f1(x) = f2(x) := |x1| − |x2|, and gj(x) := x2
1 + x2

2 − j2 for all
j ∈ N. It is easy to verify that:

• S =
{
(x1, x2) ∈ R2 x2

1 + x2
2 6 1

}
,

• x̂ := (0,−1),

• J(x̂) = {1},
• ∂cf1(x0) = ∂cf2(x0) = [−1, 1]× [−1, 1],

•
⋃

j∈J(x̂)

∂cgj(x̂) = {(0,−2)}.

It is worth noting that CCQ holds and J is not compact. It is easy to
verify that (1) in Theorem 3.6 holds.
The following concepts will be useful in the sequel. For more details,
discussion, and applications of invexity and it’s generalizations see [8]
and its references.

Definition 3.9. Let ϕ := (ϕ1, ϕ2, . . . , ϕq) : Rp → Rq be a locally Lip-
schitz mapping, and let x0 ∈ Rp . We shall say that ϕ is generalized
η- pseudoinvex at x0 if there exist functions η : Rp × Rp → Rp and
νl : Rp × Rp → R+\{0} for l ∈ {1, 2, . . . , q} such that the condition

q∑
l=1

νl(x, x0)
(
ϕl(x)− ϕl(x0)

)
< 0 ⇒

q∑
l=1

〈
ξl, η(x, x0)

〉
< 0,

holds for each x ∈ Rp and for all ξl ∈ ∂cϕl(x0).

Definition 3.10. Let ϕ := (ϕ1, ϕ2, . . . , ϕq) : Rp → Rq be a locally
Lipschitz mapping, and let x0 ∈ Rp . We shall say that ϕ is generalized
η- quasiinvex at x0 if there exist functions η : Rp × Rp → Rp and θl :
Rp × Rp → R+\{0} for l ∈ {1, 2, . . . , q} such that the condition

q∑
l=1

θl(x, x0)
(
ϕl(x)− ϕl(x0)

)
6 0 ⇒

q∑
l=1

〈
ξl, ηl(x, x0)

〉
6 0,

holds for each x ∈ Rp and for all ξl ∈ ∂cϕl(x0).
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Theorem 3.11. (KKT Sufficient Condition) Suppose that there exist a
feasible solution x̂ ∈ S for (P) and scalars αi > 0 with

∑m
i=1 αi = 1 and

a finite set J∗ ⊆ J(x̂) and scalars βj > 0 for ∈ {1, 2, . . . , k} such that

0 ∈
m∑

i=1

αi∂
cfi(x̂) +

k∑
r=1

βjr∂
cgjr(x̂). (3)

Moreover if the function (α1f1, α2f2, . . . , αmfm) is generalized η- pseu-
doinvex at x̂ and the function (βj1gj1 , βj2gj2 , . . . , βjk

gjk
) is generalized

η- quasiinvex at x̂, then x̂ is a weak efficient solution for (P).

Proof. From (3), it is clear that there exist ξ∗i ∈ ∂cfi(x̂) and ς∗jr
∈

∂cgjr(x̂) such that
m∑

i=1

αiξ
∗
i +

k∑
r=1

βjr ς
∗
jr

= 0. (4)

Suppose on the contrary that x̂ is not a weak efficient solution for (P),
then there exist x ∈ S such that f(x) < f(x̂). Since (α1, α2, . . . , αm) 	 0
and νi(x, x̂) > 0 for all i ∈ I, we obtain

m∑
i=1

νi(x, x̂)
(
αifi(x)− αifi(x̂)

)
=

m∑
i=1

αiνi(x, x̂)
(
fi(x)− fi(x̂)

)
< 0.

By η-pseudoinvexity of (α1f1, α2f2, . . . , αmfm) at x̂ we get

m∑
i=1

〈
ξ̂i, η(x, x̂)

〉
< 0, ∀ ξ̂i ∈ ∂c(αifi)(x̂). (5)

On the other hand, since {j1, j2, . . . , jk} ⊆ J(x̂) and x ∈ S, then

gjr(x) 6 0 = gjr(x̂), ∀r ∈ {1, 2, . . . , k}.

Now, Since βjr > 0 and θjr(x, x̂) > 0 for all r ∈ {1, 2, . . . , k}, we obtain

k∑
r=1

θjr(x, x̂)
(
βjrgjr(x)−βjrgjr(x̂)

)
=

k∑
r=1

βjrθjr(x, x̂)
(
gjr(x)−gjr(x̂)

)
6 0.
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By η-quasiinvexity of (βj1gj1 , βj2gj2 , . . . , βjk
gjk

) at x̂ we get

k∑
r=1

〈
ς̂jr , η(x, x̂)

〉
6 0, ∀ ς̂jr ∈ ∂c(βigjr)(x̂). (6)

Adding the inequalities (5) and (6), we get

〈 m∑
i=1

ξ̂i +
k∑

r=1

ς̂jr , η(x, x̂)
〉

< 0. (7)

But, by (1), there exist ξ̂i ∈ ∂c(αifi)(x̂) and ς̂jr ∈ ∂c(βigjr)(x̂), such
that ξ̂i = αiξ

∗
i and ς̂jr = βjr ς

∗
jr

for all (i, r) ∈ I × {1, 2, . . . , k}. Hence
the inequality (7) becomes

〈 m∑
i=1

αiξ
∗
i +

k∑
r=1

βjr ς
∗
jr

, η(x, x̂)
〉

< 0

which contradicts (3). This completes the proof. �
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