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Abstract. Suppose that PG2(Z2npm) is the prime graph with the
vertex set of the finite ring Z2npm , where p is a prime number greater
than two and n,m are positive integers. In this paper, we decompose
PG2(Z2npm) and obtain neighborhood metric dimension and Wiener
index of the graph.
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1 Introduction

All graphs considered in this paper are connected, simple, undirected
and finite. Let G(V,E) be a graph with vertex set V and edge set E.
For graph theoretic terminology we refer to [3]. We say that a vertex
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u ∈ V distinguishes two vertices x, y ∈ V if d(u, x) ̸= d(u, y), where
d(x, y) represents the length of a shortest path between x and y in G. A
metric generator for G is a set B ⊆ V with the property that for each
pair of vertices x, y ∈ V , there exists a vertex u ∈ B that distinguishes
x and y. A set A is called a metric basis for G if |A| = min{|B| : B is
a metric generator for G}, and in this case, dim(G) = |A| is the metric
dimension of G.

Harary and Melter [4] in 1976 introduced the concept of resolving set
of a graph and calculated the metric dimension of a tree graph. Since
then it has been widely used in graph theory, chemistry, biology, robotics
and many other disciplines. The concept of neighborhood number of a
graph was introduced in 1985 by Sampathkumar [6]. After more than
twenty years, in 2018, a group of authors [7] studied on one class of
neighborhood resolving set of a graph. They continued by neighborhood
resolving sets of a graph [9] and studied the graphs of neighborhood
metric dimension two [8].

For a non-zero commutative ring R, let Z(R) be the set of zero-
divisors of R. In [5], Pirzada and Altaf introduced an extended zero-
divisor graph whose vertices are the non-zero zero-divisors of a ring R
and two distinct elements x and y in the set Z∗(R) = Z(R) \ {0} are
adjacent if and only if xy = 0 or x + y ∈ Z(R). They characterized
finite commutative rings whose extended zero-divisor graph have clique
number 1 or 2. The total graph of R denoted by T (Γ(R)), is an undi-
rected graph with all elements of R as vertices and two distinct vertices
x and y are adjacent if and only if x+y ∈ Z(R) [1]. We define the prime
graph a simple undirected graph, denoted by PG2(R), with all non-zero
elements of R as vertices, and two vertices x, y are adjacent if and only
if either xy = 0 or x + y ∈ Z(R). By definitions, it is clear that the
total graph T (Γ(R)) is a spanning subgraph of PG2(R). Throughout,
we assume that p is an odd prime and n,m are positive integers. We
will use the results obtained on the metric dimension of the total graph
T (Γ(Z2npm)) in [2], and investigate the neighborhood metric dimension
and the Wiener index of the prime graph PG2(Z2npm) according to a
decomposition of it.
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2 A Classification and Decomposition for PG2(Z2npm)

We know that Z(Z2npm) is not an ideal of Z2npm . So, by [1], T (Γ(Z2npm))
is a connected graph with diam(T (Γ(Z2npm))) = 2 and girth(T (Γ(Z2npm))
= 3. In [10], the authors decomposed the total graph T (Γ(Z2npm)) into
some complete and complete bipartite graphs, as follows. In [2], the au-
thors also studied the metric dimension of this total graph and showed
that dim(T (Γ(Z2npm))) = 2npm − 2p.

Theorem 2.1. (See [10]) For all n,m ≥ 1 and p ≥ 3, we have the
following decompositions;

(i) T (Γ(Z2p)) = 2Kp + pK1,1.

(ii) T (Γ(Z2np)) = 2K2n−1p + pK2n−1,2n−1 .

(iii) T (Γ(Z2npm)) = 2K2n−1pm + pK2n−1pm−1,2n−1pm−1.

Remark 2.2. According to Theorem 2.1, T (Γ(Z2npm)) is decomposed
into p + 2 subgraphs; p complete bipartites K2n−1pm−1,2n−1pm−1 , and
two complete graphs K2n−1pm . Let Veven and Vodd denote the even and
odd vertices of G, respectively. We assume that S0 = {2kp; k =
0, . . . , 2n−1pm−1 − 1}, T0 = {(2k + 1)p; k = 0, . . . , 2n−1pm−1 − 1},
I = {1, . . . , [p−1

2 ]} and J = {[p−1
2 ] + 1, . . . , p − 1}. For i ∈ I, let

Si = {2kp+ 2i; k = 0, . . . , 2n−1pm−1 − 1}, Ti = {(2k + 1)p− 2i; k =
0, . . . , 2n−1pm−1 − 1} and for j ∈ J , set Sj = {2kp− 2j ; k = 0, . . . ,
2n−1pm−1 − 1} and Tj = {(2k + 1)p + 2j ; k = 0, . . . , 2n−1pm−1 − 1}.
Then, Veven = S0 ∪ Si ∪ Sj and Vodd = T0 ∪ Ti ∪ Tj . Further, |Veven| =
|Vodd| = 2n−1pm and for all 0 ≤ i ≤ p− 1, |Si| = |Ti| = 2n−1pm−1.

By this classification, the subgraphs induced by Veven and Vodd are
complete graphsK2n−1pm . Also, for 0 ≤ i ≤ p−1, (Si, Ti) is a partition of
the vertex set of each complete bipartite subgraph K2n−1pm−1,2n−1pm−1 .

Throughout the paper, we use the notations of Remark 2.2.

Lemma 2.3. For the prime graph G = PG2(Z2npm) the followings hold.

(i) d(0, y) = 1 for any 0 ̸= y ∈ V (G).
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(ii) For 0 ≤ i, j ≤ p− 1,

(a) If x ∈ Si, y ∈ Sj, then d(x, y) = 1;

(b) If x ∈ Ti, y ∈ Tj, then d(x, y) = 1.

(iii) For any x ∈ Si and y ∈ Tj,

d(x, y) =

{
1 i = j,
2 i ̸= j

where 0 ≤ i, j ≤ p− 1.

(iv) For A = {k2n; 1 ≤ k ≤ pm − 1, p ∤ k}, B = {y ∈ T0; y =
(2k + 1)pm, 0 ≤ k ≤ 2n−1 − 1}, d(x, y) = 1 for any x ∈ A, y ∈ B.

Proof.

(i) It is obvious.

(ii) By Remark 2.2, it is clear that for (a), the subgraph induced by
Si’s is complete. Similarly, for (b), the subgraph induced by Ti’s
is complete.

(iii) Let 1 ≤ i ≤ p− 1, and 0 ̸= x ∈ Si, y ∈ Ti. Then x = 2kp+2i ∈ Si,
y = (2k + 1)p − 2i ∈ Ti, so, x + y = (4k + 1)p ∈ Z(G) and
d(x, y) = 1. Moreover, if x ∈ Si and y ∈ Tj , such that i ∈ I, j ∈ J
and i ̸= j, then x is not adjacent to y and since diam(G) = 2, then
d(x, y) = 2.

(iv) Let x ∈ A, y ∈ B, then x = k2n, y = (2k
′
+ 1)pm. So, xy = 0 and

d(x, y) = 1.

□

Theorem 2.4. For all p ≥ 3, we have

PG2(Z2p) = 2Kp + pK1,1 + 2K1,p−1.
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Proof. It is easy to see that T (Γ(Z2p)) is an spanning subgraph of
PG2(Z2p). So, according to part (i) of Theorem 2.1, there exist two
complete graphs Kp with even and odd vertices and p distinct pairs
of even-odd vertices in T (Γ(Z2p)). The rest of the edges of PG2(Z2p)
consist of the edges between zero and odd vertices, and the adjacencies
between the vertex p and even vertices. These two class of edges form
two star graphs K1,p−1. □

Example 2.5. Consider the prime graph on Z6. By Theorem 2.4,
PG2(Z6) = 2K3+3K1,1+2K1,2 represents the decomposition. In Figure
1, to avoid overcrowding, we ignore the drawing 2K3 and just show the
3K1,1 + 2K1,2 of the decomposition.

0

3

42

1 5

Figure 1: PG2(Z6) = 2K3 + 3K1,1 + 2K1,2

Theorem 2.6. For all m ≥ 1 and p ≥ 3, we have

PG2(Z2pm) = 2Kpm + pKpm−1,pm−1 + 2K1,pm−1(p−1).

Proof. According to part (iii) of Theorem 2.1, two complete graphsKpm

and p complete bipartite graphs Kpm−1,pm−1 appear in decomposition of
PG2(Z2pm). Further, zero is adjacent to all odd vertices of Ti, 1 ≤ i ≤
p− 1, and pm is adjacent to all even vertices of Si, 1 ≤ i ≤ p− 1. Since
|Si| = |Ti| = pm−1, these adjacencies form two star graphs K1,pm−1(p−1).
□

Example 2.7. Consider the prime graph on the ring Z18. By Theorem
2.6, PG2(Z18) = 2K9 + 3K3,3 + 2K1,6. In Figure 2, to avoid overcrowd-
ing, we ignore the drawing 2K9 and just show the 3K3,3 + 2K1,6 of the
decomposition.
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0 6 12 2 8 14 4 10 16

3 9 15 1 7 13 5 11 17

2kp 2kp+ 2 2kp+ 22

(2k + 1)p (2k + 1)p− 2 (2k + 1)p− 22

Figure 2: PG2(Z18) = 2K9 + 3K3,3 + 2K1,6

Theorem 2.8. For all n ≥ 1 and p ≥ 3, we have

PG2(Z2np) = 2K2n−1p + pK2n−1,2n−1 +K2n−1,p−1 +K1,2n−1(p−1).

Proof. As the proof of the above theorems, by Theorem 2.1, PG2(Z2np)
has p complete bipartite graphs K2n−1,2n−1 and two complete graphs
K2n−1p and as indused subgraphs. The edges between zero and odd
vertices in Ti, 1 ≤ i ≤ p− 1, form the star graph K1,2n−1(p−1). Also, the
adjacencies between the vertices of T0, with |T0| = 2n−1, and the even
vertices of the form x = 2nk, where 1 ≤ k ≤ p − 1, create K2n−1,p−1.
□

Example 2.9. Consider the prime graph on the ring Z20. By Theorem
2.8, PG2(Z20) = 2K10 + 5K2,2 + K2,4 + K1,8. In Figure 3, to avoid
overcrowding, we ignore the drawing 2K10 and just show the 5K2,2 +
K2,4 +K1,8 of the decomposition.
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0 10 2 12 4 14 8 18 6 16

2kp 2kp+ 2 2kp+ 22 2kp+ 23 2kp+ 24

5 15 3 13 1 11 7 17 9 19

(2k + 1)p (2k + 1)p− 2 (2k + 1)p− 22 (2k + 1)p− 23 (2k + 1)p− 24

Figure 3: PG2(Z20) = 2K10 + 5K2,2 +K2,4 +K1,8

Theorem 2.10. For all n,m ≥ 1 and p ≥ 3, we have

PG2(Z2npm) =
2K2n−1pm + pK2n−1pm−1,2n−1pm−1 +K2n−1,pm−1(p−1) +K1,2n−1pm−1(p−1).

Proof. The adjacencies between zero and odd vertices in Ti, 1 ≤ i ≤
p − 1 form the star graph K1,2n−1pm−1(p−1). Also, the odd multiples of
pm in T0 are adjacent to the vertices of the set A = {k2n : 1 ≤ k ≤
pm−1, p ∤ k} such that |A| = pm−1(p − 1). So, it forms K2n−1,pm−1(p−1).
Further, by Theorem 2.1, there exist two complete graphs K2n−1pm and
p complete bipartite graphs K2n−1pm−1,2n−1pm−1 in the decomposition of
PG2(Z2npm). □

Example 2.11. Consider the prime graph on the ring Z36. By Theorem
2.8, PG2(Z36) = 2K18 + 3K6,6 + K2,6 + K1,12. In Figure 4, to avoid
overcrowding, we ignore the drawing 2K18 and just show the 3K6,6 +
K2,6 +K1,12 of the decomposition.
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0 6 12 18 24 30 2 8 14 20 26 32 4 10 16 22 28 34

3 9 15 21 27 33 1 7 13 19 25 31 5 11 17 23 29 35

2kp 2kp+ 2 2kp+ 22

(2k + 1)p (2k + 1)p− 2 (2k + 1)p− 22

Figure 4: PG2(Z36) = 2K18 + 3K6,6 +K2,6 +K1,12

3 Neighborhood Metric Dimension of PG2(Z2npm)

Let N [v] denote the closed neighborhood of the vertex v ∈ V , i.e. N [v] =
{x ∈ V : d(x, v) ≤ 1}. A neighborhood set of G is a subset S of the vertex
set of G such that G =

⋃
v∈S Gv where Gx = ⟨N [x]⟩. Further, a subset

S of V is called a resolving set of G if for each pair u, v of vertices of
G there is a vertex t ∈ S with the property that |d(v, t) − d(u, t)| >
0. A neighboring set of G that also serves as a resolving set of G is
called a neighborhood resolving set of G. In other words, neighborhood
resolving set S is an ordered subset S = (s1, s2, . . . , sk) of V such that
Γ(x/S) ̸= Γ(y/S) for all x, y ∈ V − S and G =

⋃k
i=1⟨N [si]⟩, where

Γ(a/S) = (d(a, s1), d(a, s2), . . . , d(a, sk)) is called the code of vertex a
with respect to S. The minimum cardinality of a neighborhood resolving
set of G is called neighborhood metric dimension of G and is denoted by
nmd(G).

Theorem 3.1. nmd(PG2(Z2p)) = p+ 1.

Proof. We claim that S = Veven ∪ {x} such that x ∈ Vodd is a neigh-
borhood resolving set for PG2(Z2p). According to Theorem 2.4, G =
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⋃
v∈Veven

⟨N [v]∪N [x]⟩ such that
⋃

v∈Veven
⟨N [v]⟩ = Kp+pK1,1+2K1,p−1

and N [x] contains the other Kp induced by odd vertices. Also, by
Lemma 2.3, for all x, y ∈ V − S, there exists a non-zero vertex s ∈ S
such that 1 = d(x, s) ̸= d(y, s) = 2. Thus, Γ(x/S) ̸= Γ(y/S). So, S is
a neighborhood resolving set. Note that if S = Veven or S = Vodd then
G ̸=

⋃
s∈S⟨N [s]⟩. Now, let S = A ∪ B such that A ⊂ Veven, B ⊂ Vodd,

|A| = k and |B| = p − k, k < p. There are two cases; If 0 ∈ A, then
there exists u ∈ Veven and v ∈ Vodd such that uv /∈

⋃
s∈S⟨N [s]⟩. If 0 /∈ A,

then there exists w ∈ Vodd such that 0w /∈
⋃

s∈S⟨N [s]⟩. Therefore, S is
a minimum neighborhood resolving set for PG2(Z2p). □

Example 3.2. Consider G = PG2(Z10). See Figure 5. Then S =
{0, 2, 4, 6, 8, 1} is a neighborhood resolving set for G since,
Γ(3/S) = (d(3, 0), d(3, 2), d(3, 4), d(3, 6), d(3, 8), d(3, 1)) = (1, 1, 2, 2, 2, 1);
Γ(5/S) = (d(5, 0), d(5, 2), d(5, 4), d(5, 6), d(5, 8), d(5, 1)) = (1, 1, 1, 1, 1, 1);
Γ(7/S) = (d(7, 0), d(7, 2), d(7, 4), d(7, 6), d(7, 8), d(7, 1)) = (1, 2, 2, 2, 1, 1);
Γ(9/S) = (d(9, 0), d(9, 2), d(9, 4), d(9, 6), d(9, 8), d(9, 1)) = (1, 2, 2, 1, 2, 1);
and PG2(Z10) =

⋃
v∈S⟨N [v]⟩. So, nmd(PG2(Z10)) = 6.

0

5

42

3 1

6

9

8

7

Figure 5: PG2(Z10) = 2K5 + 5K1,1 + 2K1,4

Theorem 3.3. nmd(PG2(Z2npm)) = 2npm − p− 1.

Proof. Let x ∈ B = {y ∈ T0; y = (2k + 1)pm, 0 ≤ k ≤ 2n−1 − 1}
and let A = {t0, t1, . . . , tp−1} be a representative set for Ti’s such that
ti ∈ Ti and t0 /∈ B. Set A

′
= A ∪ {x}. We claim that S = V − A

′
is

a neighborhood resolving set for PG2(Z2npm). According to Theorem
2.10, G =

⋃
s∈S⟨N [s]⟩. Also, by Lemma 2.3, for any u, v ∈ A

′
, there

exists s ∈ S such that 1 = d(u, s) ̸= d(v, s) = 2. Further, if we add a
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vertex y to A
′
, then y ∈ Ti for some i ∈ {0, . . . , p−1} and for any s ∈ S,

d(y, s) = d(ti, s). Therefore, S is a minimum neighborhood resolving set
for PG2(Z2npm) and nmd(PG2(Z2npm)) = 2npm − (p+ 1). □

4 Wiener Index of PG2(Z2npm)

The Wiener index of a graph, introduced by Wiener in [11], turns out to
be among the most important of the graph indices. The Wiener index

of a graph G is defined as W (G) =
1

2

∑
u,v∈V (G) d(u, v).

Remark 4.1. Let G = PG2(Z2npm). For i = 1, 2, denote Di =
|{(a, b); a, b ∈ V (G), d(a, b) = i}|. By Lemma 2.3, for every pair of
distinct vertices x, y ∈ V (G), we either have d(x, y) = 1 or d(x, y) = 2,
so D1 +D2 = |V (G))|(|V (G)| − 1). Therefore,

W (G) =
1

2
(D1 + 2D2) = |V (G)|(|V (G)| − 1)− 1

2
D1.

Theorem 4.2. Wiener Index of PG2(Z2p) is 3p2 − 4p+ 2.

Proof. By the decomposition of PG2(Z2p) in Theorem 2.4, one can see
that

D1 = 2p(p− 1) + 2p+ 4(p− 1) = 2p2 + 4p− 4.

So,

W (PG2(Z2p)) = 2p(2p− 1)− 1

2
(2p2 + 4p− 4)

= 3p2 − 4p+ 2.

□

Theorem 4.3. Wiener Index of PG2(Z2pm) is 3p2m − 3pm − p2m−1 +
2pm−1.

Proof. By the structure of PG2(Z2pm) in Theorem 2.6, we get

D1 = 2pm(pm − 1) + 2p(pm−1)2 + 4pm−1(p− 1)

= 2p2m + 2pm + 2p2m−1 − 4pm−1.
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So,

W (PG2(Z2pm)) = 2pm(pm − 1)− 1

2
(2p2m + 2pm + 2p2m−1 − 4pm−1)

= 3p2m − 3pm − p2m−1 + 2pm−1.

□

Theorem 4.4. Wiener Index of PG2(Z2np) is 2
2np2−2n+1p−22n−2p2+

2n−1p− 22n−2p+ 2n.

Proof. By the structure of PG2(Z2np) in Theorem 2.8, we have

D1 = 2× 2n−1p(2n−1p− 1) + 2p(2n−1)2 + 2n−1(p− 1)× 2 + 2× 2n−1(p− 1)

= 2np(2n−1p− 1) + 2p× 22n−2 + 2n(p− 1) + 2n(p− 1).

So,

W (PG2(Z2np)) = 2np(2np− 1)− 1

2
(2np(2n−1p− 1)

+ 2p× 22n−2 + 2n(p− 1) + 2n(p− 1))

= 22np2 − 2n+1p− 22n−2p2 + 2n−1p− 22n−2p+ 2n.

□

Theorem 4.5. Wiener Index of PG2(Z2npm) is 22np2m − 2n+1pm −
22n−2p2m + 2n−1pm − 22n−2p2m−1.

Proof. According to the decomposition of PG2(Z2npm) in Theorem
2.10,

D1 = 2× 2n−1pm(2n−1pm − 1) + 2p(2n−1pm−1)2 + 2× 2n−1pm−1(p−
1) + 2× 2n−1pm−1(p− 1).

So, we arrive at

W (PG2(Z2npm)) = 2npm(2npm − 1)− 1

2
D1

= 22np2m − 2n+1pm − 22n−2p2m + 2n−1pm − 22n−2p2m−1.

□
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