Journal of Mathematical Extension

Vol. 19, No. 5 (2025) (6) 1-13

ISSN: 1735-8299

URL: http://doi.org/10.30495/IME.2025.3285
Original Research Paper

On Neighborhood Dimension and Wiener Index
of Prime Graph PGy (Zgnym)

M. Taghidoost Laskukalayeh

University of Guilan

M. Gholamnia Taleshani*

University of Guilan

A. Abbasi

University of Guilan

Abstract. Suppose that PG2(Zanpm) is the prime graph with the
vertex set of the finite ring Zgnpm, where p is a prime number greater
than two and n,m are positive integers. In this paper, we decompose
PG3(Zanpm) and obtain neighborhood metric dimension and Wiener
index of the graph.

AMS Subject Classification: M05C12; 05C75; 05E30; 05C09
Keywords and Phrases: Distance, metric dimension, neighborhood
metric dimension, Wiener index

1 Introduction

All graphs considered in this paper are connected, simple, undirected
and finite. Let G(V, E) be a graph with vertex set V and edge set E.
For graph theoretic terminology we refer to [3]. We say that a vertex
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u € V distinguishes two vertices z,y € V if d(u,x) # d(u,y), where
d(x,y) represents the length of a shortest path between z and y in G. A
metric generator for G is a set B C V with the property that for each
pair of vertices z,y € V, there exists a vertex u € B that distinguishes
z and y. A set A is called a metric basis for G if |A| = min{|B| : B is
a metric generator for G}, and in this case, dim(G) = | A| is the metric
dimension of G.

Harary and Melter [1] in 1976 introduced the concept of resolving set
of a graph and calculated the metric dimension of a tree graph. Since
then it has been widely used in graph theory, chemistry, biology, robotics
and many other disciplines. The concept of neighborhood number of a
graph was introduced in 1985 by Sampathkumar [6]. After more than
twenty years, in 2018, a group of authors [7] studied on one class of
neighborhood resolving set of a graph. They continued by neighborhood
resolving sets of a graph [9] and studied the graphs of neighborhood
metric dimension two [3].

For a non-zero commutative ring R, let Z(R) be the set of zero-
divisors of R. In [5], Pirzada and Altaf introduced an extended zero-
divisor graph whose vertices are the non-zero zero-divisors of a ring R
and two distinct elements x and y in the set Z*(R) = Z(R) \ {0} are
adjacent if and only if zy = 0 or x + y € Z(R). They characterized
finite commutative rings whose extended zero-divisor graph have clique
number 1 or 2. The total graph of R denoted by T'(I'(R)), is an undi-
rected graph with all elements of R as vertices and two distinct vertices
x and y are adjacent if and only if z+y € Z(R) [1]. We define the prime
graph a simple undirected graph, denoted by PG2(R), with all non-zero
elements of R as vertices, and two vertices z, y are adjacent if and only
if either zy = 0 or x + y € Z(R). By definitions, it is clear that the
total graph T'(I'(R)) is a spanning subgraph of PGs(R). Throughout,
we assume that p is an odd prime and n,m are positive integers. We
will use the results obtained on the metric dimension of the total graph
T(I'(Zgnpn)) in [2], and investigate the neighborhood metric dimension
and the Wiener index of the prime graph PGo(Zgn,m) according to a
decomposition of it.
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2 A Classification and Decomposition for pPG,(Zy.,m)

We know that Z(Zanym) is not an ideal of Zgnym. So, by [1], T(I'(Zanym))
is a connected graph with diam (T (I'(Zgnym))) = 2 and girth(T(I'(Zanpm))
= 3. In [10], the authors decomposed the total graph T'(I'(Zgnym)) into
some complete and complete bipartite graphs, as follows. In [2], the au-

thors also studied the metric dimension of this total graph and showed
that dim(T(T(Zanpm))) = 2"p™ — 2p.

Theorem 2.1. (See [10]) For all n,m > 1 and p > 3, we have the
following decompositions;

(1) T(D(Zap)) = 2Kp + pK1.
(ZZ) T(F(Zan)) = 2K2n—1p + pKQn—IQn—l .
(ZZZ) T(F(Zanm)) = 2K2n—1pm + pK2n—1pm—172n—lpm—l .

Remark 2.2. According to Theorem 2.1, T'(I'(Zanym)) is decomposed
into p + 2 subgraphs; p complete bipartites Kon-1,m—1 gn-1,m-1, and
two complete graphs Kon-1pm. Let Veyen and Vogq denote the even and
odd vertices of G, respectively. We assume that Sy = {2kp; &k =
0,....20 1pm=t — 1} Ty = {2k + 1)p; k = 0,...,2n Ipm=1 — 1},
I ={1,....,[%5 and J = {2+ 1,....p — 1}. Fori € I, let
S;={2kp+2 k=0,...2""1p"t 1} T, ={(2k+1)p—-24 k=
0,...,2" tp™=1 — 1} and for j € J, set S; = {2kp —2/; k=0,...,
2n=tpm=l 1} and T = {2k + 1)p+ 27; k=0,...,2" " tpm~1 — 1}
Then, Veyen, = So US; US; and Vogq = Tp UT; UT]. Further, |Veyen| =
[Voaa| = 27 1p™ and for all 0 < i < p—1, |S| = |T;| = 2" 1pm~ L.

By this classification, the subgraphs induced by Viyen, and V4 are
complete graphs Kon-1,m. Also, for 0 <1i < p—1, (S;,T;) is a partition of
the vertex set of each complete bipartite subgraph Kon—1,m-1 g9n-1pm-1.

Throughout the paper, we use the notations of Remark 2.2.

Lemma 2.3. For the prime graph G = PGa(Zgnym) the followings hold.

(i) d(0,y) =1 for any 0 #y € V(G).
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(ii) For0<i,j<p-—1,
(a) Ifx € S, y € Sj, then d(z,y) = 1;
(b) Ifr €Ty, y e T;, then d(z,y) = 1.

(iit) For any x € S; and y € T},

L i=y,
where 0 < 4,5 <p—1.

(iv) For A = {k2"; 1<k <p™—1,ptk}, B={yeTy y-=
k+1)pm™,0<k<2"! -1}, d(z,y) =1 foranyxz € A, y € B.

Proof.

(i) It is obvious.

(ii) By Remark 2.2, it is clear that for (a), the subgraph induced by
S;’s is complete. Similarly, for (b), the subgraph induced by T;’s
is complete.

(iii) Let 1 <i<p—1,and 0 # x € S;, y € T;. Then x = 2kp+2° € S;,
y=0k+1)p—-2"€Tys0 x+y = (4k+ 1)p € Z(G) and
d(z,y) = 1. Moreover, if z € S; and y € Tj, such that i € I, j € J
and 7 # j, then z is not adjacent to y and since diam(G) = 2, then

d(z,y) = 2.
(iv) Let z € A, y € B, then z = k2", y = (2k' + 1)p™. So, zy = 0 and
d(z,y) = 1.
O

Theorem 2.4. For all p > 3, we have

PGy (Zap) = 2Ky + pKi1 + 2K p1.
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Proof. It is easy to see that T'(I'(Zgp)) is an spanning subgraph of
PGy (Zap). So, according to part (i) of Theorem 2.1, there exist two
complete graphs K, with even and odd vertices and p distinct pairs
of even-odd vertices in T'(I'(Zgp)). The rest of the edges of PGy(Zap)
consist of the edges between zero and odd vertices, and the adjacencies
between the vertex p and even vertices. These two class of edges form
two star graphs K1 1. O

Example 2.5. Consider the prime graph on Zg. By Theorem 2.4,
PGs(Zg) = 2K3+3K11+2K 2 represents the decomposition. In Figure
1, to avoid overcrowding, we ignore the drawing 2K3 and just show the
3K11 + 2K, 2 of the decomposition.

0 2 4

3 1 5

Figure 1: PGQ(Z(,) =2K3+ 3K171 + 2K172

Theorem 2.6. For allm > 1 and p > 3, we have
PGQ(ngm) = 2Kpm +prm—17pm—1 + 2K17pm—l(p_1).

Proof. According to part (iii) of Theorem 2.1, two complete graphs K,m
and p complete bipartite graphs Kpm-1 ,m-1 appear in decomposition of
PGy(Zapm). Further, zero is adjacent to all odd vertices of T;, 1 <4 <
p—1, and p™ is adjacent to all even vertices of S;, 1 <7 < p— 1. Since
|Si| = | T3] = p™ ", these adjacencies form two star graphs Kj ,m—1(,_1).
d

Example 2.7. Consider the prime graph on the ring Z1s. By Theorem
2.6, PGo(Z13) = 2K9 + 3K3 3 + 2K, 6. In Figure 2, to avoid overcrowd-
ing, we ignore the drawing 2K9 and just show the 3K33 + 2K ¢ of the
decomposition.

5
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Figure 2: PGQ(Zlg) =2Kg + 3K373 + 2K176

Theorem 2.8. For alln > 1 and p > 3, we have
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PGQ(Zan) = 2K2n—1p + pKanl’anl —+ K2nfl,p—1 =+ K1’2n71(p_1).

Proof. As the proof of the above theorems, by Theorem 2.1, PGo(Zan,)
has p complete bipartite graphs Kgn-19n-1 and two complete graphs
Kyn-1, and as indused subgraphs. The edges between zero and odd
vertices in T3, 1 <4 < p—1, form the star graph K gn-1(,_1). Also, the
adjacencies between the vertices of Ty, with |Tp| = 2”71, and the even
vertices of the form z = 2"k, where 1 < k < p — 1, create Kan-1,_1.

O

Example 2.9. Consider the prime graph on the ring Zog. By Theorem
2.8, PGo(Zay) = 2K10 + 5Ks9 + Koy + Kig. In Figure 3, to avoid
overcrowding, we ignore the drawing 2Kjo and just show the 5Kj 9 +

Ko 4+ K g of the decomposition.
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Figure 3: PGy(Zao) = 2K10+ 5K+ Kou+ Ki 8

Theorem 2.10. For all n,m > 1 and p > 3, we have

PGy(ZLonym) =
2K2n—lpm +pK2n—1pm—1’2n—1pm—1 + KQ”_I,pm_l(pfl) + K172n—1pm—1(p71).

Proof. The adjacencies between zero and odd vertices in T;, 1 < i <
p — 1 form the star graph K gn-1pm-1(,_1). Also, the odd multiples of
p™ in Ty are adjacent to the vertices of the set A = {k2" : 1 < k <
p™ 1 ptk} such that |A| = p™~1(p —1). So, it forms Kon—1 ym—1(p—1)-
Further, by Theorem 2.1, there exist two complete graphs Kyn—1,m and
p complete bipartite graphs Kon—1,m-1 gn-1,m—1 in the decomposition of
PGy (Zgnpm). O

Example 2.11. Consider the prime graph on the ring Zsg. By Theorem
2.8, PGQ(Z36) = 2Ki8 + 3K6,6 + K276 + K1712. In Figure 4, to avoid
overcrowding, we ignore the drawing 2Kig and just show the 3Ks¢ +
Ks 6 + K 12 of the decomposition.
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Figure 4: PGQ(Z36) =2Ki5+ 3K6,6 + K276 + K1’12

3 Neighborhood Metric Dimension of PGy (Zanym)

Let N[v] denote the closed neighborhood of the vertex v € V', i.e. N[v] =
{z € V:d(z,v) < 1}. A neighborhood set of G is a subset S of the vertex
set of G such that G = |J,cg G» where G, = (N|z]). Further, a subset
S of V is called a resolving set of G if for each pair u,v of vertices of
G there is a vertex t € S with the property that |d(v,t) — d(u,t)| >
0. A neighboring set of G that also serves as a resolving set of G is
called a neighborhood resolving set of G. In other words, neighborhood
resolving set S is an ordered subset S = (s1,82,...,8;) of V such that
[(x/S) # T'(y/S) for all z,y € V — S and G = Ufﬂ(N[si}), where
I'(a/S) = (d(a,s1),d(a,s2),...,d(a,st)) is called the code of vertex a
with respect to .S. The minimum cardinality of a neighborhood resolving
set of G is called neighborhood metric dimension of G and is denoted by
nmd(QG).

Theorem 3.1. nmd(PG2(Zap)) =p + 1.

Proof. We claim that S = Viyen U {2} such that z € V,4q is a neigh-
borhood resolving set for PGy(Zsap). According to Theorem 2.4, G =
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Uvev.,., (N[v]UN([z]) such that Uy, (N[v]) = Kp+pKi1+2K7 p1
and N[z| contains the other K, induced by odd vertices. Also, by
Lemma 2.3, for all z,y € V — S, there exists a non-zero vertex s € S
such that 1 = d(x,s) # d(y,s) = 2. Thus, I'(z/S) # I'(y/S). So, S is
a neighborhood resolving set. Note that if S = Viyepn or S = V44 then
G # U,es(N[s]). Now, let S = AU B such that A C Veyen, B C Voaa,
|A| = k and |B| = p — k, k < p. There are two cases; If 0 € A, then
there exists u € Veyen and v € Voqq such that uv ¢ (J,cg(N[s]). If 0 ¢ A,
then there exists w € Vjqq such that Ow ¢ (J,cg(N[s]). Therefore, S is
a minimum neighborhood resolving set for PGo(Zgp). O

Example 3.2. Consider G = PG2(Zjp). See Figure 5. Then S =
{0,2,4,6,8,1} is a neighborhood resolving set for G since,

(3/5) (d(3,0),d(3,2),d(3,4),d(3,6),d(3,8),d(3,1)) = (1,1,2,2,2,1);
I'(5/8) = (d(5,0),d(5,2),d(5,4),d(5, ) d(5,8),d(5,1)) = (1,1,1,1,1,1);
I'(7/8) = (d(7,0),d(7,2),d(7,4),d(7,6),d(7,8),d(7,1)) = (1,2,2,2,1,1);
I'(9/8) = (d(9,0),d(9,2),d(9,4),d(9, ) d(9,8),d(9,1)) = (1,2,2,1,2,1);
and PG2 ZIO) Uv€S<N[U]> SO nmd PGQ(Zlo)) = 6.
0 2 4 6 8
5 3 1 9 7

Figure 5: PGQ(ZH}) =2K5 + 5K171 + 2K174

Theorem 3.3. nmd(PGo(Zanym)) =2"p™ —p — 1.

Proof. Let x € B={y € Ty; y= 2k+1)p™0<k< 201 -1}
and let A = {to,t1,...,tp—1} be a representative set for 7;’s such that
ti € Ty and tg ¢ B. Set A" = AU {z}. We claim that S =V — A’ is
a neighborhood resolving set for PGa(Zganpm). According to Theorem
2.10, G = U,eg(N[s]). Also, by Lemma 2.3, for any u,v € A', there
exists s € S such that 1 = d(u,s) # d(v,s) = 2. Further, if we add a

9
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vertex y to A, then y € Tj for some i € {0,...,p—1} and for any s € 5,
d(y, s) = d(t;, s). Therefore, S is a minimum neighborhood resolving set
for PGQ(ZQan) and nmd(PGQ(Zgnpm)) = anm - (p + 1). O

4 Wiener Index of PGy(Zanym)

The Wiener index of a graph, introduced by Wiener in [11], turns out to
be among the most important of the graph indices. The Wiener index

1
of a graph G is defined as W(G) = 3 Yuwev(a) Au,v).

Remark 4.1. Let G = PGy(Zonym). For i = 1,2, denote D; =
{(a,b);a,b € V(G),d(a,b) = i}|. By Lemma 2.3, for every pair of
distinct vertices x,y € V(G), we either have d(x,y) = 1 or d(z,y) = 2,
so D1+ Dy = |V(G))|(|[V(G)| — 1). Therefore,

W(G) = 5 (D +2D2) = V(@)I(V(G)| - 1) - D1

Theorem 4.2. Wiener Index of PGa(Zayp) is 3p* — 4p + 2.

Proof. By the decomposition of PG2(Zsgp) in Theorem 2.4, one can see
that

Dy =2p(p—1)+2p+4(p—1) =2p> +4p — 4.

So,
1
W (PGs(Zsp)) = 2p(2p — 1) = (2" +4p — 4)
=3p® —4p + 2.
O
Theorem 4.3. Wiener Index of PGa(Zaym) is 3p*™ — 3p™ — p*™~1 +
2pm L,

Proof. By the structure of PG3(Zgpm) in Theorem 2.6, we get

Dy =2p™(p™ — 1) + 2p(@™ )2+ 4" (p - 1)
— 2p2m + 2pm + 2p2m—1 _ 4pm—1.



NEIGHBORHOOD DIMENSION AND WIENER INDEX OF ... 11

So,

1
W(PGo(Zopm)) = 2p™(p™ — 1) — 5(2p2m +2p™ + 2p2m_1 — 4pm_1)
— 3p2m _ 3pm _p2m—1 + 2pm—1'
O

Theorem 4.4. Wiener Index of PGo(Zany) is 22"p* —2nHlp—22n=2p2 4
2n—1p _ 22n—2p + on .

Proof. By the structure of PG3(Zanp) in Theorem 2.8, we have
Dy =2x2"1p@ p— 1) +2p2" 242" M p—1)x24+2x 2" (p—1)

=2"p(2" lp — 1)+ 2p x 222 4 2" (p— 1)+ 2%(p — 1).
So,

1 _
W(PGs(Zanp)) = 2"p(2"p = 1) = 5 (2"p(2"'p = 1)
+2px 2272 4 2% (p— 1) +2"(p - 1))
— 227’Lp2 _ 2TL+1p o 22n72p2 + 2n71p _ 22n72p + 2n
0

Theorem 4.5. Wiener Index of PGa(Zgnym) is 220p*™ — 2ntlpm —
22n—2p2m + 2n—1pm _ 22n—2p2m—1'

Proof. According to the decomposition of PGg(Zgnym) in Theorem
2.10,

D =2 x 2n71pm(2n71pm _ 1) 4 2p(2n71pm71)2 192 % 2n71pm71(p _
1) +2x2n1pm=1(p—1).

So, we arrive at
1
W(PGo(Zanym)) = 2"p" (2"p™ — 1) — §D1
— 22np2m _ 2n+1pm o 22n72p2m + 2n71pm o 22n72p2m71.

O
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