

Journal of Mathematical Extension
Vol. 19, No. 5 (2025) (6) 1-13
ISSN: 1735-8299
URL: <http://doi.org/10.30495/JME.2025.3285>
Original Research Paper

On Neighborhood Dimension and Wiener Index of Prime Graph $PG_2(\mathbb{Z}_{2^n p^m})$

M. Taghidoost Laskukalayeh

University of Guilan

M. Gholamnia Taleshani*

University of Guilan

A. Abbasi

University of Guilan

Abstract. Suppose that $PG_2(\mathbb{Z}_{2^n p^m})$ is the prime graph with the vertex set of the finite ring $\mathbb{Z}_{2^n p^m}$, where p is a prime number greater than two and n, m are positive integers. In this paper, we decompose $PG_2(\mathbb{Z}_{2^n p^m})$ and obtain neighborhood metric dimension and Wiener index of the graph.

AMS Subject Classification: M05C12; 05C75; 05E30; 05C09

Keywords and Phrases: Distance, metric dimension, neighborhood metric dimension, Wiener index

1 Introduction

All graphs considered in this paper are connected, simple, undirected and finite. Let $G(V, E)$ be a graph with vertex set V and edge set E . For graph theoretic terminology we refer to [3]. We say that a vertex

Received: February 2025; Accepted: August 2025

*Corresponding Author

$u \in V$ distinguishes two vertices $x, y \in V$ if $d(u, x) \neq d(u, y)$, where $d(x, y)$ represents the length of a shortest path between x and y in G . A *metric generator* for G is a set $B \subseteq V$ with the property that for each pair of vertices $x, y \in V$, there exists a vertex $u \in B$ that distinguishes x and y . A set A is called a *metric basis* for G if $|A| = \min\{|B| : B$ is a metric generator for $G\}$, and in this case, $\dim(G) = |A|$ is the *metric dimension* of G .

Harary and Melter [4] in 1976 introduced the concept of *resolving set* of a graph and calculated the metric dimension of a tree graph. Since then it has been widely used in graph theory, chemistry, biology, robotics and many other disciplines. The concept of *neighborhood number* of a graph was introduced in 1985 by Sampathkumar [6]. After more than twenty years, in 2018, a group of authors [7] studied on one class of *neighborhood resolving set* of a graph. They continued by neighborhood resolving sets of a graph [9] and studied the graphs of neighborhood metric dimension two [8].

For a non-zero commutative ring R , let $Z(R)$ be the set of zero-divisors of R . In [5], Pirzada and Altaf introduced an extended zero-divisor graph whose vertices are the non-zero zero-divisors of a ring R and two distinct elements x and y in the set $Z^*(R) = Z(R) \setminus \{0\}$ are adjacent if and only if $xy = 0$ or $x + y \in Z(R)$. They characterized finite commutative rings whose extended zero-divisor graph have clique number 1 or 2. The total graph of R denoted by $T(\Gamma(R))$, is an undirected graph with all elements of R as vertices and two distinct vertices x and y are adjacent if and only if $x + y \in Z(R)$ [1]. We define the *prime graph* a simple undirected graph, denoted by $PG_2(R)$, with all non-zero elements of R as vertices, and two vertices x, y are adjacent if and only if either $xy = 0$ or $x + y \in Z(R)$. By definitions, it is clear that the total graph $T(\Gamma(R))$ is a spanning subgraph of $PG_2(R)$. Throughout, we assume that p is an odd prime and n, m are positive integers. We will use the results obtained on the metric dimension of the total graph $T(\Gamma(\mathbb{Z}_{2^n p^m}))$ in [2], and investigate the neighborhood metric dimension and the Wiener index of the prime graph $PG_2(\mathbb{Z}_{2^n p^m})$ according to a decomposition of it.

2 A Classification and Decomposition for $PG_2(\mathbb{Z}_{2^n p^m})$

We know that $Z(\mathbb{Z}_{2^n p^m})$ is not an ideal of $\mathbb{Z}_{2^n p^m}$. So, by [1], $T(\Gamma(\mathbb{Z}_{2^n p^m}))$ is a connected graph with $diam(T(\Gamma(\mathbb{Z}_{2^n p^m}))) = 2$ and $girth(T(\Gamma(\mathbb{Z}_{2^n p^m}))) = 3$. In [10], the authors decomposed the total graph $T(\Gamma(\mathbb{Z}_{2^n p^m}))$ into some complete and complete bipartite graphs, as follows. In [2], the authors also studied the metric dimension of this total graph and showed that $dim(T(\Gamma(\mathbb{Z}_{2^n p^m}))) = 2^n p^m - 2p$.

Theorem 2.1. (See [10]) *For all $n, m \geq 1$ and $p \geq 3$, we have the following decompositions;*

- (i) $T(\Gamma(\mathbb{Z}_{2p})) = 2K_p + pK_{1,1}$.
- (ii) $T(\Gamma(\mathbb{Z}_{2^n p})) = 2K_{2^{n-1}p} + pK_{2^{n-1}, 2^{n-1}}$.
- (iii) $T(\Gamma(\mathbb{Z}_{2^n p^m})) = 2K_{2^{n-1}p^m} + pK_{2^{n-1}p^{m-1}, 2^{n-1}p^{m-1}}$.

Remark 2.2. According to Theorem 2.1, $T(\Gamma(\mathbb{Z}_{2^n p^m}))$ is decomposed into $p + 2$ subgraphs; p complete bipartites $K_{2^{n-1}p^{m-1}, 2^{n-1}p^{m-1}}$, and two complete graphs $K_{2^{n-1}p^m}$. Let V_{even} and V_{odd} denote the even and odd vertices of G , respectively. We assume that $S_0 = \{2kp; k = 0, \dots, 2^{n-1}p^{m-1} - 1\}$, $T_0 = \{(2k + 1)p; k = 0, \dots, 2^{n-1}p^{m-1} - 1\}$, $I = \{1, \dots, [\frac{p-1}{2}]\}$ and $J = \{[\frac{p-1}{2}] + 1, \dots, p - 1\}$. For $i \in I$, let $S_i = \{2kp + 2^i; k = 0, \dots, 2^{n-1}p^{m-1} - 1\}$, $T_i = \{(2k + 1)p - 2^i; k = 0, \dots, 2^{n-1}p^{m-1} - 1\}$ and for $j \in J$, set $S_j = \{2kp - 2^j; k = 0, \dots, 2^{n-1}p^{m-1} - 1\}$ and $T_j = \{(2k + 1)p + 2^j; k = 0, \dots, 2^{n-1}p^{m-1} - 1\}$. Then, $V_{even} = S_0 \cup S_i \cup S_j$ and $V_{odd} = T_0 \cup T_i \cup T_j$. Further, $|V_{even}| = |V_{odd}| = 2^{n-1}p^m$ and for all $0 \leq i \leq p - 1$, $|S_i| = |T_i| = 2^{n-1}p^{m-1}$.

By this classification, the subgraphs induced by V_{even} and V_{odd} are complete graphs $K_{2^{n-1}p^m}$. Also, for $0 \leq i \leq p - 1$, (S_i, T_i) is a partition of the vertex set of each complete bipartite subgraph $K_{2^{n-1}p^{m-1}, 2^{n-1}p^{m-1}}$.

Throughout the paper, we use the notations of Remark 2.2.

Lemma 2.3. *For the prime graph $G = PG_2(\mathbb{Z}_{2^n p^m})$ the followings hold.*

- (i) $d(0, y) = 1$ for any $0 \neq y \in V(G)$.

(ii) For $0 \leq i, j \leq p-1$,

- (a) If $x \in S_i$, $y \in S_j$, then $d(x, y) = 1$;
- (b) If $x \in T_i$, $y \in T_j$, then $d(x, y) = 1$.

(iii) For any $x \in S_i$ and $y \in T_j$,

$$d(x, y) = \begin{cases} 1 & i = j, \\ 2 & i \neq j \end{cases}$$

where $0 \leq i, j \leq p-1$.

(iv) For $A = \{k2^n; 1 \leq k \leq p^m - 1, p \nmid k\}$, $B = \{y \in T_0; y = (2k+1)p^m, 0 \leq k \leq 2^{n-1} - 1\}$, $d(x, y) = 1$ for any $x \in A$, $y \in B$.

Proof.

(i) It is obvious.

(ii) By Remark 2.2, it is clear that for (a), the subgraph induced by S_i 's is complete. Similarly, for (b), the subgraph induced by T_i 's is complete.

(iii) Let $1 \leq i \leq p-1$, and $0 \neq x \in S_i$, $y \in T_i$. Then $x = 2kp + 2^i \in S_i$, $y = (2k+1)p - 2^i \in T_i$, so, $x + y = (4k+1)p \in Z(G)$ and $d(x, y) = 1$. Moreover, if $x \in S_i$ and $y \in T_j$, such that $i \in I$, $j \in J$ and $i \neq j$, then x is not adjacent to y and since $\text{diam}(G) = 2$, then $d(x, y) = 2$.

(iv) Let $x \in A$, $y \in B$, then $x = k2^n$, $y = (2k'+1)p^m$. So, $xy = 0$ and $d(x, y) = 1$.

□

Theorem 2.4. For all $p \geq 3$, we have

$$PG_2(\mathbb{Z}_{2p}) = 2K_p + pK_{1,1} + 2K_{1,p-1}.$$

Proof. It is easy to see that $T(\Gamma(\mathbb{Z}_{2p}))$ is a spanning subgraph of $PG_2(\mathbb{Z}_{2p})$. So, according to part (i) of Theorem 2.1, there exist two complete graphs K_p with even and odd vertices and p distinct pairs of even-odd vertices in $T(\Gamma(\mathbb{Z}_{2p}))$. The rest of the edges of $PG_2(\mathbb{Z}_{2p})$ consist of the edges between zero and odd vertices, and the adjacencies between the vertex p and even vertices. These two class of edges form two star graphs $K_{1,p-1}$. \square

Example 2.5. Consider the prime graph on \mathbb{Z}_6 . By Theorem 2.4, $PG_2(\mathbb{Z}_6) = 2K_3 + 3K_{1,1} + 2K_{1,2}$ represents the decomposition. In Figure 1, to avoid overcrowding, we ignore the drawing $2K_3$ and just show the $3K_{1,1} + 2K_{1,2}$ of the decomposition.

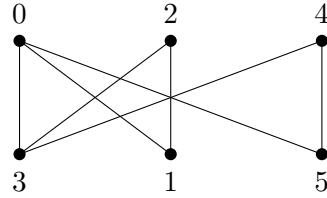


Figure 1: $PG_2(\mathbb{Z}_6) = 2K_3 + 3K_{1,1} + 2K_{1,2}$

Theorem 2.6. For all $m \geq 1$ and $p \geq 3$, we have

$$PG_2(\mathbb{Z}_{2p^m}) = 2K_{p^m} + pK_{p^{m-1},p^{m-1}} + 2K_{1,p^{m-1}(p-1)}.$$

Proof. According to part (iii) of Theorem 2.1, two complete graphs K_{p^m} and p complete bipartite graphs $K_{p^{m-1},p^{m-1}}$ appear in decomposition of $PG_2(\mathbb{Z}_{2p^m})$. Further, zero is adjacent to all odd vertices of T_i , $1 \leq i \leq p-1$, and p^m is adjacent to all even vertices of S_i , $1 \leq i \leq p-1$. Since $|S_i| = |T_i| = p^{m-1}$, these adjacencies form two star graphs $K_{1,p^{m-1}(p-1)}$. \square

Example 2.7. Consider the prime graph on the ring \mathbb{Z}_{18} . By Theorem 2.6, $PG_2(\mathbb{Z}_{18}) = 2K_9 + 3K_{3,3} + 2K_{1,6}$. In Figure 2, to avoid overcrowding, we ignore the drawing $2K_9$ and just show the $3K_{3,3} + 2K_{1,6}$ of the decomposition.

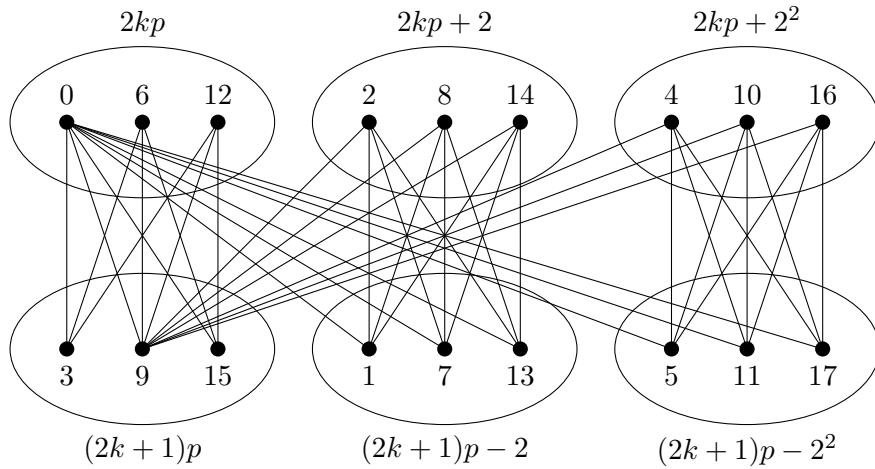


Figure 2: $PG_2(\mathbb{Z}_{18}) = 2K_9 + 3K_{3,3} + 2K_{1,6}$

Theorem 2.8. For all $n \geq 1$ and $p \geq 3$, we have

$$PG_2(\mathbb{Z}_{2^n p}) = 2K_{2^{n-1}p} + pK_{2^{n-1}, 2^{n-1}} + K_{2^{n-1}, p-1} + K_{1, 2^{n-1}(p-1)}.$$

Proof. As the proof of the above theorems, by Theorem 2.1, $PG_2(\mathbb{Z}_{2^n p})$ has p complete bipartite graphs $K_{2^{n-1}, 2^{n-1}}$ and two complete graphs $K_{2^{n-1}p}$ and as induced subgraphs. The edges between zero and odd vertices in T_i , $1 \leq i \leq p-1$, form the star graph $K_{1, 2^{n-1}(p-1)}$. Also, the adjacencies between the vertices of T_0 , with $|T_0| = 2^{n-1}$, and the even vertices of the form $x = 2^n k$, where $1 \leq k \leq p-1$, create $K_{2^{n-1}, p-1}$. \square

Example 2.9. Consider the prime graph on the ring \mathbb{Z}_{20} . By Theorem 2.8, $PG_2(\mathbb{Z}_{20}) = 2K_{10} + 5K_{2,2} + K_{2,4} + K_{1,8}$. In Figure 3, to avoid overcrowding, we ignore the drawing $2K_{10}$ and just show the $5K_{2,2} + K_{2,4} + K_{1,8}$ of the decomposition.

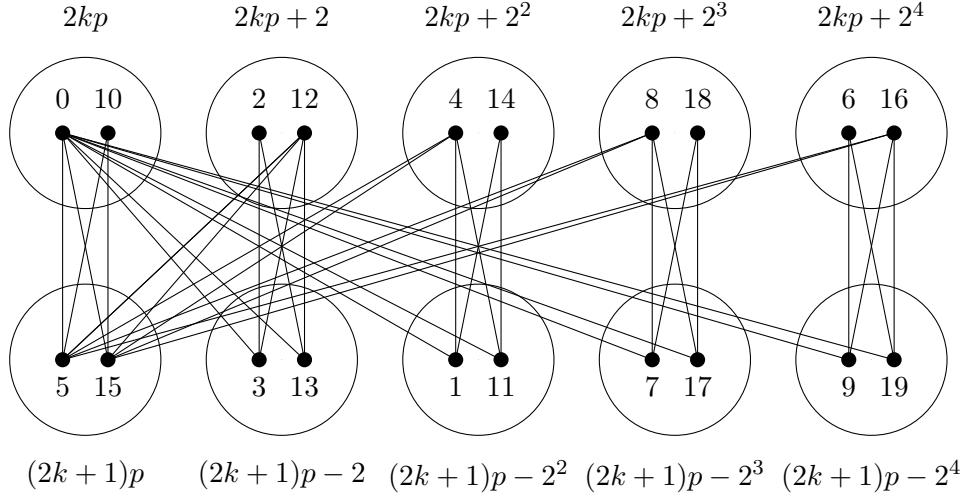


Figure 3: $PG_2(\mathbb{Z}_{20}) = 2K_{10} + 5K_{2,2} + K_{2,4} + K_{1,8}$

Theorem 2.10. For all $n, m \geq 1$ and $p \geq 3$, we have

$$PG_2(\mathbb{Z}_{2^n p^m}) = 2K_{2^{n-1}p^m} + pK_{2^{n-1}p^{m-1}, 2^{n-1}p^{m-1}} + K_{2^{n-1}, p^{m-1}(p-1)} + K_{1, 2^{n-1}p^{m-1}(p-1)}.$$

Proof. The adjacencies between zero and odd vertices in T_i , $1 \leq i \leq p-1$ form the star graph $K_{1, 2^{n-1}p^{m-1}(p-1)}$. Also, the odd multiples of p^m in T_0 are adjacent to the vertices of the set $A = \{k2^n : 1 \leq k \leq p^{m-1}, p \nmid k\}$ such that $|A| = p^{m-1}(p-1)$. So, it forms $K_{2^{n-1}, p^{m-1}(p-1)}$. Further, by Theorem 2.1, there exist two complete graphs $K_{2^{n-1}p^m}$ and p complete bipartite graphs $K_{2^{n-1}p^{m-1}, 2^{n-1}p^{m-1}}$ in the decomposition of $PG_2(\mathbb{Z}_{2^n p^m})$. \square

Example 2.11. Consider the prime graph on the ring \mathbb{Z}_{36} . By Theorem 2.8, $PG_2(\mathbb{Z}_{36}) = 2K_{18} + 3K_{6,6} + K_{2,6} + K_{1,12}$. In Figure 4, to avoid overcrowding, we ignore the drawing $2K_{18}$ and just show the $3K_{6,6} + K_{2,6} + K_{1,12}$ of the decomposition.

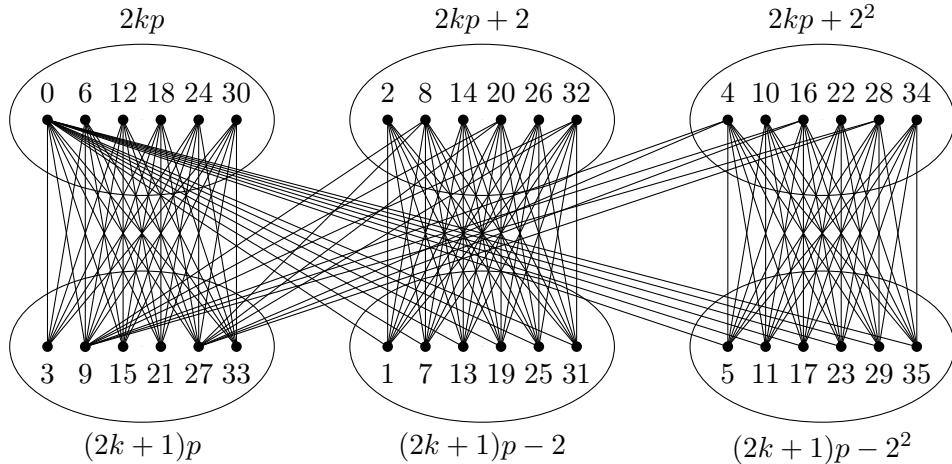


Figure 4: $PG_2(\mathbb{Z}_{36}) = 2K_{18} + 3K_{6,6} + K_{2,6} + K_{1,12}$

3 Neighborhood Metric Dimension of $PG_2(\mathbb{Z}_{2^n p^m})$

Let $N[v]$ denote the closed neighborhood of the vertex $v \in V$, i.e. $N[v] = \{x \in V : d(x, v) \leq 1\}$. A *neighborhood set* of G is a subset S of the vertex set of G such that $G = \bigcup_{v \in S} G_v$ where $G_x = \langle N[x] \rangle$. Further, a subset S of V is called a *resolving set* of G if for each pair u, v of vertices of G there is a vertex $t \in S$ with the property that $|d(v, t) - d(u, t)| > 0$. A neighboring set of G that also serves as a resolving set of G is called a *neighborhood resolving set* of G . In other words, neighborhood resolving set S is an ordered subset $S = (s_1, s_2, \dots, s_k)$ of V such that $\Gamma(x/S) \neq \Gamma(y/S)$ for all $x, y \in V - S$ and $G = \bigcup_{i=1}^k \langle N[s_i] \rangle$, where $\Gamma(a/S) = (d(a, s_1), d(a, s_2), \dots, d(a, s_k))$ is called the code of vertex a with respect to S . The minimum cardinality of a neighborhood resolving set of G is called *neighborhood metric dimension* of G and is denoted by $nmd(G)$.

Theorem 3.1. $nmd(PG_2(\mathbb{Z}_{2p})) = p + 1$.

Proof. We claim that $S = V_{\text{even}} \cup \{x\}$ such that $x \in V_{\text{odd}}$ is a neighborhood resolving set for $PG_2(\mathbb{Z}_{2p})$. According to Theorem 2.4, $G =$

$\bigcup_{v \in V_{even}} \langle N[v] \cup N[x] \rangle$ such that $\bigcup_{v \in V_{even}} \langle N[v] \rangle = K_p + pK_{1,1} + 2K_{1,p-1}$ and $N[x]$ contains the other K_p induced by odd vertices. Also, by Lemma 2.3, for all $x, y \in V - S$, there exists a non-zero vertex $s \in S$ such that $1 = d(x, s) \neq d(y, s) = 2$. Thus, $\Gamma(x/S) \neq \Gamma(y/S)$. So, S is a neighborhood resolving set. Note that if $S = V_{even}$ or $S = V_{odd}$ then $G \neq \bigcup_{s \in S} \langle N[s] \rangle$. Now, let $S = A \cup B$ such that $A \subset V_{even}$, $B \subset V_{odd}$, $|A| = k$ and $|B| = p - k$, $k < p$. There are two cases; If $0 \in A$, then there exists $u \in V_{even}$ and $v \in V_{odd}$ such that $uv \notin \bigcup_{s \in S} \langle N[s] \rangle$. If $0 \notin A$, then there exists $w \in V_{odd}$ such that $0w \notin \bigcup_{s \in S} \langle N[s] \rangle$. Therefore, S is a minimum neighborhood resolving set for $PG_2(\mathbb{Z}_{2p})$. \square

Example 3.2. Consider $G = PG_2(\mathbb{Z}_{10})$. See Figure 5. Then $S = \{0, 2, 4, 6, 8, 1\}$ is a neighborhood resolving set for G since, $\Gamma(3/S) = (d(3, 0), d(3, 2), d(3, 4), d(3, 6), d(3, 8), d(3, 1)) = (1, 1, 2, 2, 2, 1)$; $\Gamma(5/S) = (d(5, 0), d(5, 2), d(5, 4), d(5, 6), d(5, 8), d(5, 1)) = (1, 1, 1, 1, 1, 1)$; $\Gamma(7/S) = (d(7, 0), d(7, 2), d(7, 4), d(7, 6), d(7, 8), d(7, 1)) = (1, 2, 2, 2, 1, 1)$; $\Gamma(9/S) = (d(9, 0), d(9, 2), d(9, 4), d(9, 6), d(9, 8), d(9, 1)) = (1, 2, 2, 1, 2, 1)$; and $PG_2(\mathbb{Z}_{10}) = \bigcup_{v \in S} \langle N[v] \rangle$. So, $nmd(PG_2(\mathbb{Z}_{10})) = 6$.

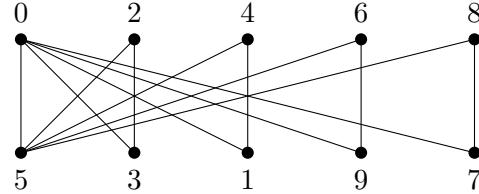


Figure 5: $PG_2(\mathbb{Z}_{10}) = 2K_5 + 5K_{1,1} + 2K_{1,4}$

Theorem 3.3. $nmd(PG_2(\mathbb{Z}_{2^n p^m})) = 2^n p^m - p - 1$.

Proof. Let $x \in B = \{y \in T_0; y = (2k + 1)p^m, 0 \leq k \leq 2^{n-1} - 1\}$ and let $A = \{t_0, t_1, \dots, t_{p-1}\}$ be a representative set for T_i 's such that $t_i \in T_i$ and $t_0 \notin B$. Set $A' = A \cup \{x\}$. We claim that $S = V - A'$ is a neighborhood resolving set for $PG_2(\mathbb{Z}_{2^n p^m})$. According to Theorem 2.10, $G = \bigcup_{s \in S} \langle N[s] \rangle$. Also, by Lemma 2.3, for any $u, v \in A'$, there exists $s \in S$ such that $1 = d(u, s) \neq d(v, s) = 2$. Further, if we add a

vertex y to A' , then $y \in T_i$ for some $i \in \{0, \dots, p-1\}$ and for any $s \in S$, $d(y, s) = d(t_i, s)$. Therefore, S is a minimum neighborhood resolving set for $PG_2(\mathbb{Z}_{2^n p^m})$ and $nmd(PG_2(\mathbb{Z}_{2^n p^m})) = 2^n p^m - (p+1)$. \square

4 Wiener Index of $PG_2(\mathbb{Z}_{2^n p^m})$

The Wiener index of a graph, introduced by Wiener in [11], turns out to be among the most important of the graph indices. The Wiener index of a graph G is defined as $W(G) = \frac{1}{2} \sum_{u,v \in V(G)} d(u, v)$.

Remark 4.1. Let $G = PG_2(\mathbb{Z}_{2^n p^m})$. For $i = 1, 2$, denote $D_i = |\{(a, b); a, b \in V(G), d(a, b) = i\}|$. By Lemma 2.3, for every pair of distinct vertices $x, y \in V(G)$, we either have $d(x, y) = 1$ or $d(x, y) = 2$, so $D_1 + D_2 = |V(G)|(|V(G)| - 1)$. Therefore,

$$W(G) = \frac{1}{2}(D_1 + 2D_2) = |V(G)|(|V(G)| - 1) - \frac{1}{2}D_1.$$

Theorem 4.2. Wiener Index of $PG_2(\mathbb{Z}_{2p})$ is $3p^2 - 4p + 2$.

Proof. By the decomposition of $PG_2(\mathbb{Z}_{2p})$ in Theorem 2.4, one can see that

$$D_1 = 2p(p-1) + 2p + 4(p-1) = 2p^2 + 4p - 4.$$

So,

$$\begin{aligned} W(PG_2(\mathbb{Z}_{2p})) &= 2p(2p-1) - \frac{1}{2}(2p^2 + 4p - 4) \\ &= 3p^2 - 4p + 2. \end{aligned}$$

\square

Theorem 4.3. Wiener Index of $PG_2(\mathbb{Z}_{2p^m})$ is $3p^{2m} - 3p^m - p^{2m-1} + 2p^{m-1}$.

Proof. By the structure of $PG_2(\mathbb{Z}_{2p^m})$ in Theorem 2.6, we get

$$\begin{aligned} D_1 &= 2p^m(p^m - 1) + 2p(p^{m-1})^2 + 4p^{m-1}(p-1) \\ &= 2p^{2m} + 2p^m + 2p^{2m-1} - 4p^{m-1}. \end{aligned}$$

So,

$$\begin{aligned} W(PG_2(\mathbb{Z}_{2p^m})) &= 2p^m(p^m - 1) - \frac{1}{2}(2p^{2m} + 2p^m + 2p^{2m-1} - 4p^{m-1}) \\ &= 3p^{2m} - 3p^m - p^{2m-1} + 2p^{m-1}. \end{aligned}$$

□

Theorem 4.4. *Wiener Index of $PG_2(\mathbb{Z}_{2^n}p)$ is $2^{2n}p^2 - 2^{n+1}p - 2^{2n-2}p^2 + 2^{n-1}p - 2^{2n-2}p + 2^n$.*

Proof. By the structure of $PG_2(\mathbb{Z}_{2^n}p)$ in Theorem 2.8, we have

$$\begin{aligned} D_1 &= 2 \times 2^{n-1}p(2^{n-1}p - 1) + 2p(2^{n-1})^2 + 2^{n-1}(p - 1) \times 2 + 2 \times 2^{n-1}(p - 1) \\ &= 2^n p(2^{n-1}p - 1) + 2p \times 2^{2n-2} + 2^n(p - 1) + 2^n(p - 1). \end{aligned}$$

So,

$$\begin{aligned} W(PG_2(\mathbb{Z}_{2^n}p)) &= 2^n p(2^n p - 1) - \frac{1}{2}(2^n p(2^{n-1}p - 1) \\ &\quad + 2p \times 2^{2n-2} + 2^n(p - 1) + 2^n(p - 1)) \\ &= 2^{2n}p^2 - 2^{n+1}p - 2^{2n-2}p^2 + 2^{n-1}p - 2^{2n-2}p + 2^n. \end{aligned}$$

□

Theorem 4.5. *Wiener Index of $PG_2(\mathbb{Z}_{2^n}p^m)$ is $2^{2n}p^{2m} - 2^{n+1}p^m - 2^{2n-2}p^{2m} + 2^{n-1}p^m - 2^{2n-2}p^{2m-1}$.*

Proof. According to the decomposition of $PG_2(\mathbb{Z}_{2^n}p^m)$ in Theorem 2.10,

$$D_1 = 2 \times 2^{n-1}p^m(2^{n-1}p^m - 1) + 2p(2^{n-1}p^{m-1})^2 + 2 \times 2^{n-1}p^{m-1}(p - 1) + 2 \times 2^{n-1}p^{m-1}(p - 1).$$

So, we arrive at

$$\begin{aligned} W(PG_2(\mathbb{Z}_{2^n}p^m)) &= 2^n p^m(2^n p^m - 1) - \frac{1}{2}D_1 \\ &= 2^{2n}p^{2m} - 2^{n+1}p^m - 2^{2n-2}p^{2m} + 2^{n-1}p^m - 2^{2n-2}p^{2m-1}. \end{aligned}$$

□

Acknowledgements

We would like to thank the esteemed reviewer for carefully reading this article and providing valuable feedback.

References

- [1] D. F. Anderson and A. Badawi, The total graph of a commutative ring, *J. Algebra*, 320 (2008) 2706-2719.
- [2] M. Gholamnia Taleshani, M. Taghidoost Laskukalayeh and A. Abbasi, Locating parameters of the total graph of $\mathbb{Z}_{2^n p^m}$, *Bull. Belg. Math. Soc. Simon Stevin*, 20 (2023), 66-78.
- [3] F. Harary, *Graph Theory*, Addison-Wesley, Reading, 1994.
- [4] F. Harary and R. A. Melter, On the metric dimension of a graph, *Ars Combinatoria*, 2 (1976), 191-195.
- [5] Sh. Pirzada and A. Altaf, Cliques in the extended zero-divisor graph of finite commutative rings, *Communications in Combinatorics and Optimization*, 10(1) (2025), 195-206.
- [6] E. Sampathkumar and P. S. Neeralagi, The neighbourhood number of a graph, *J. Pure Appl. Math.*, 16(2) (1985), 126-132.
- [7] B. Sooryanarayana and A. S. Suma, On classes of neighborhood resolving sets of a graph, *Electronic Journal of Graph Theory and Applications*, 6(1) (2018), 29-36.
- [8] B. Sooryanarayana and S. A. Shanmukha, Graphs of neighborhood metric dimension two, *J. Math. Fund. Sci.*, 53 (2021), 118-133.
- [9] A. S. Suma, L. S. Lamani, S. L. Sequiera and B. Sooryanarayana, neighborhood resolving sets of a graph, *Applied Engineering Research*, 15 (2020), 778-782.
- [10] M. Taghidoost Laskukalayeh, M. Gholamnia Taleshani and A. Abbasi, On some total graphs on finite rings, *Journal of Algebraic Systems*, 9(2) (2022), 267-280.
- [11] H. Wiener, Structural determination of paraffin boiling points, *J. Am. Chem. Soc.*, 69(1) (1947), 17-20.

Mozhgan Taghidoost Laskukalayeh

Lecturer of Mathematics

Department of Mathematics

Faculty of Mathematical Sciences, University of Guilan

Rasht, Iran

E-mail: m.taghidoust.lk@gmail.com

Mona Gholamnia Taleshani

Lecturer of Mathematics

Department of Mathematics

Faculty of Mathematical Sciences, University of Guilan

Rasht, Iran

E-mail: m.gholamniai@gmail.com

Ahmad Abbasi

Associate Professor of Mathematics

Department of Mathematics

Faculty of Mathematical Sciences, University of Guilan

Center of Excellence for Mathematical Modeling, Optimization and Combinatorial Computing (MMOCC), University of Guilan

Rasht, Iran

E-mail: aabbasi@guilan.ac.ir