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Abstract. We investigate a class of (2+1)-dimensional nonlinear frac-
tional wave-diffusion equations with Caputo derivatives using Lie sym-
metry analysis. First, we derive a prolongation formula for the infinites-
imal generators of the symmetry group acting on Caputo-type fractional
derivatives of arbitrary order a generalizing earlier results for Riemann-
Liouville derivatives by Gazizov et al. [13]. By constructing an optimal
system of subalgebras, we classify all symmetry reductions for this class
of equations. As a key application, we obtain exact invariant solutions
and solitary wave solutions for the (2+41)-dimensional fractional Burg-
ers equation. This framework opens avenues for extending Lie analysis
to other fractional PDEs in continuum mechanics, plasma physics, and
transport processes where Caputo operators play a crucial role.
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1 Introduction

Fractional wave-diffusion equations have emerged as powerful mathe-
matical tools for describing various biological and physical systems that
exhibit anomalous diffusion. These equations effectively model systems
with long-range interactions and hereditary mechanisms, which are not
adequately captured by classical integer-order models. This study fo-
cuses on a class of (2+1)-dimensional nonlinear fractional wave-diffusion
equations of the Caputo type and their associated Lie symmetry groups
[20, 9]. Fractional wave-diffusion equations also play a significant role
in understanding diffusion processes in heterogeneous media. For in-
stance, they have been instrumental in analyzing diffusion data from
human brain tissue, where the heterogeneous structure necessitates a
more sophisticated mathematical model to capture the complex diffu-
sion patterns accurately. Notable contributions to the development and
analysis of fractional wave-diffusion equations include the work of Bueno
et al. [0], Liu et al. [22], and Magin [20].

While linear fractional wave-diffusion equations have been extensively
studied, the same cannot be said for one-dimensional nonlinear fractional
wave equations. The complexities associated with nonlinearities have
posed significant challenges, resulting in limited research on this subject.
However, some notable contributions have been made by researchers
such as Beckers, Luchko, and Sakamoto (see [5, 23, 36]). To address
these challenges, various methods have been explored and developed, in-
cluding Chebyshev collocation methods, finite element approaches, CDV
wavelet basis, finite difference methods, series expansion methods, and
Laplace transform methods (as discussed in [11, 1, 8 14, 38, 19]). De-
spite the progress made in studying nonlinear fractional wave equations,
there is still much work to be done in this area. Continued research into
the theory and applications of these equations is essential for a deeper
understanding of the underlying mathematical structure and their po-
tential applications in various fields.
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From a practical perspective, the Caputo derivative holds greater
significance as it allows for initial conditions similar to those found in
integer-order differential equations. This compatibility simplifies the
modeling of real-world phenomena and makes it easier to incorporate
known initial states into problem formulations. In contrast, the Riemann-
Liouville (R-L) derivative requires initial conditions involving limit val-
ues of fractional derivatives at ¢ = 0. This constraint can complicate the
modeling process and makes it more challenging to apply R-L fractional
derivatives in practical scenarios. To apply Lie symmetry analysis to
systems of differential or integral equations, we need to extend the base
space representing the independent and dependent variables to include
the derivative or integral operators present in the system. In the context
of fractional-order differential equations, Gazizov et al. [13] derived an
explicit prolongation formula for the R-L fractional derivative operator
for the first time. Most studies in this field that have obtained exact
solutions using symmetry methods rely on the R-L fractional derivative.
Although the prolongation formula for the Caputo fractional derivative
operator has been derived in [13] for 0 < a < 1, an explicit general
formula was previously unavailable. This gap has limited the applica-
tion of Lie symmetry methods to Caputo-type fractional equations. In
this paper, we present such an explicit formula, addressing this long-
standing challenge. Additionally, the prolongation formula for integral
operators has been established in [2]. This method has been applied
to some partial differential equations, as demonstrated by researchers
such as [18, 3, 37, 21, 28, 34]. Classic Lie symmetry analysis has been
applied to differential equations involving fractional R-L derivatives by
authors in [16, 35, 15, 33]. Furthermore, the nonclassical method, which
is an extension of the Lie symmetry method, has been applied to R-L
fractional differential equations in works such as [32, 29, 4, 30, 31].

Our approach is based on the application of Leibniz’s formula and
the Taylor’s expansion of fractional derivatives, with detailed proofs pro-
vided in the Appendix. We also present applicable expressions of this
formula for engineering purposes, particularly for cases where 0 < o < 1
and 1 < a < 2. By extending the existing literature on Caputo-type
fractional derivatives, our findings may contribute to the broader ap-
plication of Lie symmetry analysis in studying FDEs and facilitate the
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derivation of exact solutions and conservation laws for these equations.
In addition to deriving the prolongation formula for Caputo-type frac-
tional derivatives, this study also compares the invariants of equations
involving Caputo-type derivatives with those involving R-L derivatives.
We present a specific example where using Caputo-type derivatives leads
to the discovery of new invariants, which subsequently yield new so-
lutions for the equation. The results of this study provide a general
framework for applying Lie symmetry analysis to fractional differential
equations with Caputo-type derivatives. A key contribution of this work
is the application of the obtained results to fractional wave-diffusion
equations with Caputo-type derivatives. To the best of our knowledge,
Lie symmetry analysis has not yet been applied to these equations with
Caputo-type derivatives. Our study derives invariants of a class of two-
dimensional nonlinear wave-diffusion equations, leading to a class of ex-
act solutions. This approach demonstrates the utility of Lie symmetry
methods in studying nonlinear fractional wave-diffusion equations. This
study is structured as follows: First, we establish the necessary back-
ground by revisiting fundamental concepts on fractional integrals and
derivatives. This lays the foundation for the subsequent analysis. Next,
we derive a prolongation formula for fractional derivatives of the Caputo
type within the context of a one-parameter Lie group of transformations
on a specific domain. Building upon these results, we then investigate
the symmetry properties of (2+1)-dimensional fractional nonlinear wave-
diffusion equations. Finally, we showcase the applicability of our sym-
metry analysis approach by deriving exact solutions for a particular case
of the (2+1)-dimensional Burger’s equation, thus demonstrating its po-
tential for solving nonlinear fractional wave-diffusion equations. In con-
clusion, this study provides valuable insights into the application of Lie
symmetry analysis to fractional wave-diffusion equations with Caputo-
type derivatives. Our findings contribute to the broader understanding
of these complex mathematical models and hold potential for further
applications in various fields, such as physics and engineering.
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2 An Overview on Fractional Derivatives

This section highlights key aspects of fractional derivatives for a given
function. It is important to note that several non-equivalent defini-
tions for fractional derivatives exist, including the Riemann-Liouville,
Grunwald-Letnikov, Caputo, Riesz, and Miller and Ross fractional deriva-
tives [27]. Our focus in this paper is on the R-L and Caputo type
fractional derivatives. These two fractional derivatives are chosen for
their distinct and complementary characteristics. While the R-L deriva-
tive extends classical integer-order calculus to non-integer orders in a
natural way, the Caputo derivative allows for direct inclusion of ini-
tial conditions in the problem formulation. This advantage makes the
Caputo derivative particularly appealing for various applications across
disciplines such as physics and engineering, [20, 9].

Definition 2.1. [9] If m € Nand 0 < m —1 < a < m, the R-L and
Caputo fractional derivatives of order « are defined as

1 m ! _Sm—a—l s)ds
Dy (= s g,

D?f(t):m

1 t
C na m—a—1 ym
D¥f(t)y==——— 1/ (t— D d
PO = Fmm | = DR (s
provided the right-hand sides integrals exist. Here I' is the Gamma
function and D}" = jt%'
We state the Leibniz’s formula for R-L fractional derivative.

Proposition 2.2. [9] Let a > 0, and assume that f and g are analytic
on (—h,h) with some h > 0. Then,

o0

o o 1) lal'(n—a
ot [r0at] =3 () or o ate. () = SL e s
n=0 ’

Proposition 2.3. Let f be analytic in (—h,h) for some h > 0, and
m—1<a<m, méeN, then

CDaf(t) _ i <a—m>tkaDkf(t)
t E—m)T(k+1—a) 77

k=m

for0<t<h/2.
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Proof. The proof follows a similar approach to that of the R-L fractional
derivative found in [9]. Let recall Definition 2.1

C Nna _ 1 ! _Smfafl mri)ds
DEf(t) = [ty sas

I'(m—a«

then we employ the Taylor’s expansion of DI"f(s) with respect to s
around s = t, and substitute the result into the formula above, and
compute the integral. Thus we deduce

C’Da _ - (_1)ktm+k—a Dm+k
/) _Zk!(m+k—a)F(m—a) -
k=0
. —_— k a—m . . . .
Since k!(mﬂf(i;gp(mia) = ( & )m, then it implies the desired
result. O

Proposition 2.4. [0/ Let m > 1 and m —1 < a < m. Assume that f
is such that both D{f and €D f exist. Then

—

c £ th—e K
Dif="Dif+ th fle=o0-
k=0

Remark 2.5. When the function f is multivariable, D f(z,y, t, u) rep-
resents the partial fractional derivative of f with respect to ¢, where the
other variables z,y and u are held constant. If w is a dependent func-
tion of z, y, and ¢, then Dg f, Dy f, and Dy’ f denote the total fractional
derivatives of f with respect to x, y, and ¢, respectively. D,f, D,f,
and D, f represent the total derivatives of f with respect to x, y, and ¢,
respectively.

3 On the Prolongation Formula to the Frac-
tional Operator of the Caputo Type
To apply the Lie symmetry method to differential or integral equations,

a crucial step is deriving the prolongation formula for the associated
operators. While this has been established for integer-order differential
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operators and R-L fractional derivatives in [13], we focus here on extend-
ing these results to Caputo fractional differential operators of arbitrary
order for a given one-parameter Lie group of transformations on a do-
main. Our primary approach relies on leveraging Leibniz-type formulas
for fractional differentiation. We now consider the one-parameter Lie
group, which acts on an open subset M within the space R? x R:

T=z+el(z,y,t,u)+0(E%), G=y+en(z,y,tu)+O0(E),
ﬂ p—

t=t+er(z,y,t,u) + O(e?), u+ep(x,y, t,u) + 02, (1)

with the infinitesimal generator

0 0 0 0
V=, y,t,u)— z,y,t,u)——+7(x, Yy, t,u)— x,y,t,u)=—, (2
§(x,y,t,u) 5 +n(z,y )6y+ (@,9,t,u) 5 oz, 4,6 u) 50, (2)
where ¢ is the group parameter. The one-parameter Lie group of trans-
formations is prolonged to the m-th partial derivative with respect to ¢
as follows:

D%nﬂ(j7§7£) = D;fnu(xa Y, t) + E(P(th) + 0(62)7 m=0,1,2,---
where
gp(m’t) = D" (¢ — Eug — nuy — Tug) + ED Uy + nD uy + TDZ”HU.

and Dy is the total derivative operator with respect to .

We now discuss the prolongation of a one-parameter group of transfor-
mations to the Caputo fractional derivative ¢ Dfu(z,y,t), where a: > 0
and m — 1 < a < m. It is important to note that in Definition 2.1,
the lower limit of the integral is fixed, and therefore should be invariant
under the group of transformations (1), i.e.

7(2,9,0,u(z,y,0) =0,  (z,y) € R

With the previous analysis completed, we are now prepared to construct
the extension formula for the fractional derivatives of the Caputo type.
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Theorem 3.1. Let u(x,y,t) be analytic in t € (—h,h) and (z,y) € R?
for some h > 0. Let (1) be the one-parameter Lie group of transfor-
mations acting on RY with the corresponding infinitesimal generator V.
Then form —1 < a <m, m € N, we have

CDeu(z,5,8) = Dule, y,t) + e + O(e?),

with the a-th prolongation of V,

Pr®) (a) O
V=Vt semar bra
where
Pl = ODYo— OD (¢uy)+€ D — DY (muy) +1° Dy — D (rur)
m—1 th—a m—2 k—o

k( D+
+7D§‘ut+; I‘(k’+1—a)Dt TUt ‘t 0 Tkzof Fri—a) u‘t 0’

Proof. Due to the involved nature of the proof and the need for addi-
tional technical considerations, we have decided to present the complete
proof in the Appendix. This allows for a more focused presentation
of the main ideas in the main text while still providing the necessary
details for interested readers to review and understand the underlying
mathematics. O

It is worth noting that this expression for the prolongation formula in-
volves (m — 1) initial values of the function u, which is a significant
difference compared to the R-L prolongation formula [13].

Remark 3.2. In the case 0 < o < 1, gogx’t) can be represented as

it
! = Do — ODF (Eur) + € O Dfu,
= “Dff (ipuy) + 1 © Dffuy = D () + 7D,
which is an equivalent representation of the formula given by Gazizov
et al. [13].
For practical purposes, we provide explicit representations of <p(a )
separately for the cases 0 < o< land 1 < a < 2:
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e D<axl
P = C Dot 0, O Dfu—u O Doy +v— ODY (€uy) +€ C D u,

[ee]
(0%
— 0D (uy) + 1 CDuy — aDyr CDfu+ Y [( )Df%

k
k=1
a k41 a—k - o Oz, y)t" 141
— D D — —7 D
<k+1) t T] ¢ ;(k—i—l)I‘(k—i—l—a) tor
t—Ot
+ m [‘Pu(%%ta U)“Pu(%y,()vu)] U(l’,y,O)
e l<a<?2

% = Do+ 0,C DFu—u DR gy +v— CDP (Cup)+E O Du,

oo
e
—¢pa (nuy) +1n CDf‘uy — oDyt DM+ Z [( )Dfsou

i L\R
e k—a
RO L (W=
o
+m [sou(x,ym u) = u(@,,0,0) = T——@n(w,y,0,u)
1, fi-a
_ §atDt 7(z,y,t, u)} u(x,y, O)er [gpu(x, Yy, t,u) (3)
—pu(z,y,0,u) — aDy7(x,y,t,u)
Lo 17-(:z, y,t,u) +1(z,y, 0, u)] ug(x,y,0)r (4)
j-a
+ mm(%y,o,u)uf(x,y, 0). (5)

where ©(z,y) is arbitrary function. Now, we intend to compare the
Lie symmetries of the Caputo FDEs with those of the R-L. FDEs by
providing a simple example:

Example 3.3. (the comparison of R-L and Caputo)
Let 1 < a < 2. We consider FDE “Dgu(x,y,t) = 0. Suppose that
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(2) is an infinitesimal generator of this equation. By utilizing the a-
prolongation of the vector field V' on the given equation, we can deter-
mine the corresponding infinitesimals:

(.t u) = alz, ), n(x, y,t,u) = b(x,y), 7(2,y,t,u) = c(z,y)t* + d(z,y)t,
90(937 Y, t) u) = (Oé—l)C(ﬂj, y)tu_ (04—2)C(I, y)ut(ajv Y, 0)t2+A($7 Y, t)+B(CC, Y, ’LL),
where a,b, ¢, d, A, B are arbitrary functions and “ D¢ A(z,y,t) = 0. Now

we consider the same equation with R-L fractional derivativesi.e. Dfu(x,y,t) =
0. We obtain the invariance with

f('iv? y7 t? u) = a('x? y)? T’('CU7 y7 t? u) = b(x7 y)7 T($7 y7 t? u) = C(x7 y)tQ + d(x7 y)t7
o(x,y, t,u) = (o = De(z, y)tu + Az, y, 1) + e(z, y)u,

where a, b, c,d, e, A are arbitrary functions and D{A(z,y,t) = 0.

It is evident that the Lie group of transformations admitted by these
equations is not the same. This is due to the fact that, while the basic
part of the corresponding infinitesimals remain the same(§,n, 7), there
are differences in other components. For instance, considering the in-
finitesimal generator

5 )
2 _ — — ] =
V=5 + (e = Diu— (o= 2u(z,y,0)87] =

for the equation CD,?‘u(a:,y,t) = 0, we obtain the invariant solution
u(z,y,t) = u(x,y,0)t which depends on the initial value.

4 The Classical Lie Symmetry Analysis to the
2-D Time Fractional Nonlinear Wave Equa-
tion

In this section, we will focus on a particular class of nonlinear (2+1)-
dimensional wave equations that can be described by the following form:

A CDtau(x,y,t) — (f(w)ug)z — (9(uw)uy)y — h(u) =0, (6)

where ¢ Dg* denotes the Caputo fractional derivative of order 1 < o <
2. Assume that (2) is an admitted infinitesimal generator for a point
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symmetry of the fractional wave equation, (6). To apply classical Lie
symmetry analysis to Eq. (6), we require that the set of solutions of
Eq. (6) is invariant under the group of point transformations (1). This
leads to the determining equations, which are obtained by requiring the

infinitesimal criterion of invariance: Pr(cfY ’2)V(A)\A:0 = 0, where

Prg 72)V — V _|_ (p(lv )aux + (p(lvy) 8uy + ()0(27 )8TM + 80(2’ y)aTxy
0 0
(2,yy) (ast)
e, TYC 9Dy

and V is the admitted infinitesimal generator (2). Applying Prgx 2V to
(6), we find infinitesimal criterion

e = o [ (Wl + f'(u)uga + " (s + g (W, + 1 (w)]

— 201 ! (u)uy — 2009 g (w)uy, — @) f(u) — ¥ g(u) a=g = 0.

The coefficients functions go(l’x), go(z’xy) are given by the following for-
mulas

90(1’90) = ID:U(QO - fux’ — Nuy — Tut) + gu:cx + NUgy + TUgt,
go(z’:”y) =D, Dy(p — Euy — Nuy — TU) + EUgay + Nagyy + TUayt,

11
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and go(c?‘ " is as in (5). As a result we arrive at the following set of

determining equations for &, 7, ¢, f, g, h.

hoy — atih — foze — gpyy — Phu + A1 =0,

‘Do —u “ Dy — ODF (Euz) + € ODfug — CDf (nuy) + 1 “Dfuy = 0,
flaz—2f out9Eyy =202 =0, [z + gy — 29040 — 29"y =0,

—ouf' —ar f'+2f&u— fouu+2f &c—pf" =0, —anf+2f& — flo=0,

— ug = amg’ + 290y — 9Puu + 29y — 09" =0, —ang+2gn, — @4 =0,
2fNeu + 2980 + 2f e + 29’6 =0, fhiuu + 200 =0, 2fn, =0,

20 4+ 296 =0,  fluu+2f =0, 3f&=0, [ruu+2f'7—afm =0,
21y =0, 2fTpu +2f' 7. =0, fro—oafry=0, [fTpe+ 9Tyy — aht, = 0,
I +2910 =0, 2fr. =0, 3gnu =0, gl +2¢' =0, 29& =0,
9Tuw +2¢'7y —ag't, =0, 297, =0, 29Ty + Qg'Ty =0, gry—agr, =0,

o a i X
291y =0, <k>chpu— <k+1>pt+17-:0, Dt+17_:0 (7)
where
t—Oé
A1 = Fey (et wu@,y, 0= pu(a, .0 u)u(e,y. 0)~rur(.y, 0)}
tl—a
+ m {@u(xﬂ Y, tu U)Ut(l', Yy, O) - Sou(xy Y, 07 U)Ut(x, Y, O)

_‘ptu(x7 Y, 07 u)u(ac, Y, O) - OéDtTUt(IE, Y, O) + Dt(Tut) ’t:()}

When considering arbitrary functions f, g, and h, only a limited
number of infinitesimal generators arise from solving Eq. (7). We reach
at a two-parameter Lie group of point transformations with its infinites-
imal generators given by

Vi = Vo = —.

oz’ oy
They cause the dimension of this equation to decrease as follows:

“Dffuly,t) — (9(u)uy)y — h(u) =0,  “Diu(w,t) — (f(w)us)s — h(u) = 0.
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Therefore, we need to examine the forms of f(u), g(u), and h(u). For
example, if f(u) = b and h(u) = 0, then

CDlu(x,t) — gy = 0, (8)

have the vector fields generated by

0 0 0 0 0
Vi=2ig tovg, V=g W=ugn  Visi@ig,
Similarity variables under V;—generated group has the form
2
u(z,t) = G(s), s=tr o
where G(s) satisfies the equation
2 4 4
C na _ ! 2~
D$G(s) =b [(a + J)SG (s) + P G (s)] :

The solutions of above equation can be written as

G(s) = c1+c2s
+ Z a2"f‘ (na + 2) <1_[1 [(k—1Da+1][(2k—1)a+ 2}) snatl

where ¢; , co are arbitrary constants. Thus

u(z,t) =c1 + cztx%2

= (2b)"ca - =2 1
—_ k—1 1][(2k -1 2] | (txa )mett,
+3 wmrta 13y (L1 = Do+ [k~ Da+2) | @)
n=1 k=1

The graphical representations of these solutions are displayed in Figure

1. In this section, we will focus on the case that f(u) = u", g(u) = u”

and h(u) = u"™. We have the following results considering m,n, k.

e Case I. n,k,m € R
In this case,

CDuz,y,t) = (uug)s + (uFuy), +u™, I<a<2 (9)
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Figure 1: The solution u in Eq. (8) at different values of a: (a) a
t=2; (b) for 0 < ¢ <10 and 10 < 2 < 50. The parameters are b = 1

F. BAHRAMI, R. NAJAFI AND P. VAFADAR

(a) (b)

t

)

c1 =1, and c3 = 3.

is invariant under the group of transformations generated by

0 0
‘/1 - %a ‘/2 - @’
0 0 0 0
V3—oz(mfnfl)x%+a(mfkf1)ya—y+(2m72)t572au%.

We want to identify and classify all group-invariant solutions by
seeking the optimal system of one-dimensional subalgebras for
Equation (9). This involves analyzing the Lie algebra structure
associated with the problem and finding the most suitable subal-
gebras that provide valuable insights into the behavior and prop-
erties of the equation’s solutions. According to the commutator
operators [V, V;] = V;V; — V;V;, we obtain the commutator Table
1.

Also, to compute the adjoint representation, we use the following
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Table 1: Commutator table for the Lie algebra of Eq. (9)(Case I)

] Vi Va Vs
O v Bl s o
Lie series
Ad(eap(&V)V; = V; — Vi1 + SV Vi Vil = -

where ¢ is a parameter. According to the above formula, we cal-
culate the adjoint action of the generators (10) which is listed in
Table.2.

Table 2: Adjoint table for the Lie algebra of Eq. (9)(Case I)

Ad(exzp(Vi), Vj) Vi Va Vs
—n—1
Vi Vi V2 bl Ly
m — 2
k— 1
v Vi v calkzmtl)y, Ly,
2m — 2
ea(m—n—1) ea(k—m+1)
Vs e 2m—2 i e 2m — 2 Vy 7

Taking into account the commutator Table 1 and adjoint Table 2,
then Upon conducting an in-depth analysis, we have identified an
optimal system of one-dimensional subalgebras, which are gener-
ated by the following vector fields

Vi, Va, V3.

We already have discussed the cases Vi and V5. So for the in-
finitesimal generator V3 after solving characteristic equations, we

15
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introduce the following similarity variables

-9 2m — 2
— ym ol “alm—n—1)
u(t,x,y) — xm*n*].F(Z% q)7 p= W’ q= tx alm—n 7

where m # n + 1. Substitution these similarity variables into (9)
gives the reduction

2(m+n+1)
(m—n—1)>2
om—2 \? 4n +4
A Frolp? —k-1) | ——— —k | pF"F,
+<0z(m—n—1)> n g+ (m )<m—n—1+m >p P
2m —2 dn +4 2m — 2
+
m—-n—1 alm-n-—1)

“DoF = F* 4+ (m— k= 1)’ np* F* ' F}

+ 1] qF"F,

a(m—n-—1)
2(m—n—2)

on(m—k—1)(2m—2 -
n(m )@m ) pgF" L, + k(m—n—1)2p m —n — 1 FF1E?

am—n—1)

m-n-—3
+(m—-n—-1)(m-n-2pm—-—n—1FFE 4 (m —k—1)2p’F"Fpp
2(m—n—2)

(4dm —4)(m —k — 1)

—n—12%p m—n—1 kg F"F,
+(m n )p Pp+ a(m—n—l) bq pq
om—2 \? ,
_ F"F, F™.
ey
e Casell.k=n=m-1,n>—-a, 1 <a<?2
If we consider k =n =m — 1, n > —a, therefore
Doy = (uMug )y + (uuy )y + u" (11)
: . P 0
In this case, using the infinitesimal generator V3 = nta — aua—,
U

we define a set of similarity variables as follows:

ut,z,y) =t nF(z,y) (12)
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and hence Eq. (11) is reduced to the following equation

«

r(-= - 1)
SOE+1)—2 L F=nF"'F2 4+ F'F,,
n-n I'(l—-—a—=

1-a-2)

+'I’LF”_1F; +FnFyy +FTL+1

Case III. n, k arbitrary real numbers, m = 0.
Consider the equation

CDu(z,y,t) = (U ug) s + (uPuy)y, l<a<?2 (13)

The symmetry algebra of this equation is generated by

0 0 0 0 0

il - = - ar— I Vil

BT Vo By’ Vs ama:c—i-ayay—i- t@t’
0 0 0

Using these infinitesimal generators, the optimal system of invari-
ant solutions for (13) consists of the subalgebras

Vi =

Vlv V27 ‘/237 CL‘/‘g, + ‘/4,

where a € {—1,0,1}.
Indeed, according to our optimal system, we need only find the

reduced equations for the one—parameter subgroups generated by:
(a) V3, (b) aVs + Vi.

i) For the infinitesimal generator V3, From the corresponding
characteristic equations, it has invariant solution

U({Z},y,t):F(p,q), p=— qzta}Oé
Thus Eq. (13) is reduced to the following equation

2 2 4
CD;‘F = nF" ! <pr + aqu> + F"[2pF, + szpp + aqupq

2.2 4 2 k—1 12 k
+ a(a + 1)qu + ﬁq qu] + kF Fp + F Fpp-
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ii) For the linear combination aVs + Vi, we have the following
similarity variables

2 —2a
'u(q;’:%]f):and‘|‘7’L_F(p’q)7 p:t;paa—l-n, q=

ac+n

y_
xaa+k )

and hence Eq. (13) is reduced to the following equation

2(aa —n — 2)

C na
DOF = —
a (ace +n)?

F 4 (aa + k‘)anQF”_le2

dn—+4

A0 o pno1p2 4 (ot k) ((aathl— pF"F,
q ac+n P

(ac+n)?
2a 2a—4n—4
ac+n

dan(aa+k)
a+n

da(aa+k) 4a?
——pgF"F,
acx +mn pa pa +

2ac0 4 2n — 2
+(aa+n)p aa+n [ka—ng + FrE,
ao+mn — 2
+(aa+n)(aa+n—1)p ax+n FrFE

pgF"'F,F,

1| qF"F,
ac+n +]q 0

+ (aa+k)*p* F" Fpp + 50 F" Fyq

(ac+n)

5 Single-wave Solutions and Dimensionality re-
duction in a two-Dimensional extension of the
Burger’s Equation

In this section, we will consider the (2+1)-dimensional time-fractional
Burger’s equation with a Caputo derivative as follows:

DU+ au(ug + uy) + b(tzs 4 uyy) = 0, (14)

where 0 < a < 1, and a,b € R. The (2+1)-dimensional fractional
Burger’s equation with the Caputo derivative has been studied in various
fields, including physics, biology, and mathematics [12, 17]. Previous
research has explored the mathematical approaches to this equation |7,

|. In this section, we will apply Lie symmetry analysis based on the
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previous results to obtain some invariant solutions for this equation.
Moreover, we will directly obtain the solitary solution, which could not
be obtained through Lie symmetry analysis.

5.1 Lie symmetry analysis

Applying Lie symmetry analysis to Eq.14, it follows that the Lie algebra
of infinitesimal symmetries of the time-fractional Burger’s equation is
spanned by the three vector fields.

0 0 0 0 0 0

Vi=— Vo=— Vs =ar— — 4+ 2t— — au—.

1T T ay T Ta T T Yo
We utilize these vector fields to reduce the equation.

e The vector field
Invariant solution under the group with generator V1, has the form

u=F(ty),
where F' satisfies the equation

“D¢F 4 aFF, 4 bF,, = 0,
Its admitted operators are Vi1 = En and
Y
0 0 0
Vie=ay—+2t - — aF —
2= 0ys e TR
— If V. = Vi1, we haveF'(t,y) = G(t) where G satisfies the
equation
“DeG =0,
therefore G(t) = k;
1 —2
— If V = Vig, we have F(t,y) = —G(s), s =ty @ where G
Y

satisfies the equation

19

2 4 4
“D2G — aG? + 2bG — =asGG' + b(E + —)sG" + —QbSQG" =0
a a a

«
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e The vector field V5
An invariant solution under the group with generator V5 can be
expressed in the following form

u=F(t,x),
where F satisfies the equation

“DYF + aFF, + bF,, =0,

Its admitted operators are Vo1 = — and

Ox
0
Voo =ax— 4+ 2t— — aF —
Y
— If V. = Vi, we haveF(t,z) = G(t) where G satisfies the
equation
“DeG =0,

therefore G(t) = k;
. =2
— If V = Vag, we have F(t,x) = ;G(s),s = tx @ where G

satisfies the equation
2 4 4

“D2G — aG? + 2bG — =asGG' + b(§ + —)sG + —bs’G" =0
o a o« o

e The vector field V3
An invariant solution under the group with generator V3 can be
expressed in the following form

I

~

8
SERN

Y _
N q
T

1
u(tvxay) = ;F(p7 Q)v b=
where F satisfies the equation

4
“DSF + 2bF — aF? + [4bp — a(p — 1)F] F, + [b (6 + 2) q
(&% (0%

2 ) 4 4,
— aaqF Fy+0b(p” + 1)Fpp + abqupq + ﬁbq Foyqg=0
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Its admitted non-classical infinitesimal symmetries are

0 0 0
V = (ap+ V)a—p + 2q8—q - aFa—F,

where v is an arbitrary constant. Thus we have the following
similarity variables

1 J—
F(p,q) = ap+yG(8)’ s=qlap+v) «

where G satisfies the equation

DG —ala+1v)G? —a(2 + %y)sGG’ +2b(1? + a*)G
l/2 l/2
+ 2b(3a + 2)(§ +1)sG’ + 4b($ +1)s°G” = 0. (15)

If v = —« or v = i where i is the complex unit, By the equation
(15), respectively, we obtain the simpler equations

CD2G + 4ba*G + 4b(3ar + 2)sG' + 8bs>G" = 0,
“DAG — aa(1 4 i)G? — 2a(1 +i)sGG' = 0.

5.2 Single-wave solutions

Consider the fractional differential equation of the form:
“Dfu = au(ug + uy) + b(ugz + uyy), 0<a<l (16)

By employing the wave transformation technique, we can express the
solution in the form of traveling waves or other wave-like structures,

«Q

u(z,y,t) = u((), Cka—Hy—i—mm

(17)

where k,l and m are real constants. Applying the transformation (17)
to Eq. (16), the following equations can be obtained, as

a(k + Dun' —ma’ + b(k* + 1*)u” = 0 (18)
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(a) (b)

Figure 2: The solitary solution u((), where ( = kx + ly + mﬁ,
in Eq. (16) at different values of a: (a) at t = 6 and y = 3; (b) for
0 <t <10 and y = 3. The parameters are a =2, b=1, k=1, [ = 3,

and m = 0.1.

where the prime notation is used to denote the derivative with respect
to (. we obtain the solutions of Eq.(18)

u(¢) = V2(bera(k2+12)(k+1)) anh (c2+¢)V/2(bcra(k*+12)(+1)  m
B a(k+1) 2b(k2 + 12) a(k+1)
where ¢; and ¢y are arbitrary smooth functions. Inserting ( = kx + [y +
mﬁ , we obtain the single-wave solutions of Eq.(16) as follows
2(bcra(k? +12)(k +1
gty — Y20 P D)
a(k+1)
tCM
_ " N\./2 2. 72
- (c2 +kz + 1y + mr(a " 1))\/ (bera(k? +12)(k +1)) )
20(k2 +12) a(k+1)

The graph of this solution can be found in Figure 2
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6 Conclusion

In this paper, we have successfully demonstrated the application of
Lie symmetry analysis to a class of (2+1)-dimensional fractional wave-
diffusion equations involving Caputo fractional derivatives. The non-
local nature of fractional operators presents challenges in obtaining ex-
act solutions for fractional differential equations; however, our study
indicates that these challenges can be overcome using the systematic
approach provided by Lie symmetry analysis. By deriving Lie point sym-
metries and presenting similarity transformations, we have reduced the
original three-dimensional wave-diffusion equation to a more manage-
able two-dimensional form. These results have significant implications
for comprehending and modeling the corresponding physical phenom-
ena encountered in scientific research and applied mathematics. Our
findings contribute to the broader objective of addressing complex frac-
tional differential equations and offer a promising path for future inves-
tigations into nonlinear wave-diffusion systems with fractional deriva-
tive components. Furthermore, the obtained similarity transformations
and reduced equations may serve as a foundation for further theoretical
analysis and practical applications across various disciplines. Future re-
search will concentrate on deriving prolongation formulas for generalized
fractional derivatives, particularly those with Sonin kernels[24, 25], and
examining equations involving such derivatives, thereby expanding the
scope of our understanding and capability in this complex and rapidly
evolving field.

7 Appendix

In this section, we prove in details the results of Theorem 3.1. The
following proposition plays crucial role in our computations.

Proposition 7.1. Let m — 1 < o < m and m € N. Suppose u =
u(z,y,t), and ¢ = o(x,y,t,u) be analytic functions, and Dy denote

23
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the total derivative of ¢, then we have

o]
(0%
Do = “Dfp+ oy “Du—u Doy + > ( k)Df@uD?"“u

k=1
m—1 k—a
+kz—ork+1_ [(’D" tult() D(w’pu‘t 0]+V

oo n

T AL fam) (0 [k tnTe
v=;;,;r0<n_m><j><r>r<n+1_a>
= (~uy Djut =Dy (D).

Proof. Using Proposition 2.3, and the definition of the total derivative
Dip, we have

0 n—o
(6% m
Dpp(a.y.toulr..) = 3 (n m) L CYRRTE))
n=m
N n—m n+1 T(n+l—a)
n=m

S5 (1) () oo (o).

By rearranging the indexes, recalling Proposition 2.3, and some technical
calculations we deduce

Q
o
1

tnfa

o0
CDa CDa § a m D"
t t Y (n—m)F(n+1—a) L
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where v is as in the Proposition. Now using the classical Leibniz’s for-
mula, we conclude

C C e a—m tn_a
D= “Do—ud =D
t P t P un_m<n—m)f‘(n+1—a) t Pu
a—m t"_o‘
D’I’L

n=m
+v
= CD?SO_U CD?‘PU"‘CD?(USOu)'i‘Va

where for the practical use, in view of Proposition 2.4, we obtain

3
L

tkfoc

CDtaS@: CD?‘P—U CD?‘Pu‘FDta(“‘Pu)— m

Dy (ugpu)|t=o+v.

B
Il

0

By employing Leibniz’s formula for R-L fractional derivative, we have

o
(0%
Do = CDfo—u Do, + puDfu+ Y (k) DFp, DYy
k=1

m—1 tka

Ik )Df(ucpu)\tzo + .

k=0
Recalling Proposition 2.4 yields
m—1

CD?‘P— CDta‘P_U Doy + @u CDaU+80uZm
k=0

tk—a k
Diuli—g

m—1 .

)\ pk,, pa—k tk i
DYy D _ _ v p e |
+;(k> t Pultly U ZF(kJ—a+1) v (upy)|t=0 + v

k=0

which is our desired result. O
Proof of Theorem 3.1. In view of the analytic assumption on u and
utilizing Proposition 2.3, we have

“Deu(z,g,t) = Z( >Ek_aDl—“u(x y,t).
Pk+1—a) t 77
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Using (1), (2), and applying the Taylor’s series expansion for the %=,
we have

C'DC“ (Z,7,t)= Z< )(k+11 ) [tk_a+5(k—a)tk_°‘_17+0(82)}

k
k
<[ Dbutepn +e (P - X (M) opent

n=1
- k n k—n - k n k+1—n 2
= | DinD; uy—z ) DETD ) + O()
n=1 n=1
> [a—m th—o
kzzm(k—m> (k:+1— t“+€z< ) T(k+1-a) 7
> (a—m th—o k k
. D Dk—n -
> <k_m)r<k+1_a>;<n) renf-m
_5§: tk_azk: k Dy DE",
Pt k:+1—a) "~ \n t 14 Y
n k+1—n
—EZ< ) k+1_az<>Dt7Dt u

tkal

+€Z < m>)7'Dtu+O( ),

we added some statements to get the summations with the lower index
n = 0, and also using the Leibniz’s formula for integer-order derivatives
and Proposition 2.3, we conclude

S — th—o k i N
kg; <k - m)ﬂk‘—i-l—oz)nzzo <n>Dt ED; Muy
_ = (a—m th—o i e

N <k - m> T 1= o)l (Cue) = "D (Cue)

k=m
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The same result is valid for “Df (nuy) ,“ D (Tuy) . Thus we get

CDtg‘ﬂ(i‘, g, 1) :CDf‘u(x, y,t)+e CDtO‘gp—e CDtD‘ (Eug)+e€ CDtO‘uw—s CDE‘ (nuy)

Cryo Cya Cry o~ (a-m\ et 2
+en “Dituy—e "Dy (Tug)+eT "Dy ut—i—skz;b b m WTDt u+0(e?).
Now a change of the index, and using the relation
a—m 1 o (-F
k' )JT(k+m—a) kI'(m-a)
we have
0 k—a—1 m—a—1 k
— t t —1
Z a-m — 7 DFu = T (=t) DEtmy,
= k—m)T'(k—a) I'(m—a) — k!

At this stage, we consider the function Dj*u(x,y,6) and arrive at the
following formula by employing the Taylor’s expansion of this function
around 0 = ¢,

m . (0 — t)k k+m
D9 u(xay79):ZTDt U(%y,t)-
k=0 ’

Now let 6§ = 0, then we deduce

(=)

o Dy ),

Du(x,y,t)|,_y =
k=0

which results in

e = Do — ODf (§ua) + € “Dfus — DY (yuy) + 1 Dy
m—a—1

C C
— D (tug) + 7 “Ditug + T*F(m — )

Di"u(@,y,t)|,_y-

Proposition 2.4 and the fact 7(x, y, 0, u(z,y,0)) = 0 completes the proof.
Recalling Propositions 2.2, 2.4, 7.1, and also 7(z,y,0,u(z,y,0)) = 0, we
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conclude the following description which is an alternative to ¢

Yo

1]

3]

[4]
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(a,t)

(out) _ CD?QO—FQDU CDfu—u CD,?‘gomLu— CD,?‘ (Euy)

+€ “D¢uy — YD (nuy) +n € D¢uy —aDyr €D

o0 )
(0] _ o o
+2 <k>Df<ﬂuD3 =y (kH)Df“TDg =1y,
k=1 =1
k k
T2 T a [SO“Df“‘t:o_Dt (“%)’t:o]
k=0
m=2 k—a
t OétDtT kil t ol
_ D o+ _779 + .
— I'k+1-a) [<k+1—a+7> ¢ u‘t:o Etl-a (Tut)|t:0
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