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1 Introduction

G(V,E) is a graph with |V | = n vertices and |E| = m edges such that
each edge in E is adjacent to a pair of vertices in V . The distance d(u, v)
between any pair of vertices ‘u’ and ‘v’ in G is the number of edges
involved in the shortest path between them. The number of vertices at
a distance ‘2’ from a vertex ‘u’ is called the connection number of ‘u’
and is denoted by d2(u). The topological indices formulated based on
connection numbers are called leap indices.

A topological index is a graph-invariant number that is inferred from
a chemical graph, a graph representing a molecule. The chemical graph
is obtained by considering atoms of the molecule as vertices and bonds
between them as edges. Here, we focus on simple graphs depending
on the definition of a chemical graph[19]. The first topological index
was introduced by Harry Wiener in 1947 to calculate the boiling points
of paraffin. Since then, more than 3000 topological indices have been
introduced and are being calculated using various chemical databases.

A molecular descriptor is a function that converts the chemical infor-
mation encoded in a molecule to a numerical value. Topological indices
are the 2-D molecular descriptors that play a major role in a branch
known as Mathematical Chemistry. Using these mathematical values,
it is possible to investigate the molecules’ physicochemical properties,
bioactivity, and even toxicity. This is done by analyzing the regression
models such as Quantitative Structure-Property Relationship(QSPR),
Quantitative Structure-Activity Relationship(QSAR), and Quantitative
Structure-Toxicity Relationship(QSTR). This regression analysis gives
a reasonable basis for the mathematical correlation between the proper-
ties and the topological index. The QSPR/QSAR analysis has proved
their ability in pharmacology (drug design), medicinal chemistry, envi-
ronmental sciences, etc.[10] and [20]. In drug design, it is possible to
find the lead, most favorable, and desired compounds from millions of
untested compounds by predicting their properties using these analyses.
These models serve as the cheapest alternative for time-consuming and
expensive laboratory experiments in reactivity and stability studies. Not
only in studying various molecular properties, these topological indices
are also used in investigating the structural characteristics of various
nanostructures.
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Many researchers have introduced different versions of existing topo-
logical indices. Hence, the broad classification of indices is degree-based,
distance-based, spectrum-based, and neighborhood-based topological in-
dices. The connection-based or leap indices are also distance-based in-
dices as they are formulated using the cardinality of vertices at a distance
2. Here, most leap indices are formulated by replacing the degree of the
vertex in a degree-based topological index with a connection number. A
lot of work has been done on these leap indices of special and general
graphs too. For more details, refer to [1], [6], [12], [16], [17], and [18].
However, many more degree-based indices are not explored in terms of
connection numbers. We consider such indices to be explored in detail.

In this paper, to the best of our knowledge and literature review, we
consider some degree-based indices F -Sombor, modified F -Sombor, and
reduced Sombor index for which the connection-based versions are not
formulated. We introduce connection-based versions of the above indices
and also formulate a new degree-based index, second F -Sombor index,
and its connection-based version. In [13], Kulli determined the connec-
tion variants of F -index and F1 index as F -leap and F1-leap indices as
follows:

FL(G) =
∑

u∈V (G)

d32(u) and F1L(G) =
∑

uv∈E(G)

d22(u) + d22(v).

Later, Kulli et al. also formulated and calculated Sombor and modified
Sombor leap indices for some chemical drugs [15].

SL(G) =
∑

uv∈E(G)

√
d22(u) + d22(v) and

mSL(G) =
∑

uv∈E(G)

1√
d22(u) + d22(v)

.

He then introduced F -Sombor and modified F -Sombor index in [14].
These are defined as follows:

FSO(G) =
∑

uv∈E(G)

√
(d2G(u))

2 + (d2G(v))
2 and
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mFSO(G) =
∑

uv∈E(G)

1√
(d2G(u))

2 + (d2G(v))
2
.

Gutman [11] introduced a degree-based descriptor namely reduced Som-
bor index as

SOred(G) =
∑

uv∈E(G)

√
(dG(u)− 1)2 + (dG(v)− 1)2.

Here, we introduce the connection-based versions of indices men-
tioned above as F -Sombor leap index, modified F -Sombor leap index,
and reduced Sombor leap index as

FSOL(G) =
∑

uv∈E(G)

√
(d22(u))

2 + (d22(v))
2 ,

mFSOL(G) =
∑

uv∈E(G)

1√
(d22(u))

2 + (d22(v))
2
,

redSOL(G) =
∑

uv∈E(G)

√
(d2(u)− 1)2 + (d2(v)− 1)2.

We also put forth a degree-based index, namely Second F -Sombor
index and its leap version Second F -Sombor leap index as

2FSO(G) =
∑

uv∈E(G)

(d2G(u))
2 × (d2G(v))

2,

2FSOL(G) =
∑

uv∈E(G)

(d22(u))
2 × (d22(v))

2.

The mathematical closed-form expressions of the aforementioned
novel leap indices are formulated for path, cycle, and special graphs
like wheel, windmill, and friendship graph in the next section.

2 Results

Definition 2.1. The path Pn of length ‘n-1’ is a sequence of distinct ‘n’
vertices such that each pair of vertices (u, v) is an edge of the graph. In
other words, Pn has |V | = n and |E| = n− 1.
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v1 v2 . . . vn

Figure 1: Path(Pn).

Lemma 2.2. Let Pn be a path of length ‘n-1’ on ‘n’ nodes(as shown in
Figure 1). Then, for n ≥ 5, the connection number ‘d2(u)’ is as follows:

d2(vi) = 2; 3 ≤ i ≤ n− 2 and

d2(vi) = 1; otherwise.

Theorem 2.3. If Pn is a path on n ≥ 5 vertices, then

(i) FSOL(Pn) = 4
√
2n− 17.2096,

(ii) mFSOL(Pn) =
1

4
√
2
n+ 1.1054,

(iii) redSOL(Pn) =
√
2n− 5.0710,

(iv) 2FSOL(Pn) = 256n− 1246.

Proof. Let Pn be a path on ‘n’ vertices, n ≥ 5. Using Lemma 2.2, edge
partition of the path Pn can be done based on the connection number
as

E1 = {vivj ∈ E(Pn) | d2(vi) = 1, d2(vj) = 1},
E2 = {vivj ∈ E(Pn) | d2(vi) = 1, d2(vj) = 2},
E3 = {vivj ∈ E(Pn) | d2(vi) = 2, d2(vj) = 2}.
From Figure 1,

| E1 |= 2, | E2 |= 2, and | E3 |= n− 5.

(i) Using the definition of FSOL(G),

FSOL(Pn) =
∑

uv∈E1

√
14 + 14 +

∑
uv∈E2

√
14 + 24 +

∑
uv∈E3

√
24 + 24

=2
√
2 + 2

√
17 + (n− 5)

√
32 = 4

√
2n− 17.2096.
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v1 v2 . . . vi vj . . . vn

Figure 2: Cycle(Cn).

(ii) Using the definition of mFSOL(G),

mFSOL(Pn) =
∑

uv∈E1

1√
14 + 14

+
∑

uv∈E2

1√
14 + 24

+
∑

uv∈E3

1√
24 + 24

=
2√
2
+

2√
17

+
n− 5√

32
=

1

4
√
2
n+ 1.0154.

(iii) From the definition of redSOL(G),

redSOL(Pn) =
∑

uv∈E1

√
(1− 1)2 + (1− 1)2 +

∑
uv∈E2

√
(1− 1)2 + (2− 1)2 +

∑
uv∈E3

√
(2− 1)2 + (2− 1)2

=0 + 2 + (n− 5)
√
2 =

√
2n− 5.0710.

(iv) From the definition of 2FSOL(G),

2FSOL(Pn) =
∑

uv∈E1

14 × 14 +
∑

uv∈E2

14 × 24 +
∑

uv∈E3

24 × 24

=2 + 32 + (n− 5)256 = 256n− 1246.

Definition 2.4. A cycle Cn is a path on a finite sequence of ‘n ≥ 3’
vertices that starts at any vertex, vi, and ends at the same vertex.

Lemma 2.5. Let Cn be a cycle on ‘n’ vertices of length ‘n’ as shown in
Figure 2. Then, for n ≥ 5, we have d2(vi) = 2,∀vi ∈ V (Cn).
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Theorem 2.6. For a cycle Cn with n ≥ 5,

(i) FSOL(Cn) = 4
√
2n,

(ii) mFSOL(Cn) =
√
2
8 n,

(iii) redSOL(Cn) =
√
2n,

(iv) 2FSOL(Cn) = 256n.

Proof. Let Cn be a cycle with ‘n ≥ 5’ vertices. From Lemma 2.5, the
edge set can be E1 = {vivj ∈ E(Cn) | d2(vi) = 2}. From Figure 2, it is
clear that | E1 |= n.

(i) From the definition of FSOL(G),

FSOL(Cn) =
∑

uv∈E1

√
24 + 24 = 4

√
2n.

(ii) Using the definition of mFSOL(G),

mFSOL(Cn) =
∑

uv∈E1

1√
24 + 24

=
n

4
√
2
.

(iii) From the definition of redSOL(G),

redSOL(Cn) =
∑

uv∈E1

√
(2− 1)2 + (2− 1)2 =

√
2n.

(iv) From the definition of 2FSOL(G),

2FSOL(Cn) =
∑

uv∈E1

24 × 24 = 256n.

Definition 2.7. The wheel Wn(n ≥ 3) is a join of a cycle Cn with
‘n ≥ 3’ vertices and complete graph K1. The Vertex of K1 is called apex
and the rest ‘n’ vertices of Cn are known as rim vertices. Wn has ‘n+1’
vertices and ‘2n’ edges.
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Figure 3: Wheel (Wn).

Lemma 2.8. If Wn is a wheel with n ≥ 3 as shown in Figure 3, then
d2(v0) = 0, where v0 ∈ V (K1) and d2(vi) = n− 3, where vi ∈ V (Cn).

Theorem 2.9. If Wn is a wheel on n ≥ 4 vertices, then

(i) FSOL(Wn) = 2.4142n(n− 3)2,

(ii) mFSOL(Wn) =
n

(n−3)2

[
1 + 1√

2

]
,

(iii) redSOL(Wn) = n
√

1 + (n− 4)2 +
√
2n(n− 4),

(iv) 2FSOL(Wn) = n(n− 3)8.

Proof. Let Wn be a wheel with ‘n’ vertices such that n ≥ 4. Using
Lemma 2.8 and Figure 3, edge partition of Wn can be done as follows:

E1 = {v0vi ∈ E(Wn) | d2(v0) = 0, d2(vi) = n− 3},
E2 = {vivj ∈ E(Wn) | d2(vi) = n− 3,∀i}.
Then | E1 |= n and | E2 |= n.

(i) Using the definition of FSOL(G),

FSOL(Wn) =
∑

uv∈E1

√
04 + (n− 3)4 +

∑
uv∈E2

√
(n− 3)4 + (n− 3)4

=n(n− 3)2 + n
√
2(n− 3)2 = 2.4142n(n− 3)2.
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Figure 4: Windmill Graph(Wm
n ).

(ii) Using the definition of mFSOL(G),

mFSOL(Wn) =
∑

uv∈E1

1√
(n− 3)4

+
∑

uv∈E2

1√
2(n− 3)4

=
n

(n− 3)2
+

n√
2(n− 3)2

=
n

(n− 3)2

[
1 +

1√
2

]
.

(iii) From the definition of redSOL(G),

redSOL(Wn) =
∑

uv∈E1

√
(0− 1)2 + (n− 3− 1)2 +

∑
uv∈E2

√
(n− 3− 1)2 + (n− 3− 1)2

=n
√

1 + (n− 4)2 +
√
2n(n− 4).

(iv) From the definition of 2FSOL(G),

2FSOL(Wn) =
∑

uv∈E1

04 × (n− 3)4 +
∑

uv∈E2

(n− 3)4 × (n− 3)4

=n(n− 3)8.

Definition 2.10. ‘m ≥ 2’ copies of a complete graph Kn, ‘n ≥ 2’ with a
vertex in common form a graph known as the French windmill graph or
the windmill graph. It is denoted as Wm

n . Here, | V (Wm
n ) |= m(n−1)+1

and | E(Wm
n ) |= mn(n−1)

2 .
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Lemma 2.11. Let Wm
n be a windmill graph such that m ≥ 2 and n ≥ 3

as shown in Figure 4. Then d2(v0) = 0, where v0 is the central vertex
and d2(vi) = (m− 1)(n− 1), where vi ∈ V (Wm

n )− {v0}.

Theorem 2.12. If Wm
n is a windmill graph with m ≥ 2 and n ≥ 3, then

(i) FSOL(W
m
n ) = m(m− 1)2(n− 1)3

(
1 +

n− 2√
2

)
,

(ii) mFSOL(W
m
n ) =

m

(m− 1)2(n− 1)

(
1 +

n− 2

2
√
2

)
,

(iii) redSOL(W
m
n ) = m(n− 1)

(√
1 + (mn−m− n)2 +

n− 2√
2

(mn−m− n)

)
,

(iv) 2FSOL(W
m
n ) =

m(n− 2)(m− 1)8(n− 1)9

2
.

Proof. Let Wm
n be a windmill graph having ‘m(n− 1)+1’ vertices and

‘m[n(n−1)
2 ]’ edges such that m ≥ 2 and n ≥ 3. Let ‘v0’ be the central

vertex as shown in Figure 4. Using Lemma 2.11, edge partition of Wm
n

will be as follows:

E1 = {v0vi ∈ E(Wm
n ) | d2(v0) = 0, d2(vi) = (m− 1)(n− 1)},

E2 = {vivj ∈ E(Wm
n ) | d2(vi) = (m− 1)(n− 1),∀i}.

Then, | E1 |= m(n− 1) and | E2 |= m(n−1)(n−2)
2 .

(i) Using the definition of FSOL(G),

FSOL(W
m
n ) =

∑
uv∈E1

√
0 + (m− 1)4(n− 1)4 +

∑
uv∈E2

√
(m− 1)4(n− 1)4 + (m− 1)4(n− 1)4

=m(n− 1)(m− 1)2(n− 1)2+

m(n− 1)(n− 2)
√
2(m− 1)2(n− 1)2

2

=m(m− 1)2(n− 1)3
[
1 +

n− 2√
2

]
.
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(ii) Using the definition of mFSOL(G),

mFSOL(W
m
n ) =

∑
uv∈E1

1√
(m− 1)4(n− 1)4

+
∑

uv∈E2

1√
2(m− 1)4(n− 1)4

=
m(n− 1)

(m− 1)2(n− 1)2
+

m(n− 1)(n− 2)

2
√
2(m− 1)2(n− 1)2

=
m

(n− 1)(m− 1)2

[
1 +

n− 2

2
√
2

]
.

(iii) From the definition of redSOL(G),

redSOL(W
m
n ) =

∑
uv∈E1

√
(−1)2 + ((m− 1)(n− 1)− 1)2+

∑
uv∈E2

√
2[(m− 1)(n− 1)− 1]2

=m(n− 1)
√

1 + (mn−m− n)2+

m(n− 1)(n− 2)

2

√
2(mn−m− n)

=m(n− 1)

[√
1 + (mn−m− n)2 +

n− 2√
2

(mn−m− n)

]
.

(iv) From the definition of 2FSOL(G),

2FSOL(W
m
n ) =

∑
uv∈E1

04 × (m− 1)4(n− 1)4 +
∑

uv∈E2

[(m− 1)4(n− 1)4]2

=
m(n− 1)(n− 2)

2
× (m− 1)8(n− 1)8

=
m(n− 2)(m− 1)8(n− 1)9

2
.

Definition 2.13. The graph formed by ‘n’ copies of a cycle C3 with a

common vertex is known as a friendship graph. It is denoted by F
(n)
3 .

The common vertex is referred to as the central vertex. Clearly, F
(n)
3

has 2n+1 vertices and 3n edges.
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Figure 5: Friendship Graph(F
(n)
3 ).

Lemma 2.14. Let F
(n)
3 be a friendship graph with vertices labeled as

shown in Figure 5. Then d2(v0) = 0, where v0 is the common vertex

and d2(vi) = 2n− 2,∀vi ∈ V (F
(n)
3 )− {v0}.

Theorem 2.15. If F
(n)
3 is a friendship graph with n ≥ 2, then

(i) FSOL(F
(n)
3 ) = 4n(n− 1)2[2 +

√
2],

(ii) mFSOL(F
(n)
3 ) = n

4(n−1)2

[
2 + 1√

2

]
,

(iii) redSOL(F
(n)
3 ) = 2n

√
1 + (2n− 3)2 +

√
2n(2n− 3),

(iv) 2FSOL(F
(n)
3 ) = 256n(n− 1)8.

Proof. Let F
(n)
3 be a Friendship graph having ‘2n+1’ vertices and ‘3n’

edges such that n ≥ 2. Consider ‘v0’ to be the central vertex as shown

in Figure 5. Using Lemma 2.14, edge partition of F
(n)
3 will be as follows

E1 = {v0vi ∈ E(F
(n)
3 ) | d2(v0) = 0, d2(vi) = 2n− 2},

E2 = {vivj ∈ E(F
(n)
3 ) | d2(vi) = 2n− 2,∀i}.

Then | E1 |= 2n and | E2 |= n.

(i) Using the definition of FSOL(G),

FSOL(F
(n)
3 ) =

∑
uv∈E1

√
04 + (2n− 2)4 +

∑
uv∈E2

√
2× (2n− 2)4

=8n(n− 1)2 + 4
√
2n(n− 1)2 = 4n(n− 1)2[2 +

√
2].
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(ii) Using the definition of mFSOL(G),

mFSOL(F
(n)
3 ) =

∑
uv∈E1

1√
(0)4 + (2n− 2)4

+
∑

uv∈E2

1√
2× (2n− 2)4

=
2n

(2n− 2)2
+

n√
2(2n− 2)2

=
n

4(n− 1)2

[
2 +

1√
2

]
.

(iii) From the definition of redSOL(G),

redSOL(F
(n)
3 ) =

∑
uv∈E1

√
(−1)2 + (2n− 2− 1)2 +

∑
uv∈E2

√
2(2n− 3)2

=2n
√
1 + (2n− 3)2 +

√
2n(2n− 3).

(iv) From the definition of 2FSOL(G),

2FSOL(F
(n)
3 ) =

∑
uv∈E1

(0)4(2n− 2)4 +
∑

uv∈E2

(2n− 2)4(2n− 2)4

=n× 28(n− 1)8 = 256n(n− 1)8.

3 Application to Circumcoronene Series

Polycyclic aromatic hydrocarbons(PAH) are a class of organic com-
pounds composed of aromatic rings. They may also have six-membered
rings of various sizes that are not aromatic. Most of them are planar such
as naphthalene, anthracene, and coronene. Sometimes, non-planarity is
exhibited due to the topology of the molecule. Most of the PAHs have
distinct physical and chemical properties, resulting in their significant
contribution to material sciences and organic chemistry. Some of them
are also being used in electronic devices. One such PAH which is grab-
bing most of the researchers’ attention is coronene.

Coronene has a central arene unit completely enclosed by another
outer ring of fused benzene rings C6 in its circumference. The family
generated in such a way from benzene rings is known as the circum-
coronene series of Benzenoid Hk. The first few structures of this series
are given in Figure 6. Various topological indices have been calculated
for this series such as Zagreb indices, Szeged indices, Sanskruti index,
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eccentricity and connectivity indices, and many more. These can be ac-
cessed through the work cited here [2, 3, 7, 8, 9]. This paper focuses on
the existing and newly formulated connection-based indices mentioned
above. The molecular graph of a general circumcoronene series Hk is
depicted in Figure 7. Using the edge-partition technique, we get the
following cardinality of edges based on the possible ordered pairs of con-
nection numbers 3, 4 & 6. Here, k ≥ 2.∣∣E1

∣∣ =∣∣{uv ∈ E(Hk) | d2(u) = 3, d2(v) = 3}
∣∣ = 6,∣∣E2

∣∣ =∣∣{uv ∈ E(Hk) | d2(u) = 3, d2(v) = 4}
∣∣ = 12,∣∣E3

∣∣ =∣∣{uv ∈ E(Hk) | d2(u) = 4, d2(v) = 4}
∣∣ = 12(k − 2),∣∣E4

∣∣ =∣∣{uv ∈ E(Hk) | d2(u) = 4, d2(v) = 6}
∣∣ = 6(k − 1),∣∣E5

∣∣ =∣∣{uv ∈ E(Hk) | d2(u) = 6, d2(v) = 6}
∣∣ = 3(k − 1)(3k − 4).

The vertex-partition technique gives us the following vertex sets based
on the connection numbers. Here, k ≥ 2.∣∣V1

∣∣ =∣∣{u ∈ V (Hk) | d2(u) = 3}
∣∣ = 12,∣∣V2

∣∣ =∣∣{u ∈ V (Hk) | d2(u) = 4}
∣∣ = 6(2k − 3),∣∣V3

∣∣ =∣∣{u ∈ V (Hk) | d2(u) = 6}
∣∣ = 6(k − 1)2.

Theorem 3.1. Let Hk, k ≥ 2 be the chemical graph of the Circum-
coronene series of benzenoid. Then

(i)FSOL(Hk) =
[
24
√
97 + 108

√
2(3k − 4)

]
(k − 1) + 192

√
2(k − 2)+

54
√
2 + 12

√
337,

(ii)mFSOL(Hk) =
[ 3

2
√
97

+
3k − 4

12
√
2

]
(k − 1) +

3(k − 2)

4
√
2

+
2

3
√
2
+

12√
337

,

(iii)redSOL(Hk) =
[
6
√
34 + 15

√
2(3k − 4)

]
(k − 1) + 36

√
2(k − 2)+

12(
√
2 +

√
13),

(iv)2FSOL(Hk) =
[
1990656 + 5038848(3k − 4)

]
(k − 1) + 786432(k − 2)+

288198.
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Proof. We get the following expressions for various connection-based
indices using the defined edge sets.

(i) Using the definition of FSOL(G),

FSOL(Hk) =
∑

uv∈E1

√
34 + 34 +

∑
uv∈E2

√
34 + 44 +

∑
uv∈E3

√
44 + 44+

∑
uv∈E4

√
44 + 64 +

∑
uv∈E5

√
64 + 64

=6× 9
√
2 + 12

√
337 + 12(k − 2)× 16

√
2 + 6(k − 1)× 4

√
97+

3(k − 1)(3k − 4)× 36
√
2

=
[
24
√
97 + 108

√
2(3k − 4)

]
(k − 1) + 192

√
2(k − 2) + 54

√
2+

12
√
337.

(ii) Using the definition of mFSOL(G),

mFSOL(Hk) =
∑

uv∈E1

1√
34 + 34

+
∑

uv∈E2

1√
34 + 44

+
∑

uv∈E3

1√
44 + 44

+

∑
uv∈E4

1√
44 + 64

+
∑

uv∈E5

1√
64 + 64

=
6

9
√
2
+

12√
337

+
12(k − 2)

16
√
2

+
6(k − 1)

4
√
97

+
3(k − 1)(3k − 4)

36
√
2

=
[ 3

2
√
97

+
3k − 4

12
√
2

]
(k − 1) +

3(k − 2)

4
√
2

+
2

3
√
2
+

12√
337

.

(iii) From the definition of redSOL(G),

redSOL(Hk) =
∑

uv∈E1

√
22 + 22 +

∑
uv∈E2

√
22 + 32 +

∑
uv∈E3

√
32 + 32+

∑
uv∈E4

√
32 + 52 +

∑
uv∈E5

√
52 + 52

=6× 2
√
2 + 12

√
13 + 12(k − 2)× 3

√
2 + 6(k − 1)

√
34

+ [3(k − 1)(3k − 4)]× 5
√
2

=
[
6
√
34 + 15

√
2(3k − 4)

]
(k − 1) + 36

√
2(k − 2) + 12(

√
2 +

√
13).
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Figure 6: Chemical Graph of Some Members of Circumcoronene Series
Hk(k ≥ 1) [2, 3, 4, 5, 7].

(iv) From the definition of 2FSOL(G),

2FSOL(Hk) =
∑

uv∈E1

34 × 34 +
∑

uv∈E2

34 × 44 +
∑

uv∈E3

44 × 44+

∑
uv∈E4

44 × 64 +
∑

uv∈E5

64 × 64

=39366 + 248832 + 12(k − 2)65536 + 6(k − 1)331776

+ 3(k − 1)(3k − 4)1679616

=(k − 1)
[
1990656 + 5038848(3k − 4)

]
+ 786432(k − 2)+

288198.

Theorem 3.2. For the Circumcoronene series Hk, k ≥ 2, we have

(i) SL(Hk) =
[
12
√
13 + 18

√
2(3k − 4)](k − 1) + 48

√
2(k − 2) + 18

√
2 + 60,

(ii) mSL(Hk) =
[ 3√

13
+

3k − 4

2
√
2

]
(k − 1) +

3(k − 2)√
2

+
√
2 +

12

5
,

(iii) FL(Hk) = 1296(k − 1)2 + 384(2k − 3) + 324,

(iv) F1L(Hk) =
[
312 + 216(3k − 4)

]
(k − 1) + 384(k − 2) + 408.
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Proof. (i) Using the definition of SL(G),

SL(Hk) =
∑

uv∈E1

√
32 + 32 +

∑
uv∈E2

√
32 + 42 +

∑
uv∈E3

√
42 + 42+

∑
uv∈E4

√
42 + 62 +

∑
uv∈E5

√
62 + 62

=6× 3
√
2 + 12× 5 + 12(k − 2)× 4

√
2 + 6(k − 1)× 2

√
13

+ 3(k − 1)(3k − 4)× 6
√
2

=
[
12
√
13 + 18

√
2(3k − 4)](k − 1) + 48

√
2(k − 2) + 18

√
2 + 60.

(ii) Using the definition of mSL(G),

mSL(Hk) =
∑

uv∈E1

1√
32 + 32

+
∑

uv∈E2

1√
32 + 42

+
∑

uv∈E3

1√
42 + 42

+

∑
uv∈E4

1√
42 + 62

+
∑

uv∈E5

1√
62 + 62

=
6

3
√
2
+

12

5
+

12(k − 2)

4
√
2

+
6(k − 1)

2
√
13

+
3(k − 1)(3k − 4)

6
√
2

=
[ 3√

13
+

3k − 4

2
√
2

]
(k − 1) +

3(k − 2)√
2

+
√
2 +

12

5
.

(iii) From the definition of FL(G) and the vertex sets defined above,

FL(Hk) =
∑
u∈V1

33 +
∑
u∈V2

43 +
∑
u∈V3

63

=12× 27 + 6(2k − 3)× 64 + 6(k − 1)2 × 216

=1296(k − 1)2 + 384(2k − 3) + 324.

(iv) From the definition of F1L(G),

F1L(Hk) =
∑

uv∈E1

32 + 32 +
∑

uv∈E2

32 + 42 +
∑

uv∈E3

42 + 42+

∑
uv∈E4

42 + 62 +
∑

uv∈E5

62 + 62

=408 + 12(k − 2)32 + 6(k − 1)52 + 3(k − 1)(3k − 4)72

=(k − 1)
[
312 + 216(3k − 4)

]
+ 384(k − 2) + 408.
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Figure 7: Chemical Graph of Circumcoronene Series of Benzenoid
Hk(k ≥ 1).

(a) (b)

Figure 8: Characteristic Trend of HK(k ≥ 2).
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Table 1: Values of Connection Indices for Circumcoronene Series of
Benzenoid HK(k ≥ 2).

k SL mSL FL F1L FSOL
mFSOL

redSOL
2FSOL

2 179.6341 5.3534 2004 1152 838.501 1.3952 137.6493 12356550

3 494.4297 11.1351 6660 3576 2568.2830 2.5492 393.2523 55444422

4 928.0193 17.9776 13908 7104 5078.7110 3.7917 750.6787 128372166

5 1514.3439 26.9414 23748 11928 8505.5494 5.3876 1235.3843 231532998

6 2253.4036 38.0265 36180 18048 12848.7982 7.3372 1847.3691 364926918

7 3145.1983 51.2329 51204 25464 18108.4574 9.6403 2586.6332 528553926

8 4189.7282 66.5606 68820 34176 24284.5269 12.2969 3453.1765 722414022

9 5386.9930 84.0097 89028 44184 31377.0068 15.3071 4446.9990 946507206

10 6736.9930 103.5801 111828 55488 39385.8972 18.6708 5568.1007 1200833478

3.1 Graphical analysis

Table 1 represents the values of all the above eight leap indices calculated
for the Circumcoronene series of Benenoid Hk, k ≥ 2 using Theorems 3.1
and 3.2. The graphs are plotted for all the indices against k-values using
these values, which are depicted in Figure 8. From Figure 8a, it can be
noticed that the FL has shown a rapid increase in its values with an
increase in the ‘k’ value. In Figure 8b, 2FSOL has shown a similar trend.
But, 2FSOL has proved its high discriminative power in terms of its
values for the Circumcoronene series with different ‘k’ values compared
to FL. Hence, it can be concluded that the second F-Sombor leap index
2FSOL, formulated by the authors, can be used for the characteristic
and topological study of the Circumcoronene series of Benzenoid Hk.

4 Conclusion

The mathematical closed-form expressions of various leap indices have
been formulated for path, cycle, and special graphs like wheel, windmill,
and friendship graphs with the single edge-partition technique. These
exact expressions can be directly applied to molecules, structures, and
networks whose chemical graphs are similar to the above graphs. We
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have also formulated the closed-form expressions for a Circumcoronene
series of Benzenoid and depicted them in a graph showing the structure’s
characteristic trend. Similarly, the exact expressions of unexplored topo-
logical indices for various graphs and structures can be formulated.
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