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1 Introduction

The subject of H-proper submanifolds is an interesting research topic in
mathematical physics, which deals with the bienergy functional and its
critical points arisen form the tension field. Also, among the differen-
tial geometric research subjects, the study of constant mean curvature
submanifolds is of great importance. In this context, the subject of bi-
harmonic submanifolds has received much attentions. By definition, a
hypersurface is H-proper if it satisfies the condition ∆H = aH for a
constant real number a, where ∆ is the Laplace operator and H is the
ordinary mean curvature vector field of hypersurface.

It is proven that every H-proper hypersurface of a Riemannian space
form has constant mean curvature. This is a question that has remained
unanswered in some cases and is closely related to a well-known conjec-
ture of Bang-Yen Chen which says that every submanifold of an Eu-
clidean space with harmonic mean curvature vector field has zero mean
curvature [7]. It has several improvements (for instance) in [1, 6]. In this
field, Defever has proved that the mean curvature of a hypersurface in
E4 is constant if its mean curvature vector is proper ([8]). In the context
of hypersurfaces in semi-Riemannian manifolds, it has been studied in
the last two decades (see [5, 2, 14]).

We take an extend version of this condition by putting the second
mean curvature H2 instead of H and the Cheng-Yau operator C instead
of the Laplace operator. The operator C denotes the linear operator
arisen from the first variation of the second mean curvature (see [3, 11,
13]). We study the H2-proper timelike (i.e. Lorentzian) hypersurfaces
of Lorentz 5-pseudosphere.

2 Prerequisite Concepts

Here are some concepts and notations, required in the rest of the article,
taken from [10, 11, 15]. We use the semi-Euclidean q-space Eq

ξ of index

ξ = 1, 2, equipped with the product defined by ⟨v,u⟩ = −
∑ξ

i=1 viui +∑q
i=ξ+1 viui, for each vectors v = (v1, . . . , vq) and u = (u1, . . . , uq) in

Rq. In fact, we deal with the 5-dimensional Lorentz space forms with
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the following common notation

M5
1(c) =


S51(r) (if c = 1/r2)
L5 = E4

1 (if c = 0)
H5

1(−r) (if c = −1/r2),

where, for r > 0, S51(r) = {v ∈ E6
1|⟨v,v⟩ = r2} denotes the 5-dimensional

r-radius pseudosphere, and H5
1(−r) = {v ∈ E6

2|⟨v,v⟩ = −r2, v1 > 0}
denotes the (−r)-radius pseudo-hyperbolic 5-space. In the canonical
cases c = ±1, we get the de canonical 5-pseudosphere 5-space S51 := S51(1)
and pseudo-hyperbolic 5-space H5

1 = H5
1(−1). Also, for c = 0 we get the

Lorentz-Minkowski 5-space L5 := E5
1.

We consider a Lorentzian (timelike) hypersurface M4
1 of S51 defined

by an isometric immersion x : M4
1 → S51. The set of all smooth tangent

vector fields on M4
1 is denoted by χ(M4

1 ). According to the Lorentz
metric on M4

1 induced from S51, we can determine the possible states for
a base of the tangent space of M4

1 . For a detailed study, one can refer to
the references [9, 10, 12]. In general, a basis Ω := {w1, w2, w3, w4} of a
Lorentz linear 4-space is said to be orthonormal if it satisfies equalities
⟨w1, w1⟩ = −1, ⟨w2, w2⟩ = ⟨w3, w3⟩ = ⟨w4, w4⟩ = 1 and ⟨wi, wj⟩ =
0 for each i ̸= j. Also, Ω is called pseudo-orthonormal if it satisfies
⟨w1, w1⟩ = ⟨w2, w2⟩ = 0, ⟨w1, w2⟩ = −1 and ⟨wi, wj⟩ = δji for j = 3, 4
and i = 1, . . . , 4. As usual, δ is the Kronecker delta.

Associated to a basis chosen on M4
1 , the second fundamental form

(shape operator) S has four different matrix forms. When the metric
on M4

1 has diagonal form G1 := diag[−1, 1, 1, 1], then S is of form D1 =
diag[λ1, λ2, λ3, λ4] or

D2 = diag[
[

λ1 λ2
−λ2 λ1

]
, λ3, λ4], (λ2 ̸= 0).

In the non-diagonal metric case G2 = diag[
[

0 1
1 0

]
, 1, 1] the shape oper-

ator is of form

D3 = diag[
[

λ1 + 1
2

1
2

− 1
2

λ1 − 1
2

]
, λ2, λ3] or

D4 = diag[

[
λ1 0

√
2

2

0 λ1 −
√

2
2

−
√

2
2

−
√

2
2

λ1

]
, λ2].

When S = Dk, we say that M4
1 is a Dk-hypersurface.
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Definition 2.1. We define the ordered quadruple {κ1;κ2;κ3;κ4} of prin-
cipal curvatures as follows:

{κ1;κ2;κ3;κ4} =


{λ1;λ2;λ3;λ4} (if S = D1)
{λ1 + iλ2;λ1 − iλ2;λ3;λ4} (if S = D2)
{λ1;λ1;λ2;λ3} (if S = D3)
{λ1;λ1;λ1;λ2} (if S = D4).

Clearly, the characteristic polynomial of S isQ(t) =
∑4

j=0(−1)jsjt
4−j ,

where sj :=
∑

1≤j1<...<ji≤4 κj1 . . . κji for j = 1, . . . , 4 and s0 := 1. As
usual, using sj (for j = 1, . . . , 4) we define Hj (i.e. the jth mean curva-
ture) of M4

1 by equality
(
4
j

)
Hj = sj . In special case, H1 is the ordinary

mean curvature H. The second mean curvature H2 and the normalized
scalar curvature R satisfy the equality H2 := n(n− 1)(1−R).

The hypersurfaces M4
1 is called j-minimal, if its (j +1)th mean cur-

vature is equal to zero. M4
1 is called isoparametric if its shape operator is

either of diagonal type D1 with constant eigenvalues or of non-diagonal
types Dk (k = 2, 3, 4) and the coefficients of its minimal polynomial are
constant.

As well-known, the sequence {Nj}4j=0 of Newton transformations is
considered as N0 = I (i.e. the identity map) and Nj = sjI − S ◦ Nj−1

for j = 1, . . . , 4. Using its explicit formula, Nj =
∑j

i=0(−1)isj−iS
i

(where S0 = I) and the Cayley-Hamilton theorem (which stats that any
operator is annihilated by its characteristic polynomial) we have N4 = 0
(see [4, 11]).

In the rest, we use the following notation for k = 1, 2, 3,

µi1,...,im;k =
∑

1≤j1<...<jk≤4;jl ̸=i1,...,im

κj1 · · ·κjk , (i1, . . . , im ∈ {1, 2, 3, 4}).

Clearly, Nj has four possible matrix forms since it is defined in terms of
S. If S = D1, then for j = 1, 2, 3, we have Nj = diag[µ1;j , · · · , µ4;j ].

When S = D2, we have

N1 = diag[[ λ1 + λ3 + λ4 −λ2
λ2 λ1 + λ3 + λ4

], 2λ1 + λ4, 2λ1 + λ3],

N2 = diag[
[

λ1(λ3 + λ4) + λ3λ4 −λ2(λ3 + λ4)
λ2(λ3 + λ4) λ1(λ3 + λ4) + λ3λ4

]
, λ2

1 + λ2
2 + 2λ1λ4, λ

2
1 +

λ2
2 + 2λ1λ3],

When S = D3, we have
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N1 = diag[
[

λ2 + λ3 + λ1 − 1
2

− 1
2

1
2

λ2 + λ3 + λ1 + 1
2

]
, 2λ1 + λ3, 2λ1 + λ2],

N2 = diag[
[

λ2λ3 + (λ1 − 1
2
)(λ2 + λ3) − 1

2
(λ2 + λ3)

1
2
(λ2 + λ3) λ2λ3 + (λ1 + 1

2
)(λ2 + λ3)

]
, λ1(λ1 + 2λ3),

λ1(λ1 + 2λ2)],
In the case S = D4, we have

N1 = diag[

[
2λ1 + λ2 0 −

√
2

2

0 2λ1 + λ2

√
2

2√
2

2

√
2

2
2λ1 + λ2

]
, 3λ1],

N2 = diag[

[
2λ1λ2 + λ2

1 − 1
2

− 1
2

−
√

2
2

(λ1 + λ2)
1
2

2λ1λ2 + λ2
1 + 1

2

√
2

2
(λ1 + λ2)√

2
2

(λ1 + λ2)
√

2
2

(λ1 + λ2) 2λ1λ2 + λ2
1

]
, 3λ2

1].

Some important identities occur in four cases as follow ([11]).

µj,1 = 4H1−κj , µj,2 = 6H2−κjµj,1 = 6H2−4κjH1+κ2j , (j = 1, . . . , 4),

tr(N1) = 12H1, tr(N2) = 12H2, tr(N1◦S) = 12H2, tr(N2◦S) = 12H3,

trS2 = 4(4H2
1 − 3H2), tr(N1 ◦ S2) = 12(2H1H2 −H3),

tr(N2 ◦ S2) = 4(4H1H3 −H4).

Definition 2.2. The Cheng-Yau operator on M4
1 is defined as C(h) =

tr(Nj ◦∇2h) for each h ∈ C∞(M4
1 ), where ⟨∇2h(V),W⟩ = Hessh(V,W)

for each V,W ∈ χ(M4
1 ).

The Cheng-Yau operator has an explicit version according to an
orthonormal basis {w1, · · · , w4}, given by

C(f) =
4∑

i=1

νiµi,1(wiwif −∇wiwif),

where, ν1 = −1 and νi = 1 for i = 2, 3, 4.
On every orientable Lorentzian hypersurface x : M4

1 → S51, one can
choose a unit spacelike normal vector field n and its related shape op-
erator. So, every vector z on M4

1 decomposes as z = zT + zn where zT

and zn are its tangent and normal components ([4, 11]). So we have

∇ < x, z >= zT , ∇ < n, z >= −SzT .

Here we outline the key formulas we need to present the main concepts.

Cx = 12H2n−12cH1x, (1)

CH2 = 2[N2∇H2−9H2∇H2]+ [CH2−12H2(2H1H2−H3)]n.
(2)



6 GH. HAGHIGHATDOOST et al.

Definition 2.3. A hypersurface M4
1 in M5

1(c) is said to be H2-proper
if its second mean curvature vector field satisfies CH2 = aH2, for a
constant number a. Clearly, this condition has a simpler expression by
two equations as:

(i) CH2 = H2(a+ 24H1H2 − 12H3),

(ii) N2∇H2 = 9H2∇H2.
(3)

Example 2.4. Let 0 < t, u < 1, t2 + u2 < 1 and Γ = S11(t) × S1(u) ×
S1(

√
1− t2 − u2) ⊂ S51 defined as

Γ = {(z1, . . . , z6) ∈ L6|−z21+z22 = t2, z23+z24 = u2, z25+z26 = 1−t2−u2},

having three distinct principal curvatures κ1 =
−
√
1−t2−u2

t , κ2 =
√
1−t2−u2

u

and κ3 = κ4 =
√
t2+u2√

1−t2−u2
. Clearly, Γ is H2-proper and all of its mean

curvatures are constant.

The structure equations of S51 are given by dωi =
5∑

j=1
ωij ∧ ωj , ωij +

ωji = 0 and dωij =
4∑

l=1

ωil ∧ ωlj . Restricted to M4
1 , we have ω5 = 0. So,

and then, dω5 =
4∑

i=1
ω5,i ∧ ωi = 0.

A lemma due to Cartan gives the decomposition ω5,i =
4∑

j=1
hijωj for

smooth functions hij satisfying the equality B =
∑
i,j

hijωiωjw5 where B

is the second fundamental form of M4
1 . The mean curvature H is given

by H = 1
4

4∑
i=1

hii. So, the structure equations of M4
1 are

dωi =
4∑

j=1

ωij ∧ ωj , ωij + ωji = 0,

dωij =

4∑
k=1

ωik ∧ ωkj −
1

2

4∑
k,l=1

Rijklωk ∧ ωl,
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for j, i = 1, . . . , 4. Let hijk be covariant derivation of hij . So, we have

dhij =

4∑
k=1

hijkωk +

4∑
k=1

hkjωik +

4∑
k=1

hikωjk,

and from Codazzi equation we have hijk = hikj .
One can choose w1, . . . , w4 such that hij = κiδij . On the other hand,

the Levi-Civita connection of M4
1 satisfies ∇wiwj =

∑
k ωjk(wi)wk, and

we have wi(kj) = ωij(wj)(κi − κj) and

ωij(wl)(κi − κj) = ωil(wj)(κi − κl)

whenever i, j, l are distinct.

3 D1-Hypersurfaces

The H2-proper timelike D1-hypersurfaces in the Lorentz 5-pseudosphere
with constant mean curvature are examined from different points of
view.

Theorem 3.1. Suppose that x : M4
1 → S51 is a H2-proper D1-hypersurface

which has constant mean curvature and non-constant second mean cur-
vature. Then, one of its non-constant principal curvatures has multi-
plicity one.

Proof. By assumption, U = {q ∈ M4
1 |∇H2(q) ̸= 0} is nonempty.

We consider a connected component of U. The condition (3)(ii) gives
that w1 := ∇H2

||∇H2|| is an eigenvector of N2 with eigenvalue 9H2, on U.

We choose an orthonormal basis {w1, . . . , w4} satisfying Swi = λiwi,
N2wi = µi,2wi, (for i = 1, . . . , 4), we have µ1,2 = 9H2, which by (2) gives

H2 =
1

3
λ1(λ1 − 4H1). (4)

From equality ∇H2 =
4∑

i=1
wi(H2)wi, we get

w1(H2) ̸= 0, wi(H2) = 0, i = 2, 3, 4. (5)
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which by (4) give

w1(λ1) ̸= 0, wi(λ1) = 0 i = 2, 3, 4. (6)

So, λ1 is non-constant. Now, putting ∇wiwj =
∑4

k=1 ω
k
ijwk (for i, j =

1, . . . , 4), by wk⟨wi, wj⟩ = 0, we get νjω
j
ki = −νiω

i
kj (for i, j, k ∈ {1, . . . , 4}).

On the other hand, by Codazzi equation, for distinct i, j, k, we get

wj(λi) = (λj − λi)ω
i
ij , (λj − λi)ω

i
kj = (λk − λi)ω

i
jk. (7)

Since w1(λ1) ̸= 0, we can show that λj ̸= λ1 for j = 2, 3, 4. If λj = λ1

for some integer j ̸= 1, then w1(λj) = w1(λ1) ̸= 0. Also, by (7) we get

0 = (λ1−λj)ω
j
j1 = w1(λj) = w1(λ1). This is a contradiction. Therefore,

λ1 is non-constant and its multiplicity is one. □

Theorem 3.2. Suppose that x : M4
1 → S51 is a H2-proper D1-hypersurface

such that whose mean curvature is constant and second mean curva-
ture is non-constant. If it has exactly three distinct principal curvatures,
then according to the orthonormal basis {w1, . . . , w4} of principal vectors
of M4

1 associated to principal curvatures λ1, λ2 = λ3, λ4, the following
equalities occur:

(i)∇w1w1 = 0, ∇w2w1 = αw2, ∇w3w1 = αw3, ∇w4w1 = −βw4,

(ii)∇w2w2 = −αw1 + ω3
22w3 + γw4, ∇wiw2 = ω3

i2w3 for i = 1, 3, 4 ;

(iii)∇w3w3 = −αw1 − ω3
32w3 + γw4, ∇wiw3 = −ω3

i2w2 for i = 1, 2, 4 ,

(iv)∇w1w4 = 0, ∇w2w4 = −γw2, ∇w3w4 = −γw3, ∇w4w4 = βw1,

(8)

where α := w1(λ2)
λ1−λ2

, β := w1(λ1+2λ2)
λ1−λ4

, γ := w4(λ2)
λ2−λ4

.

Proof. Using Theorem 3.1, we get the equalities (6) and (7) which
give that the multiplicity of λ1 is one. Also, in direct ways we get
[w2, w3](λ1) = [w3, w4](λ1) = [w2, w4](λ1) = 0, which yields

ω1
23 = ω1

32, ω1
34 = ω1

43, ω1
24 = ω1

42. (9)

Due to the triplet of principal curvatures of M4
1 , we assume λ3 = λ2, and

so λ4 = 4H1 − λ1 − 2λ2. By considering distinct i, j and k in equalities
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(7), we obtain w2(λ2) = w3(λ2) = 0 and then,

(i) ω1
11 = ω1

12 = ω1
13 = ω1

14 = ω2
31 = ω3

21 = ω2
34 = ω3

24 = ω4
42 = ω4

43 = 0,

(ii) ω2
21 = ω3

31 =
w1(λ2)

λ1 − λ2
, ω4

41 =
−w1(λ1 + 2λ2)

λ1 − λ4
, ω2

24 = ω3
34 =

−w4(λ2)

λ2 − λ4
,

(iii) (λ1 − λ4)ω
1
24 = (λ1 − λ2)ω

1
42, (λ1 − λ4)ω

1
34 = (λ1 − λ2)ω

1
43.

(10)

From (9) and (10) we get ω1
24 = ω1

42,= ω1
34 = ω1

43 = ω4
12 = ω4

13 = 0.
Therefore, all claimed equalities obtain from the above results. □

Theorem 3.3. Suppose that x : M4
1 → S51 is a H2-proper D1-hypersurface

such that whose mean curvature is constant and second mean curva-
ture is non-constant. If it has exactly three distinct principal curvatures
λ1, λ2 = λ3, λ4 according to an orthonormal basis {w1, . . . , w4} of prin-
cipal directions satisfying w4(λ2) = 0, then the following equality occurs:

w1(λ2)w1(λ1 + 2λ2) =
1

2
λ2(λ1 − λ2)(λ4 − λ1)(2λ1 + 4λ2 + λ4). (11)

Proof. By considering different choices of vectors w1, w2, we3 in the
Gauss curvature tensor R(X,Y )Z = ∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z, and
using Theorem 3.2, we obtain:

(i) w1(α) + α2 = −λ1λ2, β2 − w1(β) = −λ1λ4;

(ii) w1

(
w4(λ2)

λ2 − λ4

)
+ α

w4(λ2)

λ2 − λ4
= 0;

(iii) w4(α)− (α+ β)
w4(λ2)

λ2 − λ4
= 0;

(iv) w4

(
w4(λ2)

λ2 − λ4

)
+ αβ −

(
w4(λ2)

λ2 − λ4

)2

= λ2λ4.

(12)

Now, from (3)(ii), applying Proposition (3.2), we obtain

(λ1 − 4H1)w1w1(H2)− (2(λ2 − 4H1)α+ (λ1 + 2λ2)β)w1(H2)

= 12H2(2H1H2 −H3),
(13)

where α := w1(λ2)
λ1−λ2

and β := w1(λ1+2λ2)
λ1−λ4

.
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Also, by equalities (5) and (8), we get

wiw1(H2) = 0, (i = 2, 3, 4). (14)

Also, by derivation of α and β along w4, we get

(λ1 − λ2)w4(α)− αw4(λ2) = w4w1(λ2) =
1

2
(λ1 − λ4)w4(β) + βw4(λ2),

then
1

2
(λ1 − λ4)w4(β) = (λ1 − λ2)w4(α)− (α+ β)w4(λ2),

which, by using (12), implies

w4(β) =
−8w4(λ2)(α+ β)(λ2 −H1)

(λ1 − λ4)(λ2 − λ4)
.

Differentiating (13) along w4 and applying the last result and equal-
ities (14) and (12), we obtain w4(λ2) = 0 or

4(α+ β)γw1(H2)

λ1 − λ4
= 6H2(λ2 − λ4)

2, (15)

where γ = −8H1λ1 + λ1
2 + 3λ1λ2 − 12H1λ2 + 16H2

1 .
We claim that w4(λ2) = 0 because the equality (15) dos’nt occur.

Its reason is as follows. By differentiating (15) along w4, we get

[6γ(λ2 −H1) + (3λ1 − 12H1)(λ1 + λ2 − 2H1)(λ1 + 3λ2 − 4H1)]w1(H2)

(λ1 + λ2 − 2H1)
2

= 18
H2(4H1 + λ1 + 3λ2)

2

α+ β
.

(16)

Eliminating w1(H2) from (15) and (16), we obtain

γ(2λ1 − 2H1) = (λ1 − 4H1)(λ1 + λ2 − 2H1)(−4H1 + λ1 + 3λ2). (17)

Finally, along w4 we differentiate (17), which gives 4H1 = λ1. That is
impossible since λ1 dos’nt have constant value. Consequently, w4(λ2) =
0. Therefore, the main result is implied from the latest equality. □
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Theorem 3.4. Suppose that x : M4
1 → S51 is a H2-proper D1-hypersurface

with constant mean curvature. If M4
1 has exactly three distinct principal

curvatures, then it is 1-minimal.

Proof. As previous theorems, we use the orthonormal basis {w1, . . . , w4}
of principal directions according to principal curvatures λ1, λ2 = λ3, λ4.
By differentiating (4) along w1 we have

w1(H2) =
4

3
(2H1 − λ1)w1(λ2) +

4

3
(λ1 + λ2 − 2H1)(λ1 − 2H1)β, (18)

where β := w1(λ1+2λ2)
λ1−λ4

. By Theorem 3.3 and equalities (12) and (18),
we get

w1w1(H2) =
4

3
λ1λ2(λ1 − λ2)(λ1 + 2H1)

+
4

3
(4H1 − λ1 − 2λ2)(λ1 − 2H1)(4λ1λ2 + λ1

2 − 4H1λ2 − 2H1λ1)

+

[
3β − 4α+ 2

(λ1 + λ2 − 2H1)β − (λ1 − λ2)α

λ1 − 2H1

]
w1(H2).

(19)

Combining (13) and (19), we get

(P1,2α+ P2,2β)w1(H2) = P3,6, (20)

where, the degree of polynomials P1,2, P2,2 and P3,6 in terms of λ1 and
λ2 are (respectively) 2, 2 and 6. Similarly, differentiating (20) along w1

and using equalities (11), (12)-(i) and (20), we get the following equality

P4,8α+ P5,8β = P6,5w1(H2), (21)

where, the degree of polynomials P4,8, P5,8 and P6,5 are (respectively)
8, 8 and 5. From (18) and (21), we get(

P4,8 +
4

3
P6,5(λ1 − λ2)(λ1 − 2H1)

)
α

+

(
P5,8 −

4

3
P6,5(λ1 + λ2 − 2H1)(λ1 − 2H1)

)
β = 0.

(22)



12 GH. HAGHIGHATDOOST et al.

On the other hand, from (18) with (20) and using Theorem 3.3, we
get

P2,2(λ1+λ2−2H1)(λ1−2H1)β
2−P1,2(λ1−λ2)(λ1−2H1)α

2 = ζ, (23)

where
ζ = λ2(4H1−λ1−2λ2)(λ1−2H1)

(
P2,2(λ1 − λ2)− P1,2(λ1 + λ2 − 2H1)

)
+ 3

4P3,6.
Using Theorem 3.3 and equality (22), we get

α2 =
2
3P6,5(λ1 − 2H1)(λ1 − λ4) + P5,8

P4,8 +
4
3P6,5(λ1 − 2H1)(λ1 − λ2)

λ2λ4,

β2 =
4
3P6,5(λ1 − 2H1)(λ1 − λ2)− P4,8

P5,8 − 2
3P6,5(λ1 − 2H1)(λ1 − λ4)

λ2λ4.

(24)

From (23), we eliminate α2 and β2, so we have

− λ2λ4(λ1 + 2H1)(λ2 − λ1)P1,2

(
P5,8 −

2

3
P6,5(λ1 − 2H1)(λ1 − λ4)

)2

− 1

2
λ2λ4(λ1 + 2H1)(λ1 − λ4)P2,2

(
P4,8 +

4

3
P6,5(λ1 − 2H1)(λ1 − λ2)

)2

= ζ

(
P5,8 −

2

3
P6,5(λ1 − 2H1)(λ1 − λ4)

)(
P4,8 +

4

3
P6,5(λ1 − 2H1)(λ1 − λ2)

)
,

(25)

which is a degree 22 polynomial equation.
Let γ(t), (t ∈ I) be an integral curve associated to w1 through

point p0 = γ(t0). Since wi(λ1) = wi(λ2) = 0 for i = 2, 3, 4 and
w1(λ1), w1(λ2) ̸= 0, we can assume λ2 = λ2(t) and λ1 = λ1(λ2) in
some neighborhood of λ0 = λ2(t0). Using (22), we have

dλ1

dλ2
=

dλ1

dt

dt

dλ2
=

w1(λ1)

w1(λ2)

= 2
(λ1 + λ2 − 2H1)β − (λ1 − λ2)α

(λ1 − λ2)α

=
2
(
P4,8 +

4
3P6,5(λ1 − λ2)(λ1 − 2H1)

)
(λ1 + λ2 − 2H1)(

4
3P6,5(λ1 + λ2 − 2H1)(λ1 − 2H1)− P5,8

)
(λ1 − λ2)

− 2.

(26)
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We differentiate (25) with respect to λ2 and use equality (26) to get

f(λ1, λ2) = 0, (27)

as is a degree 30 polynomial equation.
Comparing (25) and (27), we have two polynomial equations as fol-

low:
22∑
j=0

fj(λ1)λ
j
2 = 0,

30∑
k=0

gk(λ1)λ
k
2 = 0, (28)

for each 0 ≤ j ≤ 22 and 0 ≤ k ≤ 30, fi(λ1) and gj(λ1) are polynomials
in terms of λ1. Eliminating λ30

2 between two polynomials in (28), we get
a new polynomial equation of degree 29 in terms of λ2. By substituting
this equation in the first one, we get a degree 28 polynomial equation.
So, we are able to eliminate λ2 by continuing the similar method by
using the first equation of (28) and its consequences. Finally, we get a
non-trivial polynomial equation with constant coefficients in terms of λ1,
which gives that λ1 has constant value. So, by (4), we get the constancy
of H2.

Now, we show the nullity of H2. If H2 ̸= 0, then by (3)(i), we get the
constancy of H3. Therefore, M4

1 is isoparametric which has not more
than one nonzero principal curvature ([9]). This result contradicts with
the assumptions. So, H2 ≡ 0. □

4 D2, D3 and D3 Types of Shape Operator

In the rest, we study some H2-proper hypersurfaces with non-diagonal
shape operator of matrix forms D2, D3 and D3.

Theorem 4.1. Suppose that x : M4
1 → S51 is a H2-proper D2-hypersurface

whose mean curvature is constant. If one of real principal curvatures of
M4

1 has constant value, then its scalar curvature is constant. Further-
more, it is 1-minimal or 3-minimal.

Proof. First, we prove the constancy of H2 by giving reason for empti-
ness of U = {p ∈ M : ∇H2

2 (p) ̸= 0}. We assume U ≠ ∅. According
to a suitable (local) orthonormal basis {w1, · · · , w4} on M4

1 , we have
Sw1 = κw1 − λw2, Sw2 = λw1 + κw2, Sw3 = η1w3, Sw4 = η2w4 and
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then, we have N2w1 = [κ(η1 + η2) + η1η2]w1 + λ(η1 + η2)w2, N2w2 =
−λ(η1 + η2)w1 + [κ(η1 + η2) + η1η2]w2, N2w3 = (κ2 + λ2 + 2κη2)w3 and
N2w4 = (κ2 + λ2 + 2κη1)w4.

Condition (3)(ii), by using the equality ∇H2 =
4∑

i=1
ϵiwi(H2)wi, gives

(i) (κµ1,2;1 + µ1,2;2 − 9H2)ϵ1w1(H2)− λµ1,2;1ϵ2w2(H2) = 0

(ii) λµ1,2;1ϵ1w1(H2) + (κµ1,2;1 + µ1,2;2 − 3(4− k)H2)ϵ2w2(H2) = 0

(iii) (µ3;2 − 9H2)ϵ3w3(H2) = 0,

(iv) (µ4;2 − 9H2)ϵ4w4(H2) = 0.

(29)

We claim that wm(H2) = 0 for m = 1, . . . , 4. First, we prove it for

m = 1. If w1(H2) ̸= 0, then taking u := ϵ2w2(H2)
ϵ1w1(H2)

, from (29)(i, ii) we get
two equalities

(i) κµ1,2;1 + µ1,2;2 − 9H2 = λµ1,2;1u,

(ii) (κµ1,2;1 + µ1,2;2 − 9H2)u = −λµ1,2;1,
(30)

which give λµ1,2;1(1 + u2) = 0, then λµ1,2;1 = 0. Since λ ̸= 0 (by defini-
tion), we get µ1,2;1 = 0. So, by (30)(i), we obtain

µ1,2;2 = 9H2. (31)

From µ1,2;1 = 0 we have η1+η2 = 0. Since η1 is assumed to be constant,
from 31 we get that 9H2 = −η21 = −η21 is constant which contradicts
with assumption w1(H2) ̸= 0. So, we have w1(H2) = 0. Hence, our
claim is affirmed in case m = 1.

For m = 2 the claim is w2(H2) = 0. If w2(H2) ̸= 0, then taking v :=
ϵ1w1(H2)
ϵ2w2(H2)

, from (29)(i, ii) we get λµ1,2;1(1+v2) = 0, which gives λµ1,2;1 =
0 and then µ1,2;1 = 0. Similar to case m = 1, we get contradiction of
constancy of 9H2, which affirm the claim w2(H2) = 0.

The proof of the claim in cases m = 3, 4 is different from cases
m = 1, 2.

If w3(H2) ̸= 0, the we get µ3;2 = 9H2 (from (29)(iii)), which gives
−3κ2 + (2κ+ 3η1)(4H1 − η1) = −λ2 < 0, then, −2[2κ2 + (η1 − 4H1)κ+
2η1(η1 − 3H1)] = −(λ2 + κ2 + η21) < 0.
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The last phrase has negative value if and only if δ < 0 where

δ = (η1 − 4H1)
2 − 16η1(η1 − 3H1) = −15η21 + 40η1H1 + 16H2

1 .

Clearly, δ < 0 is equivalent to δ̄ < 0 where

δ̄ = (40H1)
2 + (4× 15× 16)H2

1 = 2560H2
1 ,

which is impossible. So, w3(H2) = 0 is proven.

The reason of claim in case m = 4 is similar to case m = 3. If
w4(H2) ̸= 0, then we have µ4;2 = 9H2 from equality (29)(iv). So,

−11κ2 + (24H1 − 10η1)κ+ 12η1H1 − 3η21 = −λ2 < 0,

and then

−2[6κ2 + (5η1 − 12H1)κ+ 2η1(η1 − 3H1)] = −(λ2 + κ2 + η21) < 0.

which occurs if and only if we have ϱ < 0 where

ϱ = (5η1 − 12H1)
2 − 48η1(η1 − 3H1) = −23η21 + 24η1H1 + 144H2

1 .

which occurs if and only if we have ϱ̄ < 0 where

ϱ̄ = (24H1)
2 + (4× 23× 144)H2

1 = 13824H2
1 .

But, this is impossible. So, w4(H2) = 0.

In the next stage, we prove that H2 = 0 or H4 = 0. since H2 is
constant, we have CH2 = 0. Then, by (3)(i), we have H2(4H1H2 −
2H3) = 0. Assuming H2 ̸= 0 we get 4H1H2 = 2H3, which implies the
constancy of H3. Hence, M4

1 is isoparametric, which cannot have more
than one non-zero real principal curvature ([9]). So, η1η2 = 0 which
gives H4 = (κ2 + λ2)η1η2 = 0. Therefore, M4

1 is 3-minimal. □

Theorem 4.2. Suppose that x : M4
1 → S51(c) is a H2-proper D3-

hypersurface whose mean curvature and one of whose principal curva-
tures have constant values. If its principal curvatures are mutually dis-
tinct, then it has to be 1-minimal. Furthermore, M4

1 is isoparametric.
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Proof. We show the constancy of H2 by proving the emptiness of
U = {p ∈ M : ∇H2

2 (p) ̸= 0}. We assume that U ̸= ∅. According
to a (local) orthonormal basis {w1, · · · , w4} on M , we have Sw1 = (κ+
1
2)w1− 1

2w2, Sw2 =
1
2w1+(κ− 1

2)w2, Sw3 = λ1w3 and Sw4 = λ2w4, and
for k = 1, 2, 3 we have Nkw1 = [µ1,2;k+(κ− 1

2)µ1,2;k−1]w1+
1
2µ1,2;k−1w2,

Nkw2 = −1
2µ1,2;k−1w1 + [µ1,2;k + (κ− 1

2)µ1,2;k−1]w2, and Nkw3 = µ3;kw3

and Nkw4 = µ4;kw4.

From condition (3)(ii), using ∇H2 =
4∑

i=1
ϵiwi(H2)wi, we get

(i) [λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2]ϵ1w1(H2) =

1

2
(λ1 + λ2)ϵ2w2(H2),

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]ϵ2w2(H2) = −1

2
(λ1 + λ2)ϵ1w1(H2),

(iii) (κ2 + 2κλ2 − 9H2)ϵ3w3(H2) = 0,

(iv) (κ2 + 2κλ1 − 9H2)ϵ3w4(H2) = 0.

(32)

We claim that wm(H2) = 0 for m = 1, . . . , 4. First, we prove it for

m = 1. If w1(H2) ̸= 0, then taking u := ϵ2w2(H2)
ϵ1w1(H2)

, from (32)(i, ii) we get

(i) λ1λ2 + (κ− 1

2
)(λ1 + λ2)− 9H2 =

1

2
(λ1 + λ2)u,

(ii) [λ1λ2 + (κ+
1

2
)(λ1 + λ2)− 9H2]u = −1

2
(λ1 + λ2),

(33)

which give (λ1 + λ2)(1 + u)2 = 0, then u = −1 or λ1 + λ2 = 0.
If λ1 + λ2 = 0, then, from (33)(i) we get 9H2 = −λ2

1, which gives
3κ2 = −λ2

1. Constancy of H1 and κ = 2H1 gives that λ2 and λ1 have
constant value on M4

1 . As an isoparametric hypersurface with real prin-
cipal curvatures, M4

1 satisfies the condition of Corollary 2.7 in [9], so it
dos’nt have more than one nonzero principal curvature. This contradic-
tion gives that λ1 + λ2 ̸= 0 and then u = −1.

From u = −1, using (33)(i) and 4H1 = 2κ + λ1 + λ2, gives 5κ2 −
16κH1 − λ1(4H1 − 2κ− λ1) = 0. Without loss of generality, we assume
that λ1 is constant on M . So, from the last equation we get that κ, λ2

and H2 are constant on U , which is a contradiction. Therefore, the first
claim is proved.
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For cases m = 2, 3, 4, in similar ways, by assuming wm(H2) ̸= 0 we
get λ2 + 2κλ = 9H2, which gives a contradiction that H2 is constant on
M . So, we get the affirmation of claim for m = 2, 3, 4.

Now, we prove the nullity of H2 = 0. By constancy of H1 and H2,
the condition (3)(i) gives the constancy of H3. Hence, M

4
1 as an isopara-

metric D3-hypersurface has at most one nonzero principal curvature (by
Corollary 2.7 in [9]). So, λ = 0. Then H1 = 1

2κ, H2 = 1
6κ

2 and H3 = 0.
Hence, by (3)(i), we get κ = 0 and then H2 = 0. □

Theorem 4.3. Suppose that x : M4
1 → S51(c) is a H2-proper D4-

hypersurface whose mean curvature has constant value. Then it is 1-
minimal. Furthermore, M4

1 is isoparametric.

Proof. We show the constancy of H2 by proving the emptiness of U =
{p ∈ M : ∇H2

2 (p) ̸= 0}. We assume that U ̸= ∅. According to a (local)

orthonormal basis {w1, · · · , w4} on M , we have Sw1 = κw1 −
√
2
2 w3,

Sw2 = κw2 −
√
2
2 w3, Sw3 =

√
2
2 w1 −

√
2
2 w2 + κw3 and Sw4 = λw4

and then, we have N2w1 = (κ2 + 2κλ − 1
2)w1 + 1

2w2 +
√
2
2 (κ + λ)w3,

N2w2 = −1
2 w1 + (κ2 + 2κλ + 1

2)w2 +
√
2
2 (κ + λ)w3, N2w3 = −

√
2

2 (κ +

λ)w1 +
√
2
2 (κ+ λ)w2 + (κ2 + 2κλ)w3 and N2w4 = 3κ2w4.

From condition (3)(ii), using ∇H2 =
4∑

i=1
ϵiwi(H2)wi, we get

(i) (κ2 + 2κλ− 1

2
− 9H2)ϵ1w1(H2)−

1

2
ϵ2w2(H2) =

√
2

2
(κ+ λ)ϵ3w3(H2),

(ii)
1

2
ϵ1w1(H2) + (κ2 + 2κλ+

1

2
− 9H2)ϵ2w2(H2) = −

√
2

2
(κ+ λ)ϵ3w3(H2),

(iii)

√
2

2
(κ+ λ)(ϵ1w1(H2) + ϵ2w2(H2)) = −(κ2 + 2κλ− 9H2)ϵ3w3(H2),

(iv) (3κ2 − 9H2)ϵ4w4(H2) = 0.

(34)

We claim that wm(H2) = 0 for m = 1, . . . , 4. First, we prove it for

m = 1. If w1(H2) ̸= 0, then taking u1 := ϵ2w2(H2)
ϵ1w1(H2)

and u2 := ϵ3w3(H2)
ϵ1w1(H2)

and using the identity 2H2 = κ2 + κλ, from equalities (34)(i, ii, iii) we
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get

(i) − 1

2
− 7

2
κ2 − 5

2
κλ− 1

2
u1 −

√
2

2
(κ+ λ)u2 = 0

(ii)
1

2
+ (

1

2
− 7

2
κ2 − 5

2
κλ)u1 +

√
2

2
(κ+ λ)u2 = 0

(iii)
−
√
2

2
(κ+ λ)(1 + u1)− (

7

2
κ2 +

5

2
κλ)u2 = 0.

(35)

From (35)(i, ii), we get −1
2 κ(5λ+7κ)(1+u1) = 0. If κ = 0, then H2 = 0.

If κ ̸= 0, then we get u1 = −1 or λ = −7
5κ. If u1 ̸= −1 then λ = −7

5κ
and then by (35)(iii) we obtain u1 = −1, which is a contradiction. So
u1 = −1, which by (35)(i, iii) gives u2 = 0.

We check two cases λ = −7
5κ and λ ̸= −7

5κ. If λ = −7
5κ, then,

κ = 5
2H1, H2 = −1

5 κ2, H3 = −4
5 κ3 and H4 = −7

5 κ4 are all constants on
U. Also, the case λ ̸= −7

5κ is in contradiction with (35)(ii).
Hence, the first claim w1(H2) ≡ 0 is affirmed. Similarly, the second

claim (i.e. w2(H2) = 0) can be proved.
Applying the results w1(H2) = w2(H2) = 0, from (35)(ii, iii) we get

w3(H2) = 0.
The final claim (i.e. w4(H2) = 0), can be proved using (35)(iv), in a

straightforward manner.
Now, we have CH2 = 9H1H

2
2 − 3H2H3 = 0 from (3)(i) . If H2 ̸= 0,

we get 3H1H2 = H3, which gives κ(κ2 − 3H1κ + 3H2
1 ) = 0, where

κ2 − 3H1κ + 3H2
1 > 0, Hence, κ = 0. Therefore, H2 = H3 = H4 = 0.

□
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[3] L. J. Alias and N. Gürbüz An extension of Takahashi theorem for
the linearized operators of the higher order mean curvatures, Geom.
Dedicata, 121 (2006), 113-127. doi:10.1007/s10711-006-9093-9.

[4] L. J. Alias and S. M. B. Kashani, Hypersurfaces in space forms
satisfying the condition Lkx = Ax + b, Taiwanese J. Math, 14:5
(2010), 1957-1977.

[5] A. Arvanitoyeorgos, F. Defever and G. Kaimakamis, Hypersurfaces
in E4

s with proper mean curvature vector, J. Math. Soc. Japan, 59
(2007), 797-809.

[6] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis and B. J. Papan-
toniou, Biharmonic Lorentz hypersurfaces in E4

1, Pacific J. Math.,
229 (2007), 293-306.

[7] B. Y. Chen, Some open problems and conjetures on submanifolds
of finite type: Recent development, Tamkang J. Math., 56 (2014),
87-108. doi:10.5556/tkjm.45.2014.1564.

[8] F. Defever, Hypersurfaces of E4 satisfying ∆H⃗ = λH⃗, Michigan.
Math. J., 44 (1997), 355-363.

[9] M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. of
Math., 118: 1 (1985), 165-197.

[10] B. O’Neill, Semi-Riemannian Geometry with Applicatins to Rela-
tivity, Acad. Press Inc. (1983).

[11] F. Pashaie and S. M. B. Kashani, Timelike hypersurfaces in the
Lorentzian standard space forms satisfying Lkx = Ax+b, Mediterr.
J. Math., 11:2 (2014), 755-773.

[12] A. Z. Petrov, Einstein Spaces, Pergamon Press, Hungary, Oxford
and New York (1969).



20 GH. HAGHIGHATDOOST et al.

[13] R. C. Reilly, Variational properties of functions of the mean cur-
vatures for hypersurfaces in space forms, J. Differential Geom., 8:3
(1973), 465-477.

[14] F. Torralbo and F. Urbano, Surfaces with parallel mean curvature
vector in S2 × S2 and H2 × H2, Trans. of the Amer. Math. Soc.,
364:2 (2012), 785-813.

[15] G. Wei, Complete hypersurfaces in a Eculidean space Rn+1 with
constant mth mean curvature, Diff. Geom. Appl, 26 (2008), 298-
306.

Ghorbanali Haghighatdoost
Associate Professor of Geometry and Dynamical Systems
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, Iran

E-mail: gorbanali@azaruniv.ac.ir

Sara Hoseinpour
Ph.D Candidate of Geometry and Topology
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, Iran

E-mail: s.h.13971402@gmail.com

Firooz Pashaie
Associate Professor of Geometry and Topology
Department of Mathematics
University of Maragheh, P.O.Box 55181-83111
Maragheh, Iran

E-mail: f−pashaie@maragheh.ac.ir

Leila Shahbaz
Associate Professor of Universal Algebra
Department of Mathematics
University of Maragheh, P.O.Box 55181-83111
Maragheh, Iran

E-mail: l−shahbaz@maragheh.ac.ir


	1 Introduction
	2 Prerequisite Concepts
	3 D1-Hypersurfaces
	4 D2, D3 and D3 Types of Shape Operator
	References

