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1 Introduction

The subject of H-proper submanifolds is an interesting research topic in
mathematical physics, which deals with the bienergy functional and its
critical points arisen form the tension field. Also, among the differen-
tial geometric research subjects, the study of constant mean curvature
submanifolds is of great importance. In this context, the subject of bi-
harmonic submanifolds has received much attentions. By definition, a
hypersurface is H-proper if it satisfies the condition AH = aH for a
constant real number a, where A is the Laplace operator and H is the
ordinary mean curvature vector field of hypersurface.

It is proven that every H-proper hypersurface of a Riemannian space
form has constant mean curvature. This is a question that has remained
unanswered in some cases and is closely related to a well-known conjec-
ture of Bang-Yen Chen which says that every submanifold of an Eu-
clidean space with harmonic mean curvature vector field has zero mean
curvature [7]. It has several improvements (for instance) in [1, 6]. In this
field, Defever has proved that the mean curvature of a hypersurface in
E* is constant if its mean curvature vector is proper ([¢]). In the context
of hypersurfaces in semi-Riemannian manifolds, it has been studied in
the last two decades (see [5, 2, 11]).

We take an extend version of this condition by putting the second
mean curvature Hy instead of H and the Cheng-Yau operator C instead
of the Laplace operator. The operator C denotes the linear operator
arisen from the first variation of the second mean curvature (see [3, 11,

). We study the Hy-proper timelike (i.e. Lorentzian) hypersurfaces
of Lorentz 5-pseudosphere.

2 Prerequisite Concepts

Here are some concepts and notations, required in the rest of the article,

taken from [10, 11, 15]. We use the semi-Euclidean g-space ]Eg of index
¢ = 1,2, equipped with the product defined by (v,u) = — Zle viu; +
Z?:&_l vju;, for each vectors v .= (vi,...,v4) and u = (u1,...,uq) in

RY. In fact, we deal with the 5-dimensional Lorentz space forms with
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the following common notation

S8 (r) (if ¢ = 1/r?)
Mi(c) =< L>=E}  (if c=0)
HE (—7) (if ¢ = —1/r?),

where, for 7 > 0, S(r) = {v € E§|(v,v) = r?} denotes the 5-dimensional
r-radius pseudosphere, and Hi(—r) = {v € E§|(v,v) = —r% v; > 0}
denotes the (—r)-radius pseudo-hyperbolic 5-space. In the canonical
cases ¢ = +1, we get the de canonical 5-pseudosphere 5-space S7 := S7(1)
and pseudo-hyperbolic 5-space Hi’ = Hi’(—l). Also, for ¢ = 0 we get the
Lorentz-Minkowski 5-space L5 := E3.

We consider a Lorentzian (timelike) hypersurface M of S defined
by an isometric immersion x : Mj — S§. The set of all smooth tangent
vector fields on M is denoted by x(Mi). According to the Lorentz
metric on Mj induced from S}, we can determine the possible states for
a base of the tangent space of M. For a detailed study, one can refer to
the references [9, 10, 12]. In general, a basis Q := {wi, ws, w3, w4} of a
Lorentz linear 4-space is said to be orthonormal if it satisfies equalities
(wi,wr) = —1, (w2, w2) = (w3, w3) = (wg,wq) = 1 and (w;, w;) =
0 for each 7 # j. Also, 2 is called pseudo-orthonormal if it satisfies
(wi,w1) = (we,w2) = 0, (w1, we) = —1 and (w;, w;) = 6] for j = 3,4
and i =1,...,4. As usual, ¢ is the Kronecker delta.

Associated to a basis chosen on M}, the second fundamental form
(shape operator) S has four different matrix forms. When the metric
on M has diagonal form Gy := diag[—1,1,1,1], then S is of form D; =
diag[)\l, )\2, )\3, /\4] or

Dy =diag[| N, ¥ [ s Ml (2 #0).

In the non-diagonal metric case Gy = diag[[ 0 (1] ], 1,1] the shape oper-
ator is of form
1 1
Dg:dlag[{ )‘125 /\12% :|’)\2,>\3] or
AL 0 2
0 A1 —g 5 AZ] .

D, = diag|

When S = Dy, we say that M{ is a Dy-hypersurface.
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Definition 2.1. We define the ordered quadruple {k1; ko; k3; K4} of prin-
cipal curvatures as follows:

{A13 A23 Az A} ( )

o . {Al 4+ 1A A1 — iA9; Ag; )\4} (if S = Dg)
{’4'1,’{27 R3; H4} - {)\1’ )\17 )\2’ )\3} ( )
{15 A1 A1 Ao} ( )

Clearly, the characteristic polynomial of Sis Q(t) = S7_(—1)7s;t47,

j=0
where s; 1= > i o jcqby -k for j=1,...,4and so := 1. As
usual, using s; (for j =1,...,4) we define H; (i.e. the jth mean curva-

ture) of M{ by equality (;1) H; = s;. In special case, H; is the ordinary
mean curvature H. The second mean curvature Hy and the normalized
scalar curvature R satisfy the equality Hs :=n(n —1)(1 — R).

The hypersurfaces M{ is called j-minimal, if its (j + 1)th mean cur-
vature is equal to zero. M is called isoparametric if its shape operator is
either of diagonal type Dy with constant eigenvalues or of non-diagonal
types Di (k= 2,3,4) and the coefficients of its minimal polynomial are
constant.

As well-known, the sequence {N; }?ZO of Newton transformations is
considered as No = I (i.e. the identity map) and N; = s;,1 —SoN;_;
for j = 1,...,4. Using its explicit formula, N; = Zgzo(—l)isj_iSi
(where S = 1) and the Cayley-Hamilton theorem (which stats that any
operator is annihilated by its characteristic polynomial) we have Ny = 0

(see [1, 11]).

In the rest, we use the following notation for £ =1, 2, 3,

Hiq ik = Z Kjy = Kjgs (i1,...,im S {1,2,3,4}).

1<G1 <. <Jp <4170 5tm

Clearly, N; has four possible matrix forms since it is defined in terms of
S. If S =Dy, then for j = 1,2,3, we have N; = diag[u1.5,- - , pa;j]-

When S = D5, we have

N; = diag[[ At ii A A +7>\);2+ a b 201+ Ay 20 + Ag),

Ny = diag[[ M6 30 L2 M0 [AT A3 + 200, A +
A2+ 201 )],

When S = D3, we have
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Y [P VANED VAT S| -1
N1=d1ag[ 2 3% 11— 3 )‘2+)\3ﬁ)\1+% }’2/\1—|—A3,2A1+A2],
_ gio o] Reda 4 O — e +29) ~102 + A3)
Ny = diag| 100 +23) Mods O+ 1O + Ag) } s A( A1+ 2A3),

)\1()\1 + 2)\2)], )
In the case S = Dy, we have

221 + Ao 0 -2
N, = dlag[ 0 271 + A2 @ s 3)\1],
2 ¥z 221 + Az
. 2Ad2 + AT - 3 -3 —Z (A1 +A2) )
Ny = diag| 1 e+ A2+ L P+ a) |,3A])
V2 (A1 + A2) 2 (A1 + A2) 21 Ao + A2

Some important identities occur in four cases as follow ([11]).
pj1 =4H1—kKj, pj2 =06Ha—kKjuj1 = 6H2—4/<6jH1+/€32'> (G=1,...,4),
tT’(Nl) = 12H1, tT(NQ) = 12H2, tr(NloS) = 12H2, tT(NQOS) = 12H3,
trS? = 4(4H? — 3Hs), tr(NyoS?) = 12(2H,Hy — H3),
tr(Ny o S?) = 4(4HHs — Hy).
Definition 2.2. The Cheng-Yau operator on M is defined as C(h) =
tr(Nj o V2h) for each h € C>°(M{), where (V2h(V), W) = Hess"(V, W)
for each V, W € x(My).

The Cheng-Yau operator has an explicit version according to an
orthonormal basis {wy, - , w4}, given by

4
C(f) =D vipia (wiw; f = V,wif),
i=1
where, 1 = —1 and v; = 1 for i = 2,3, 4.

On every orientable Lorentzian hypersurface x : M} — S}, one can
choose a unit spacelike normal vector field n and its related shape op-
erator. So, every vector z on M{l decomposes as z = z! + z™ where z”
and z" are its tangent and normal components ([4, 11]). So we have

V<x,z>=1z!, V<nz>=-5Sz".
Here we outline the key formulas we need to present the main concepts.
Cx = 12Hyn—12cH; x, (1)
CHy = 2[NyVHy —9H3V Hs |+ [CHy — 12H5(2H Hy — H3)|n.
(2)
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Definition 2.3. A hypersurface My in M3 (c) is said to be Hy-proper
if its second mean curvature vector field satisfies CHy = aHs, for a
constant number a. Clearly, this condition has a simpler expression by
two equations as:

(1) CHy; = HQ(CL + 24H{Hy — 12H3),

3
(i) NoVHy = 9H,V Hy. )

Example 2.4. Let 0 < t,u < 1, t> + u? < 1 and T = S}(¢) x St(u) x

SYV1 — 2 — u?) C S defined as

D ={(21,...,2) €LY =28 +22 =12, 22422 =u? 22 +22 = 1-t* —u?},
having three distinct principal curvatures kK1 = =Y 17;27“2 , Ko = Y 17227“2
and kK3 = kg = \/j% Clearly, I' is Ho-proper and all of its mean

curvatures are constant.

5
The structure equations of S} are given by dw; = Y wij A\ wj, wij +
i=1
4
wji = 0 and dw;; = > wy A wyj. Restricted to M{l, we have ws = 0. So,
=1

4
and then, dws = ) ws; Aw; = 0.
i=1
4
A lemma due to Cartan gives the decomposition ws; = ) h;jw; for
j=1
smooth functions h;; satisfying the equality B = > hjjw;w;ws where B
1]
is the second fundamental form of M;. The mean curvature H is given
4
by H = % > hyi. So, the structure equations of M are
i=1

4
dw; = E wij A\ Wj, wij + wji = 0,
Jj=1

4 LA
dw;j = § Wik N\ Wgj — 5 E Rijpiwr A wy,
k=1 k=1
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for j,i =1,...,4. Let h;jx be covariant derivation of h;;. So, we have

4 4 4
dhij = higror + Y hijwi + > higwjh,
k=1 k=1 k=1

and from Codazzi equation we have h;j, = hyp;j.

One can choose wy, ..., wy such that h;; = k;0;;. On the other hand,
the Levi-Civita connection of M{ satisfies Vwwj = > wik(wi)wy, and
we have w;(kj) = wij(w;)(k; — £;) and

wij(wl)(ﬁi - fij) = wz‘l(wj)(/fz’ — Ky)

whenever i, 7,1 are distinct.

3 Di;-Hypersurfaces

The Hs-proper timelike D;-hypersurfaces in the Lorentz 5-pseudosphere
with constant mean curvature are examined from different points of
view.

Theorem 3.1. Suppose that x : Mj — S is a Ha-proper D1 -hypersurface
which has constant mean curvature and non-constant second mean cur-
vature. Then, one of its non-constant principal curvatures has multi-
plicity one.

Proof. By assumption, U = {q € M{|VHy(q) # 0} is nonempty.
We consider a connected component of U. The condition (3)(ii) gives
that wy := % is an eigenvector of Ny with eigenvalue 9H5, on U.
We choose an orthonormal basis {wi,...,ws} satisfying Sw; = \w;,
Now; = piow;, (for i =1,...,4), we have p; o = 9Hp, which by (2) gives

1
Hy = §>‘1(>‘1 —4Hy). (4)
4
From equality VHy = Y w;(Ha)w;, we get
i=1

w1 (HZ) 7é 07 wZ(H2) = 07 L= 273a 4. (5)
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which by (4) give
wl()\l) 75 0, wi()\l) =0 1= 2, 3,4. (6)

So, A1 is non-constant. Now, putting V,,w; = Zi:l wfjwk (for 4,5 =
1,...,4), by wg(w;, wj) = 0, we get I/jwii = —I/Z'w,ij (fori,j, k€ {1,...,4}).
On the other hand, by Codazzi equation, for distinct 4, j, k, we get
wj()\i) = (Aj - )\i)wfj, ()\j — )\i)wij = (/\k - )\z)w;k (7)
Since wi(A1) # 0, we can show that A\j # Ay for j =2,3,4. If \; =\
for some integer j # 1, then wi(};) = wi(A1) # 0. Also, by (7) we get
0= (A1 —\j)wl; = wi(Aj) = wi(A1). This is a contradiction. Therefore,

J
A1 is non-constant and its multiplicity is one. O

Theorem 3.2. Suppose that x : M} — S is a Hy-proper D1 -hypersurface
such that whose mean curvature is constant and second mean curva-
ture is non-constant. If it has exactly three distinct principal curvatures,
then according to the orthonormal basis {w1, ..., w4} of principal vectors
of M} associated to principal curvatures A\, \a = A3, \4, the following
equalities occur:

(1) Vw1 =0, Vy,wi = aws, Vy,wr = aws, Vy,wi = —fws,

(11) Vo = —0wy + wiyws 4 ywy, Vo, w2 = whws fori=1,3,4;
(111) Vs w3 = —aw] — Wisws +ywy, V,wz = —whws fori=1,2,4,
(10)Vp,wg = 0, Vy,ws = —ywa, Vy,wys = —yws, Vy,wg = fwi,

(8)

w1 (A2)

o — wi(MH2xo) L wa(A2)
where o := N 8=

A1—A\4 » V= Ao—Ng

Proof. Using Theorem 3.1, we get the equalities (6) and (7) which
give that the multiplicity of Ay is one. Also, in direct ways we get
[wa, w3](A1) = [ws, wa] (A1) = w2, w4](A1) = 0, which yields

Wiy = Wiy, Wiy = Wiz, Wiy = Wi. (9)

Due to the triplet of principal curvatures of M f, we assume A3 = Ao, and
so Ay = 4H1 — A1 — 2)9. By considering distinct ¢, j and k in equalities
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(7), we obtain wa(A2) = w3(A2) = 0 and then,
(i) w W%z = w%?) W%zx = wgl = W%l = w?2,4 = Wgzl = w22 = Wig =0,

_ LB w1 (A2) 1 —wi(M +2X) o 5 —wa(Ae)
(ZZ) - 31 )\1 )\2 w - )\1 _ )\4 ) w24 - (U34 - )\2 _ )\4 )
(@01) (M = AaJwgq = (M = A2)wiz, (A1 = AaJwsy = (M — Az)wis.

(10)

From (9) and (10) we get wi, = wiy, = wl, = wly = Wi, = Wiy = 0.
Therefore, all claimed equalities obtain from the above results. O

Theorem 3.3. Suppose that x : M{l — S? is a Ha-proper Dy -hypersurface
such that whose mean curvature is constant and second mean curva-
ture is non-constant. If it has exactly three distinct principal curvatures
A1, A2 = A3, Ay according to an orthonormal basis {w1,...,ws} of prin-
cipal directions satisfying wa(X\2) = 0, then the following equality occurs:

1
wl()\g)wl()q + 2)\2) = 5/\2()\1 — )\2)()\4 — /\1)(2)\1 + 4Ny + )\4). (11)

Proof. By considering different choices of vectors wi, wsy, wes in the
Gauss curvature tensor R(X,Y)Z = VxVyZ-VyVxZ—V|xy]Z, and
using Theorem 3.2, we obtain:

(i) wi(a) + o = =M\ A2, B2 —wi(B) = —A\i)4;

. W4()\2) QU4()\2) N
(i) wn )\2—/\4>+a)\2—)\4 =0;
(#41) wa(@) — (a + B) wi(A2) _ 0; (12)

A2 — Mg
: wi(A2) wiA2) \?
—=] =X\
(iv) wy (Ag—/\4>+ B — <)\2_)\4 24
Now, from (3)(ii), applying Proposition (3.2), we obtain

()\1 — 4H1)w1w1 (HQ) — (2()\2 — 4H1)Oé + (/\1 + 2)\2)5)101 (HQ)
= 12H,(2H Hy — H3),

w1 ( w1 )\1+2)\2)
where « := YR and 8 := B v yaant

9
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Also, by equalities (5) and (8), we get
wiw(Hz) =0, (1 = 2,3,4). (14)

Also, by derivation of v and £ along wy, we get

O = AeJui(a) — awa(¥a) = wan () = 50 = Awa(5) + Bua(ka),
then 1
5 (A1 = AJwa(B) = (1 = A2Jwa(a) — (e + Buws(Aa),
which, by using (12), implies

w4(ﬂ) _ *8104()\2)(04 + /B)(AQ — Hl)
(A1 = A) (A2 — Ag)

Differentiating (13) along w4 and applying the last result and equal-
ities (14) and (12), we obtain w4(A2) = 0 or

4(a + B)yw1(Hz)
Al — M\

= 6Hay(N\y — M), (15)

where v = —8H A\; + M2 + 3\ Ao — 12H Ay + 16 H?.
We claim that ws(A2) = 0 because the equality (15) dos'nt occur.
Its reason is as follows. By differentiating (15) along wy, we get

[6v(Aa — Hy) + (3A1 — 12H)) (AL + Ay — 2H1 ) (A1 + 3\y — 4H))] wy (Hy)
(A1 4 Ao — 2H;)?
Ho(4H) + A\ + 3X9)?
a+p '

=18

(16)
Eliminating wy (Hz) from (15) and (16), we obtain
7(2/\1 — 2H1) = (/\1 — 4H1)()\1 + Ay — 2H1)<—4H1 + M+ 3)\2). (17)

Finally, along w, we differentiate (17), which gives 4H; = A1. That is
impossible since A; dos'nt have constant value. Consequently, w4(A2) =
0. Therefore, the main result is implied from the latest equality. O
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Theorem 3.4. Suppose that x : M} — S is a Hy-proper D1 -hypersurface
with constant mean curvature. If M{l has exactly three distinct principal
curvatures, then it is 1-minimal.

Proof. As previous theorems, we use the orthonormal basis {wy, ..., w4}
of principal directions according to principal curvatures A, Ao = Az, A\g.
By differentiating (4) along w; we have
4 4
w1 (Ha) = §(2H1 — AM)wi(A2) + g()q + A2 — 2H1) (M — 2H1)B, (18)
where 8 := w. By Theorem 3.3 and equalities (12) and (18),
we get

4
wywy (Hz) = §>\1>\2(>\1 — A2)(A1 + 2H;)

4
+ §(4H1 — A — 2)\2)()\1 — 2H1)(4)\1)\2 + )\12 —4H )y — 2H1>\1)
()\1 + Ay — 2H1)ﬁ — ()\1 — )\2)0[
+ 36 4o + 2 )\1 — 2H1 wl(HQ).
(19)
Combining (13) and (19), we get
(Pr2a+ Papf)wi(Hz) = Psg, (20)

where, the degree of polynomials P2, P>2 and P3¢ in terms of A; and
Ao are (respectively) 2, 2 and 6. Similarly, differentiating (20) along w;
and using equalities (11), (12)-(i) and (20), we get the following equality

Pygo+ Psgf3 = Psswi(Ha), (21)

where, the degree of polynomials Pyg, Psg and Ps 5 are (respectively)
8, 8 and 5. From (18) and (21), we get

<P478 + §P6,5()\1 — )\2)(}\1 — 2H1)> o
(22)

4
+ <P578 3 6,5()\1 + Ao —2H;) (M — 2H1)> 6 =0.
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On the other hand, from (18) with (20) and using Theorem 3.3, we
get

Pyo(A1+ Ao —2H;) (M —2H1)B* — Pra(M — o) (M —2Hp)a? = ¢, (23)

where
(= )\2(4H1—)\1—2)\2)()\1—2H1) (P2’2()\1 — )\2) — PI,Q()\l + Ay — 2H1))
+ 3 P36
Using Theorem 3.3 and equality (22), we get
o 3Pss(M —2H1)(A — A1) + Psg
o = 1 )\2)\47
Pyg + 5Ps5(\1 — 2H1)(A1 — A2)
_ 3Ps5(A1 — 2H1) (M — A2) — Pus
Pss — 3Ps5(A — 2H1) (A — \y)

62

A2

From (23), we eliminate o and 3%, so we have
9 2
_ )\2)\4()\1 + 2H1)()\2 — )\1)P172 <P578 — §P675()\1 — 2H1)()\1 — )\4))

1 4 2
- 5)\2)\4()\1 +2H ) (A1 — M) P <P4,8 + 3 6,5(A1 — 2H1) (A — >\2)>

2
3

4

=( <P5,8 - 3

Pss(M —2H1) (M — )\4)> <P4,8 + = FPs5(M —2H1) (A — )\2)> ;

(25)
which is a degree 22 polynomial equation.

Let «v(t), (t € I) be an integral curve associated to w; through
point pg = (tp). Since w;j(A1) = wi(A2) = 0 for i = 2,3,4 and
wi (A1), wi(A2) # 0, we can assume Ao = Ao(t) and Ay = A1(A2) in
some neighborhood of A\g = A2(tp). Using (22), we have

d/\1 . d)\l dt . wl(/\l)

dla  dt dhy  wi(\)

()\1 + Ay — 2H1)ﬁ — ()\1 — )\2)04
()\1 — )\2)0&
B 2 (P4’8 + %P675()\1 — )\2)(/\1 — 2H1>) ()\1 + Ay — 2H1) _

(3Ps,5(A1 + A2 — 2H1) (A1 — 2Hy) — Psg) (A — A2)

=2

(26)
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We differentiate (25) with respect to A2 and use equality (26) to get
f(A1,A2) =0, (27)

as is a degree 30 polynomial equation.
Comparing (25) and (27), we have two polynomial equations as fol-

low:
22 ) 30
D LGN =0, Y g(A)N; =0, (28)
=0 k=0

for each 0 < j <22 and 0 < k < 30, f;(\1) and g;(\1) are polynomials
in terms of ;. Eliminating A3’ between two polynomials in (28), we get
a new polynomial equation of degree 29 in terms of As. By substituting
this equation in the first one, we get a degree 28 polynomial equation.
So, we are able to eliminate Ay by continuing the similar method by
using the first equation of (28) and its consequences. Finally, we get a
non-trivial polynomial equation with constant coefficients in terms of Aq,
which gives that A\; has constant value. So, by (4), we get the constancy
of H. 2.

Now, we show the nullity of Hy. If Hy # 0, then by (3)(i), we get the
constancy of Hs. Therefore, M is isoparametric which has not more
than one nonzero principal curvature ([9]). This result contradicts with
the assumptions. So, Hs = 0. O

4 D,, D3 and D3 Types of Shape Operator

In the rest, we study some Hs-proper hypersurfaces with non-diagonal
shape operator of matrix forms Do, D3 and Ds.

Theorem 4.1. Suppose that v : M} — S} is a Ha-proper Da-hypersurface
whose mean curvature is constant. If one of real principal curvatures of

M3} has constant value, then its scalar curvature is constant. Further-

more, it is 1-minimal or 3-minimal.

Proof. First, we prove the constancy of Hy by giving reason for empti-
ness of U = {p € M : VH3(p) # 0}. We assume U # (. According
to a suitable (local) orthonormal basis {w1,- -+ ,ws} on M{, we have
Swi; = Kwy — Aws, Swy = Awy + Kwa, Swz = nmws, Swy = npwy and

13
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then, we have Now; = [k(m + n2) + mm2]wi + A(m + n2)wa, Nows =
—A(m +m)wi + [k(m + 1m2) + mna]ws, Nows = (k2 + A2 + 2kn2)ws and
N2w4 = (FLQ + /\2 + 2%771)11)4.

4
Condition (3)(ii), by using the equality VHy = > €;w;(Ha)w;, gives
i=1

(i) (k12 + pa22 — 9Hz)eywi (Hz) — Apa g eawz(H) = 0
(il) Aprgperwi(Ha) + (kp12a + pa22 — 3(4 — k) Hy)eawy(H) = 0
(iif) (32 — 9Hs)esws(Ha) = 0,
(iv) (paz2 — 9Hz)eqws(Hz) = 0.
(29)

We claim that wy,(H2) = 0 for m = 1,...,4. First, we prove it for
m = 1. If wi(Hz) # 0, then taking u := %, from (29)(i, ii) we get
two equalities

(i) kp1o0 4 p192:90 — 9Hy = Mg 214,

! (30)
(11) (K;,u‘l,Z;l + ,LLLQ;Q - 9H2)u = —>\/_,L1,2;1,

which give Apq 2.1 (1 + u?) = 0, then A1,2:1 = 0. Since X # 0 (by defini-
tion), we get p1.2.1 = 0. So, by (30)(i), we obtain

H12;2 = 9H5. (31)

From f11 2.1 = 0 we have 71 +12 = 0. Since n; is assumed to be constant,
from 31 we get that 9Hy = —n? = —n? is constant which contradicts
with assumption wq(Hs) # 0. So, we have wi(Hz) = 0. Hence, our
claim is affirmed in case m = 1.

For m = 2 the claim is wa(Hz) = 0. If wa(H2) # 0, then taking v :=
z;z;ggg%, from (29)(i, i) we get Auy 2.1 (14v2) = 0, which gives A 2.1 =
0 and then g2, = 0. Similar to case m = 1, we get contradiction of
constancy of 9Hy, which affirm the claim wq(Hg) = 0.

The proof of the claim in cases m = 3,4 is different from cases
m=1,2.

If ws(Hz) # 0, the we get ps.2 = 9Hz (from (29)(iii)), which gives
—3K% 4+ (26 + 3m)(4Hy —m) = =A% <0, then, —2[2k? + (m — 4H1 )k +
2771(’[71 - 3H1)] = —()\2 + K2 + 77%) < 0.
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The last phrase has negative value if and only if § < 0 where
§ = (m —4Hy)* —16ny(n — 3Hy) = —150° + 40 Hy + 16H:.
Clearly, 6 < 0 is equivalent to § < 0 where
6= (40H,)? + (4 x 15 x 16)H? = 2560H2,

which is impossible. So, w3(Hz) = 0 is proven.
The reason of claim in case m = 4 is similar to case m = 3. If
wa(Haz) # 0, then we have pg.2 = 9Hy from equality (29)(iv). So,

—11k% 4+ (24H; — 10m)k + 121 Hy — 307 = —=)\? <0,
and then
—2[6x% + (5m — 12H1)k + 2 (m1 — 3H1)] = —(A* + &2 + nf) < 0.
which occurs if and only if we have ¢ < 0 where
0= (5 — 12H,)? — 48 (1 — 3H,) = —23n% + 24 Hy + 144H3.
which occurs if and only if we have g < 0 where
0= (24H;)? + (4 x 23 x 144)H? = 13824H?%.

But, this is impossible. So, w4(Hz) = 0.

In the next stage, we prove that Ho = 0 or Hy = 0. since Hy is
constant, we have CHy = 0. Then, by (3)(i), we have Hy(4H1Hy —
2H3) = 0. Assuming Hs # 0 we get 4HyHy = 2H3, which implies the
constancy of Hz. Hence, M} is isoparametric, which cannot have more
than one non-zero real principal curvature ([9]). So, mim2 = 0 which
gives Hy = (k% 4+ A?)mnz = 0. Therefore, M{ is 3-minimal. O

Theorem 4.2. Suppose that x : M} — S}(c) is a Ha-proper Ds-
hypersurface whose mean curvature and one of whose principal curva-
tures have constant values. If its principal curvatures are mutually dis-
tinct, then it has to be 1-minimal. Furthermore, M{ is isoparametric.

15
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Proof. We show the constancy of Hy by proving the emptiness of
U= {p e M : VH:(p) # 0}. We assume that U # (). According
to a (local) orthonormal basis {w1, - , w4} on M, we have Sw; = (k +
%)wl — %wg, Swy = %wl +(k— %)wg, Sws = Ajwsz and Swy = Aswy, and
for k = 1,2, 3 we have Nyw; = [p1 2. + (K — %)ul,g;k,l]wl + %ulg;k,lwg,
Nyws = — 31 211 + (1,256 + (K — 3) i1 2:6—1]wa, and Nyws = w3
and Npwg = pig,pwy4.
4
From condition (3)(ii), using VHz = Y ew;(H2)w;, we get

=1
(i) \ida + (5 — %)(Al + N — OH]eywy (Hy) = %()\1 F Ao)eyws(H),

(i1) Mo + (k + %)(Al + Aa) — OHs]eaws(Ha) = —%()\1 + o)erw (),
(ZZ’L) (KZ + 25Xy — 9H2)63w3(H2) =0,
(Z"U) (/432 + 2K — 9H2)63U)4(H2) =0.

(32)

We claim that wy,(H2) = 0 for m = 1,...,4. First, we prove it for

m = 1. If wy(Hy) # 0, then taking u := Efﬁggﬁg, from (32)(i, ii) we get

1 1
(1) Mo+ (k — 5)(/\1 + X2) —9H, = 5()\1 + Ao)u,

1 1 (33)

(ZZ) [)\1)\2 + (K + 5)()\1 + )\2) — 9H2]u = —5()\1 + )\2),

which give (A1 + X2)(1 4+ u)? =0, then u = —1 or A; + Xp = 0.
If A + X2 = 0, then, from (33)(i) we get 9Hs = —\2, which gives

3k2 = —)\%. Constancy of Hi and k = 2H; gives that Ay and A\; have
constant value on M{l. As an isoparametric hypersurface with real prin-
cipal curvatures, Mj satisfies the condition of Corollary 2.7 in [9], so it
dos'nt have more than one nonzero principal curvature. This contradic-
tion gives that A1 + A2 # 0 and then u = —1.

From u = —1, using (33)(i) and 4Hy = 2k + A1 + A2, gives 5x?% —
16kHy — M (4H1 — 2k — A1) = 0. Without loss of generality, we assume
that A1 is constant on M. So, from the last equation we get that x, Ao
and Hy are constant on U, which is a contradiction. Therefore, the first
claim is proved.
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For cases m = 2,3,4, in similar ways, by assuming wy,,(Hsz) # 0 we
get A2 + 2k )\ = 9H,, which gives a contradiction that Hs is constant on
M. So, we get the affirmation of claim for m = 2,3, 4.

Now, we prove the nullity of He = 0. By constancy of H; and Hs,
the condition (3)(i) gives the constancy of Hz. Hence, M} as an isopara-
metric Ds-hypersurface has at most one nonzero principal curvature (by
Corollary 2.7 in [9]). So, A = 0. Then Hy = i, Hy = ¢x* and H3 = 0.
Hence, by (3)(i), we get x = 0 and then Hy =0. O

Theorem 4.3. Suppose that x : M} — S}(c) is a Hy-proper Dy-
hypersurface whose mean curvature has constant value. Then it is 1-
minimal. Furthermore, M} is isoparametric.

Proof. We show the constancy of Hy by proving the emptiness of U =

{p€ M :VH2(p) # 0}. We assume that U # (). According to a (local)
V2

orthonormal basis {wy,---,ws} on M, we have Sw; = kw1 — 5 ws,
Swy = Kwg — @w& Swz = ?wl - @wg + kw3 and Swy = Awy

and then, we have Nowy = (k% + 26X — D)wy + Lws + g(/@ + Aws,
Nowy = %wl + (K% 4 26X + %)wg + ?(KJ + MNws, Nowsg = _Tﬁ(li +
ANwy + @(ka + Mws + (k2 + 26\)w3 and Nowy = 3k2wy.

4
From condition (3)(ii), using VHs = ) €;w;(H2)w;, we get

=1

(’L) (Hz + 2K\ — % — 9H2)61’U)1(H2) — %GQwQ(HQ) = ?(H + )\)e3w3(H2),

17

1 1 V2
) §elw1(H2) + (52 + 26\ + 5 9Hs)eqwo(Hsy) = —7(/*% + Nesws(Ha),

(’LZZ) ?(Ii + )\)(Elwl(Hg) + EQU)Q(HQ)) = *(KJ2 + 2K\ — 9H2)€3U)3(H2),

(iv) (3x* — 9Hy)eqwy(Hs) = 0.
(34)

We claim that wy,(H2) = 0 for m = 1,...,4. First, we prove it for

m = 1. If wi(Hs) # 0, then taking u; := foﬁfgfﬁ% %

and using the identity 2Hy = k2 + k), from equalities (34)(4, i, 4ii) we

and ug =
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get
, 1 7, 5 1 V2 _
(1) _5—55 —§HA—§U1_7(K+)‘)U2_O
1,1 7, 5 V2
(44) 3 + (5 - §/€2 - 5/6)\)ul + 7(/@ +ANuz =0 (35)
—V2

(14) (K+ N1 4+u) — (gﬁ + gfi)\)UQ =0.

From (35)(4,4i), we get S-r(5A+7k)(1+u1) = 0. If k = 0, then Hy = 0.
If kK # 0, then we get u; = —1 or A = —%n. If uy # —1 then A = —%/-i

and then by (35)(4ii) we obtain u; = —1, which is a contradiction. So
u; = —1, which by (35)(i, i) gives ugs = 0.
We check two cases A = —%n and A # —%KJ. If A= —%m, then,

K= %Hl, Hy; = %1/{2, Hs = %4/{3 and Hy = %7/{4 are all constants on
U. Also, the case A # —Ix is in contradiction with (35)(ii).

Hence, the first claim wi(Hz) = 0 is affirmed. Similarly, the second
claim (i.e. wo(Hsz) = 0) can be proved.
wg(Hg) =0.

The final claim (i.e. wa(H2) = 0), can be proved using (35)(iv), in a
straightforward manner.

Now, we have CHy = 9H, H3 — 3HoH3 = 0 from (3)(i) . If Hy # 0,
we get 3HyHy = Hj, which gives w(k?> — 3H1k + 3H?) = 0, where
k? — 3Hyk + 3H? > 0, Hence, k = 0. Therefore, Hy = H3 = Hy = 0.
U
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