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Abstract. Integral equations, and in particular Generalized Abel’s In-
tegral equations (GAIEs), have been widely used to model various phe-
nomena in applied science. Several numerical methods have been pro-
posed to solve GAIEs, many of which require significant computational
effort to achieve convergence. In this paper, we develop a stable method
for solving GAIEs using Bernoulli orthogonal polynomials constructed
via the Gram-Schmidt orthogonalization algorithm. Since our method
does not rely on collocation points, the computational time is signifi-
cantly reduced. Moreover, the proposed method demonstrates several
advantages over existing approaches in terms of both accuracy and per-
formance. Under certain conditions, we also establish the error bounds
and provide a convergence analysis. To evaluate the effectiveness of the
method, several numerical examples are presented. The results indicate
that, on average, our method yields lower absolute errors compared to
other techniques.
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1 Introduction

The theory of integral equations is one of the most important branches
of applied mathematics and plays a vital role in various scientific fields,
such as engineering, chemistry, and biology. Many phenomena in ap-
plied sciences can be modeled using integral equations, and solving these
equations can provide valuable insights into the underlying processes.
However, in practice, only a limited number of integral equations have
explicit solutions; most require numerical methods. Therefore, the accu-
racy of numerical solutions to integral equations is critically important.

To solve integral equations numerically, a variety of methods have
been introduced [7–9, 12, 18, 30, 33, 34]. A well-known class of integral
equations involves singular kernels, which arise in various applications.
For example, such equations arise in heat transfer [13], crystal growth
[19], and fluid mechanics [27], attracting special attention due to their
wide range of applications.

As mentioned earlier, obtaining analytical solutions for integral
equations with singular kernels is often complex and, in many cases, im-
possible. Therefore, researchers have focused on developing numerical
methods to solve such equations. Two notable examples of these are
weakly singular Fredholm integral equations and Abel’s integral equa-
tions. In recent years, a variety of numerical approaches and polynomial-
based methods have been proposed to address these problems, as out-
lined below.

To solve weakly singular Fredholm integral equations, several nu-
merical methods have been proposed in the literature. Cao and Xu [3]
introduced technique based on singularity-preserving Galerkin meth-
ods. Pedas and Vainikko [28] developed an approach using smoothing
transformations combined with piecewise polynomial projection meth-
ods. Cao et al. [4] later proposed hybrid collocation methods, while
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Okayama et al. [24] employed Sinc-collocation techniques.
In addition, Lakestani et al. [17] applied Legendre multiwavelets to

numerically solve weakly singular Fredholm integral-differential equa-
tions. Maleknejad et al. [21] presented a wavelet Galerkin method for
singular integral equations. Subsequently, Assari et al. [1] developed the
meshless product integration (MPI) method to address weakly singular
integral equations.

One of the most well-known singular integral equations is the Abel
integral equation, which was first introduced by Niels Henrik Abel in
1823 [33,34]. Abel formulated this equation while addressing a mechan-
ical problem [2, 11,14, 29]. A notable example of solving Abel’s integral
equation was presented by Saadatmandi and Dehghan [31], who em-
ployed the collocation method in their approach. In [20], Majidi presents
a numerical method based on a change of variable to solve Abel integral
equations by removing the singularity and approximating the solution
using orthogonal polynomials. Numerical results confirm the method’s
high accuracy, good conditioning, and efficiency compared to similar
approaches. In [23], integral equations with singular or weakly singular
kernels are solved using Bernoulli polynomials to provide a numerical
solution. An improved method for solving Volterra integral equations of
the second kind using Bernoulli polynomials and dividing the interval
into subintervals is presented. By increasing the number of subintervals
without changing the degree of the polynomial, a suitable result was
obtained [15].

Consider the generalized Abel integral equation as follows [5]:

λ1(s)

∫ s

a

x(t)

(s− t)α
dt+λ2(s)

∫ b

s

x(t)

(t− s)α
dt = ζ(s),

s ∈ (a, b), 0 < α < 1,

(1)

where ζ(s) is a given function. Several methods have been proposed to
solve the generalized Abel integral equation as follows.

Chakrabarti and George [5] introduced a formula for the solution
of general Abel integral equation. Later, Chakrabarti [6] used a direct
function-theoretic method to solve the same class of equations. Dixit et
al. [10] employed an almost operational matrix approach to find a solu-
tion to the generalized Abel integral equation. Furthermore, Pandey and
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Mandal [25] applied a numerical method using Bernstein polynomials to
solve a system of generalized Abel integral equations. Reference [26]
introduces a collocation-based approach for approximating solutions to
generalized Abel’s integral equations. The study shows that employing
different orthogonal polynomials can yield highly accurate results, even
when only a limited number of polynomials are used.

In this paper, we use Bernoulli orthogonal polynomials to solve
generalized Abel integral equations. The proposed method offers sev-
eral advantages over previous approaches, notably by avoiding the use
of collocation points, which helps to reduce computational cost. Fur-
thermore, by exploiting the orthogonality properties of the polynomials,
the method achieves improved accuracy.

The remainder of this paper is organized as follows: Section 2
introduces the Bernoulli basis polynomials and their orthogonalization
using the Gram-Schmidt process. In Section 3, we present the computa-
tional matrix-based approach for solving GAIEs. Section 4 provides the
error estimation and convergence analysis. Numerical experiments are
presented in Section 5 to demonstrate the effectiveness of the proposed
method. Finally, Section 6 concludes the paper with a brief summary.

2 Preliminaries

Bernoulli polynomials, despite not being orthogonal, are frequently em-
ployed in solving integral equations because of their unique analytical
properties.

Definition 2.1 (Bernoulli polynomials). According to Samadyar [32],
the Bernoulli polynomials of degree k can be defined using the following
two main formulas

βk(s) =

k∑
i=0

(
k

i

)
αk−is

i, s ∈ [0, 1], (2)

for k ≥ 0, where αk are Bernoulli numbers. Alternatively, the Bernoulli
polynomials can also be defined by the following formula:

k∑
i=0

(
k + 1

i

)
βi(s) = (k + 1)sk, k = 0, 1, . . . .
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Definition 2.2 (Orthogonality of Bernoulli polynomials). [22] By ap-
plying the Gram-Schmidt orthogonalization process to the linearly inde-
pendent set {β0(s), . . . , βn(s)}, we obtain a set of Orthonormal Bernoulli
basis functions {B0(s), . . . , Bn(s)}, where

B0(s) =
β0(s)∥∥β0(s)∥∥ , Bk(s) =

ϕk(s)∥∥ϕk(s)
∥∥ , (3)

and

ϕk(s) = βk(s)−
k−1∑
j=0

∫ b

a
βk(s)Bj(s)dsBj(s), k = 1, . . . , n.

The functions B0(s), . . . , Bn(s) are defined on the interval [0, 1] and serve
as the Orthonormal Bernoulli basis functions (OBBFs). The explicit
formula for the OBBF of n is given by

Bn(s) =
√
2n+ 1

n∑
i=0

(−1)i
(
n

i

)(
2n− i

n− i

)
sn−i, n = 0, 1, . . . . (4)

Definition 2.3 (Construction of an approximate series based on OBBFs
[22]). Let f(s) ∈ L2[a, b] and let {Bk(s)} denote the orthonormal Bernoulli
basis functions (OBBFs) defined by Eqs. (3)-(4), then the function f(s)
can be represented as an infinite series

f(s) =
∞∑
k=0

fkBk(s), (5)

where the coefficients fk are defined by the inner product. To approxi-
mate the function f(s), we can truncate the series in Eq. (5) at k = n.
The resulting finite approximation is given by

f(s) ≈
n∑

k=0

fkBk(s) =

n∑
k=0

∫ b

a
f(s)Bk(s)dsBk(s). (6)

To approximate the integral terms appearing in Eq. (1) using orthonor-
mal Bernoulli polynomials, we use the definition of inner product for the
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coefficients in the finite series. Specifically, we have∫ s

a
Bi(t)dt ≈

n∑
k=0

∫ b

a

∫ s

a
Bi(t)dtBk(s)dsBk(s), i = 0, . . . , n,

∫ s

a

Bi(t)

(s− t)α
dt ≈

n∑
k=0

∫ b

a

∫ s

a

Bi(t)

(s− t)α
dtBk(s)dsBk(s), i = 0, . . . , n.

(7)

Similarly, for the integral terms from s to b, we have∫ b

s
Bi(t)dt ≈

n∑
k=0

∫ b

a

∫ b

s
Bi(t)dtBk(s)dsBk(s), i = 0, . . . , n,

∫ b

s

Bi(t)

(t− s)α
dt ≈

n∑
k=0

∫ b

a

∫ b

s

Bi(t)

(t− s)α
dtBk(s)dsBk(s), i = 0, . . . , n.

(8)

Definition 2.4 (Construction of Operational Matrices for OBBFs). Fol-
lowing the approach in [22], the remainder of this section is devoted to
constructing the operational matrix of Eqs. (6), (7) and (8).The opera-
tional matrix form of a function f(s) ∈ L2[a, b] can be expressed as

f(s) =
(
[F ]B

)T
B(s), (9)

where [F ]B and B(s) are column vectors of size (n + 1) × 1, defined as
follows

[F ]B =


⟨f(s), B0(s)⟩

...
⟨f(s), Bn(s)⟩

 , B(s) =


B0(s)

...
Bn(s)

 . (10)

Based on the relations (7) and (9), the operational matrix representation

of the term
∫ s
a

Bi(t)
(s−t)α

dt can be written as

∫ s

a

Bi(t)

(s− t)α
dt =


⟨
∫ s
a

Bi(t)
(s−t)α

dt,B0(s)⟩
...

⟨
∫ s
a

Bi(t)
(s−t)α

dt,Bn(s)⟩


T 

B0(s)
...

Bn(s)

 .
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Therefore, using Eq. (10), the operational matrix form of the vector-

valued function
∫ s
a

B(t)
(s−t)α

dt becomes

∫ s

a

B(t)

(s− t)α
dt =



∫ s
a

B0(t)
(s−t)α

dt
...∫ s

a
Bi(t)
(s−t)α

dt
...∫ s

a
Bn(t)
(s−t)α

dt



=



⟨
∫ s
a

B0(t)
(s−t)α

dt,B0(s)⟩ . . . ⟨
∫ s
a

B0(t)
(s−t)α

dt,Bn(s)⟩
...

. . .
...

⟨
∫ s
a

Bi(t)
(s−t)α

dt,B0(s)⟩ . . . ⟨
∫ s
a

Bi(t)
(s−t)α

dt,Bn(s)⟩
...

. . .
...

⟨
∫ s
a

Bn(t)
(s−t)α

dt,B0(s)⟩ . . . ⟨
∫ s
a

Bn(t)
(s−t)α

dt,Bn(s)⟩


(n+1)×(n+1)

×



B0(s)
...

Bi(s)
...

Bn(s)


(n+1)×1

.

Thus, we summarize this operation as∫ s

a

B(t)

(s− t)α
dt = [V1]B(s).

Similarly, from Eqs. (8) and (9), the operational matrix representation

for the term
∫ b
s

Bi(t)
(t−s)α

dt is given by

∫ b

s

Bi(t)

(t− s)α
dt =


⟨
∫ b
s

Bi(t)
(t−s)α

dt,B0(s)⟩
...

⟨
∫ b
s

Bi(t)
(t−s)α

dtBn(s)⟩


T 

B0(s)
...

Bn(s)

 .
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Let B(s) denote the orthonormal Bernoulli basis functions as in Eq.

(10), then the operational matrix form of
∫ b
s

B(t)
(t−s)α

dt is obtained as

∫ b

s

B(t)

(t− s)α
dt =



∫ b
s

B0(t)
(t−s)α

dt
...∫ b

s
Bi(t)
(t−s)α

dt
...∫ b

s
Bn(t)
(t−s)α

dt



=



⟨
∫ b
s

B0(t)
(t−s)α

dt,B0(s)⟩ . . . ⟨
∫ b
s

B0(t)
(t−s)α

dt,Bn(s)⟩
...

. . .
...

⟨
∫ b
s

Bi(t)
(t−s)α

dt,B0(s)⟩ . . . ⟨
∫ b
s

Bi(t)
(t−s)α

dt,Bn(s)⟩
...

. . .
...

⟨
∫ b
s

Bn(t)
(t−s)α

dt,B0(s)⟩ . . . ⟨
∫ b
s

Bn(t)
(t−s)α

dt,Bn(s)⟩


(n+1)×(n+1)

×



B0(s)
...

Bi(s)
...

Bn(s)


(n+1)×1

.

Finally, the above result can be compactly represented as∫ b

s

B(t)

(t− s)α
dt = [V2]B(s).

3 Description of the Numerical Technique

3.1 Construction the operational matrices of ζ(s) and x(s)

In this section, we transform the various components of Eq. (1) into the
matrix forms using the orthonormal Bernoulli basis functions (OBBFs).
The known function ζ(s) can be approximated by finite truncated series.
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The known coefficients ζk are obtained by using the inner multiplication
⟨ζ(s), Bk(s)⟩ =

∫ b
a ζ(s)Bk(s)ds in this series

ζ(s) ≈
n∑

k=0

ζkBk(s) =

n∑
k=0

∫ b

a
ζ(s)Bk(s)dsBk(s),

Hence, the matrix representation of ζ(s) is obtained by the inner product
of the row coefficient vector and the basis vector

ζ(s) =
[
⟨ζ(s), B0(s)⟩ . . . ⟨ζ(s), Bn(s)⟩

]
B0(s)

...
Bn(s)

 ,

or more compactly

ζ(s) =
(
[Z]B

)T
B(s), (11)

where [Z]B denotes the coefficient vector of ζ(s) in the Bernoulli ba-
sis. To solve GAIE (1), the unknown function x(s) can similarly be
approximated using OBBFs B(s) as follow

x(s) ≈
n∑

k=0

xkBk(s), (12)

and its matrix form is

x(s) =
[
x0 . . . xn

]
B0(s)

...
Bn(s)

 ,

or equivalently

x(s) =
(
[X]B

)T
B(s). (13)

3.2 Construction of the operational matrices of Eq. (1)

By substituting the operating matrices from Eqs. (11) and (13) into Eq.
(1), we obtain the following matrix form of the generalized Abel integral
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equation

λ1(s)
(
[X]B

)T ∫ s

a

B(t)

(s− t)α
dt+ λ2(s)

(
[X]B

)T ∫ b

s

B(t)

(t− s)α
dt

=
(
[Z]B

)T
B(s).

(14)

Similarly, Eq. (14) can be rewritten in the expanded matrix form as
follows

λ1(s)
[
x0 . . . xi . . . xn

]

×



∫ b
a

∫ s
a

B0(t)
(s−t)α

dtB0(s)ds . . .
∫ b
a

∫ s
a

B0(t)
(s−t)α

dtBn(s)ds
...

. . .
...∫ b

a

∫ s
a

Bi(t)
(s−t)α

dtB0(s)ds . . .
∫ b
a

∫ s
a

Bi(t)
(s−t)α

dtBn(s)ds
...

. . .
...∫ b

a

∫ s
a

Bn(t)
(s−t)α

dtB0(s)ds . . .
∫ b
a

∫ s
a

Bn(t)
(s−t)α

dtBn(s)ds





B0(s)
...

Bi(s)
...

Bn(s)


+ λ2(s)

[
x0 . . . xi . . . xn

]

×



∫ b
a

∫ b
s

B0(t)
(t−s)α

dtB0(s)ds . . .
∫ b
a

∫ b
s

B0(t)
(t−s)α

dtBn(s)ds
...

. . .
...∫ b

a

∫ b
s

Bi(t)
(t−s)α

dtB0(s)ds . . .
∫ b
a

∫ b
s

Bi(t)
(t−s)α

dtBn(s)ds
...

. . .
...∫ b

a

∫ b
s

Bn(t)
(t−s)α

dtB0(s)ds . . .
∫ b
a

∫ b
s

Bn(t)
(t−s)α

dtBn(s)ds





B0(s)
...

Bi(s)
...

Bn(s)



=
[∫ b

a ζ(s)B0(s)ds . . .
∫ b
a ζ(s)Bi(s)ds . . .

∫ b
a ζ(s)Bn(s)ds

]


B0(s)
...

Bi(s)
...

Bn(s)


.

(15)
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Equation (15) can be written in a simpler and more compact form

λ1(s)
(
[X]B

)T
[V1]

BB(s) + λ2(s)
(
[X]B

)T
[V2]

BB(s) =
(
[Z]B

)T
B(s).

(16)
After removing the common basis function vector B(s) from both sides
of Eq. (16), the equation reduces to the following matrix form

λ1(s)
(
[X]B

)T
[V1]

B + λ2(s)
(
[X]B

)T
[V2]

B =
(
[Z]B

)T
,

Therefore, solving for [X]B, we get(
[X]B

)T
=
(
[Z]B

)T (
λ1(s)[V1]

B + λ2(s)[V2]
B
)−1

.

Finally, the approximate solution x(s) can be obtained by substituting
the coefficients stored in the matrix [X]B into the truncated orthonormal
Bernoulli series defined in Eq. (12).

x(s) =
(
[X]B

)T
B(s).

4 Error Estimation and Convergence Analysis

Here, we explain the convergence analysis and error bound of the ap-
proximate solutions of the presented scheme in Section 3 for solving Eq.
(1). We present and prove the error estimation theorem by referring to
two well-known theorems.

Theorem 4.1. [16] Let f be a function in Cn+1[a, b], and let p be the
polynomial of degree ≤ n that interpolates the function f at n+1 distinct
points s0, s1, ..., sn in the interval [a, b]. For each s ∈ [a, b], there exists
a corresponding point ξs ∈ (a, b) such that

f(s)− p(s) =
1

(n+ 1)!
f (n+1)(ξs)

n∏
i=0

(s− si),

Theorem 4.2 (The Weierstrass Approximation Theorem). [16] If f
is continuous on [a, b] and ϵ > 0, then there exists a polynomial p such
that

∣∣f(x)− p(x)
∣∣ ≤ ϵ on the interval [a, b].
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Theorem 4.3. Suppose f is a Bernoulli polynomial basic function in
Cn+1[0, 1], and fn is its approximation. Let s0, s1, ..., sn be randomly
selected points satisfying

0 = s0 < s1 < · · · < sn = 1.

Then for every s ∈ [0, 1], there exists a ξs ∈ (0, 1) such that

f(s)− fn(s) =
1

(n+ 1)!
f (n+1)(ξs)

n∏
i=0

(s− si),

where

Rn(s) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(s− si),

and ∣∣Rn(s)
∣∣ ⩽ Ω1Ω2

(n+ 1)!
,

with

Ω1 = max
0≤s≤1

∣∣(s− s0)(s− s1)...(s− sn)
∣∣ ,

Ω2 = max
0≤ξs≤1

∣∣∣f (n+1)(ξs)
∣∣∣ .

Proof. If s is one of the selected points, then both sides of the equation
are zero, so the claim holds trivially. For other points, using Eqs. (2),
(3), and the series expansion

f(s) =

∞∑
k=0

fkBk(s),

and truncating the series at degree n, we have the interpolating polyno-
mial

f(s) =
n∑

i=0

fiBi(s) +
f (n+1)(ξs)

(n+ 1)!
(s− s0)(s− s1)...(s− sn).

Letting

fn(s) =

n∑
i=0

fiBi(s),
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we get

f(s) = fn(s) +
f (n+1)(ξs)

(n+ 1)!

n∏
i=0

(s− si),

and hence

f(s)− fn(s) =
f (n+1)(ξs)

(n+ 1)!

n∏
i=0

(s− si),

therefore ∣∣f(s)− fn(s)
∣∣ =
∣∣∣∣∣∣f

n+1(ξs)

(n+ 1)!

n∏
i=0

(s− si)

∣∣∣∣∣∣ ,
which implies ∣∣Rn(s)

∣∣ ≤ Ω1Ω2

(n+ 1)!
.

□

4.1 Convergence analysis

Theorem 4.4. Assume that the known function ζ(s) ∈ Cn+1[0, 1], and
xn(s) is the orthonormal Bernoulli basis approximation of the exact so-
lution x(s) of GAIE (1). Let x̄n(s) =

∑n
i=0 x̄iBi(s) be the approximate

solution obtained using the present method in Section 3, then there exist
constants M1,M2 such that∥∥x(s)− x̄n(s)

∥∥
2
≤ ϵ1M1M2

Ω1Ω2

(n+ 1)!
+ ϵ2

∥∥∥X −X
∥∥∥
2
,

where

Ω1 = max
0≤s≤1

∣∣(s− s0)(s− s1)...(s− sn)
∣∣ ,

Ω2 = max
0≤ξs≤1

∣∣∣f (n+1)(ξs)
∣∣∣ .

Proof. Let xn(s) =
∑n

i=0 xiBi(s) be the orthonormal Bernoulli basis
approximations of the exact solution x(s) of Eq. (1), then we can write

λ1(s)

∫ s

a

x(t)

(s− t)α
dt+ λ2(s)

∫ b

s

x(t)

(t− s)α
dt = ζ(s).
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Defining linear integral operators

L1(x(s)) =

∫ s

a

x(t)

(s− t)α
dt,

L2(x(s)) =

∫ b

s

x(t)

(t− s)α
dt,

we can rewrite

λ1(s)L1

(
x(s)

)
+ λ2(s)L2

(
x(s)

)
= ζ(s).

Since xn(s) is an approximation of the analytical solution x(s), we also
have

λ1(s)L1(xn(s)) + λ2(s)L2(xn(s)) = ζ(s).

Subtracting yields

λ1(s)L1(x(s)− xn(s)) + λ2(s)L2(x(s)− xn(s)) = 0.

Therefore

en(s) = x(s)− xn(s) = −λ2(s)

λ1(s)
L−1
1

(
L2

(
x(s)− xn(s)

))
.

Taking the 2-norm, we get∥∥en(s)∥∥2 = ∣∣∣∣λ2(s)

λ1(s)

∣∣∣∣M1M2

∥∥x(s)− xn(s)
∥∥
2
.

Now, we conclude that the approximation error satisfies the following
inequality∥∥x(s)− x̄n(s)

∥∥ =
∥∥x(s)− xn(s)

∥∥
2
+
∥∥xn(s)− x̄n(s)

∥∥
2

≤
∣∣∣∣λ2(s)

λ1(s)

∣∣∣∣∥∥∥L−1
1

∥∥∥
2
∥L2∥2

(∫ 1

0

(
Ω1Ω2

(n+ 1)!

)2

ds

) 1
2

+

∫ 1

0

 n∑
i=0

(xi − x̄i)Bi(s)

2

ds


1
2

≤ϵ1M1M2
Ω1Ω2

(n+ 1)!
+ ϵ2

∥∥X − X̄2

∥∥
□
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5 Numerical Experiments

In this section, to demonstrate the accuracy and efficiency of the OBBF
matrix method, three numerical examples are presented. In all computa-
tional experiments, absolute errors for different values of n are provided,
supported by graphs and tables. These numerical results are illustrated
using figures generated by a program written in Mathematica 11.0. In
the first three examples, the results obtained using the current technique
are presented along with the absolute errors in Tables 1, 2 and 3.

Example 5.1. [26] Consider the Generalized Abel’s integral equation

Eq. (1) with λ1(s) = λ2(s) = 1, α = 1
2 and ζ(s) = 4s3/2

3 − 32s7/2

35 −
32
35

√
1− ss3 − 16

35

√
1− ss2 + 104

105

√
1− ss + 8

√
1−s
21 . The exact solution is

x(s) = s− s3.
The accuracy of the approximate solution is clearly shown in Figure

1. Figures 2 and Table 1 illustrate the behavior of absolute errors of the
OBBF scheme for n = 3 and n = 5. In Table 1, a comparison between
the errors in the current technique for various n is presented. Since the
exact solution is a polynomial of degree 3, then it is sufficient to consider
the value of n = 3, . . . to approximate xn(s). This example demonstrates
that the operational matrix scheme for the generalized Abel’s integral
equation performs well when the exact solution is a polynomial function.

Example 5.2. Consider the GAIE

λ1(s)

∫ s

a

x(t)

(s− t)α
dt+ λ2(s)

∫ b

s

x(t)

(t− s)α
dt = ζ(s), s ∈ (0, 1),

with λ1(s) = λ2(s) = 1, α = 1
5 , ζ(s) =

es(1−s)4/5Γ( 4
5)

(s−1)4/5
+ esΓ

(
4
5

)
−

es(1−s)4/5Γ( 4
5
,s−1)

(s−1)4/5
− esΓ

(
4
5 , s
)
and the exact solution is x(s) = es.

Here, we evaluate the performance and accuracy of the proposed
method for a problem whose exact solution is an exponential function.
Figure 3 contains a graphs of absolute errors for n = 3 and n = 5. Also
in Table 2, the absolute error values for n = 3 and n = 5 are compared.
It is well observed that by increasing the value of n, the absolute error
decreases.
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Figure 1: Comparison of solutions for Example 5.1 with n = 5

(a) n = 3 (b) n = 5

Figure 2:
∣∣xn(s)− x(s)

∣∣ of Example 5.1 with n = 3 and n = 5

(a) n = 3 (b) n = 5

Figure 3:
∣∣xn(s)− x(s)

∣∣ of Example 5.2 with n = 3 and n = 5
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Table 1: The absolute errors of Example 5.1

Node x(s)
∣∣x(s)− x3(s)

∣∣ ∣∣x(s)− x5(s)
∣∣

0.0 0.000 5.55112×10−17 0
0.1 0.099 1.38778×10−17 2.77556×10−17

0.2 0.192 5.55112×10−17 5.55112×10−17

0.3 0.273 1.11022×10−16 5.55112×10−17

0.4 0.336 0 0
0.5 0.375 5.55112×10−17 5.55112×10−17

0.6 0.384 5.55112×10−17 5.55112×10−17

0.7 0.357 0 0
0.8 0.288 1.11022×10−16 1.11022×10−16

0.9 0.171 2.77556×10−17 2.77556×10−17

1.0 0.000 0 5.55112×10−17

Table 2: The absolute errors of Example 5.2

Node x(s)
∣∣x(s)− x3(s)

∣∣ ∣∣x(s)− x5(s)
∣∣

0.0 1.00000 1.08629×10−3 3.08271×10−6

0.1 1.10517 1.37385×10−4 1.00427×10−6

0.2 1.2214 3.83427×10−4 1.86423×10−7

0.3 1.34986 1.58981×10−4 6.27842×10−7

0.4 1.49182 1.51157×10−4 1.1191×10−7

0.5 1.64872 2.97398×10−4 6.39618×10−7

0.6 1.82212 1.79589×10−4 1.53654×10−7

0.7 2.01375 1.37281×10−4 6.34939×10−7

0.8 2.22554 4.05703×10−4 2.34141×10−7

0.9 2.4596 1.76459×10−4 1.07061×10−6

1.0 2.71828 1.22260×10−3 3.36075×10−6

Example 5.3. Consider the GAIE Eq. (1) with

ζ(s) =
6

5
2F1

(
−5

6
,
1

2
;
1

6
; s

)
+

√
πs5/6Γ

(
−5

6

)
Γ
(
−1

3

) +

√
πs5/6Γ

(
4
3

)
Γ
(
11
6

) ,
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λ1(s) = λ2(s) = 1, α = 1
2 and the exact solution is x(s) = s

1
3 .

Figure 4: Comparison of solutions for Example 5.3 with n = 7

Table 3: The absolute errors of Example 5.3

Node x(s)
∣∣x(s)− x3(s)

∣∣ ∣∣x(s)− x5(s)
∣∣

0.1 0.464159 2.11370×10−2 7.34728×10−3

0.2 0.584804 1.16665×10−2 5.62435×10−3

0.3 0.669433 2.54156×10−3 2.11392×10−3

0.4 0.736806 9.08339×10−3 3.23251×10−3

0.5 0.793701 7.53728×10−3 3.06711×10−3

0.6 0.843433 9.4146×10−4 1.00374×10−3

0.7 0.887904 6.2501×10−3 3.24168×10−3

0.8 0.928318 8.88536×10−3 7.50257×10−5

0.9 0.965489 1.42448×10−3 4.09531×10−3

Now, we apply the proposed method from Section 3 to equation (1),
where the exact solution is given as a fractional power of s. Table 3
shows the absolute errors for n = 3 and n = 5. In Figure 4, the exact
and approximate solutions are plotted for n = 7. Also, the errors for
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(a) n = 3 (b) n = 5

(c) n = 7

Figure 5: The absolute error
∣∣xn(s)− x(s)

∣∣ of Example 5.3 with n =
3, 5 and n = 7

n = 3, 5 and n = 7 are plotted through graphs in Figure 5.

Figure 6: Comparison of solutions for Example 5.4 with n = 3
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(a) n = 3 (b) n = 5

(c) n = 7

Figure 7: The absolute error
∣∣xn(s)− x(s)

∣∣ of Example 5.4 with n =
3, 5 and n = 7

Example 5.4. Consider the Generalized Abel’s integral equation (1)
with

ζ(s) =− 1

2

√
πe−serf

(√
1− s

)
+

1

2

√
πeserf

(√
s
)

+
1

2

√
πeserfi

(√
1− s

)
− 1

2

√
πe−serfi

(√
s
)
,

λ1(s) = λ2(s) = 1, α = 1
2 and the exact solution is x(s) = sinh(s).

In Figure 6, the exact and approximate solutions are shown for n = 3.
Additionally, the errors for n = 3, 5, and 7 are illustrated in the graphs
presented in Figure 7.

6 Conclusion

This paper presented a numerical approximation method for solving
Generalized Abel’s integral equations using simple operational matri-
ces. The functional matrix form of equation (1) leads to the formation
of a system of integral equations based on the OBBF. In addition, error
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analysis and the convergence of the proposed technique were established.
This method provides a stable approach without requiring collocation
points, relying solely on the orthogonality of the Bernoulli polynomials
to enhance the accuracy of the scheme. Testing several types of ex-
act solution functions for GAIEs demonstrated the high efficiency and
accuracy of the method.
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