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1 Introduction

Time series with seasonal or periodic characteristics are widely applied in
various domains, including climatology, economics, and hydrology. The
classical Box-Jenkins Seasonal Autoregressive Moving Average (SARMA)
model was proposed by Box et al. in 1994. It addresses the dependencies
of consecutive observations within a period and across different periods,
while maintaining constant parameters irrespective of the season. In
1997, Reinsel enhanced this approach with the introduction of Multi-
plicative Seasonal Vector Autoregressive Moving Average (SVARMA)
models. These models, which are stationary, exhibit large norms in
their autocorrelation matrices at lags that are multiples of the season,
T, and maintain consistent lag h autocorrelations independent of T for
h = 1, · · · , T. Despite extensive research on these models, [11] identified
numerous applications requiring seasonally varying model parameters.

To address time series data that exhibit periodic structures, schol-
ars have developed and explored periodic time series models with time-
varying parameters. Key contributors in this field include [5], [8], [14],
[21], [27, 28], [29], and [11, 13]. These processes, often referred to as pe-
riodically correlated, are typically nonstationary yet harmonizable and
have found extensive application in areas such as signal processing and
economics. In the multivariate case, [22, 23] introduced the concept
of multivariate periodic ARAM processes. Besides, [4] examined the
class of vector autoregressive (VAR) models with periodically varying
parameters.

The stochastic nature of autocorrelation in seasonal models distinctly
sets them apart from periodic time series models, which display a de-
terministic autocorrelation pattern, as noted by [24]. In pursuit of a
model that integrates both characteristics, it is advantageous to com-
bine seasonal and periodic time series. To this end, [1] pioneered the
development of first-order seasonal periodic autoregressive processes, ab-
breviated SPAR(1,1).

In recent years, statistical inference for processes in abstract spaces
has attracted increased attention from researchers. This field focuses
primarily on the theoretical foundations of operatorial statistics and the
analysis of functional data, [9] and [7]. Among these, Hilbertian autore-
gressive models, as defined by [2], have gained significant popularity in
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the analysis of time series in Hilbert spaces. These models, which extend
real-valued autoregressive processes, are widely utilized despite their lim-
itations. Consequently, there has been a concerted effort to adapt other
well-established real-valued time series models to Hilbertian processes.
Notable developments include the study of functional ARMA models by
[10], the presentation of periodic autoregressive Hilbertian processes by
[18, 19], and the introduction of functional versions of ARCH models
by [6]. Furthermore, [30] introduced the concept of pure seasonal func-
tional autoregressive processes of order 1 with seasonality T, abbreviated
SARH(1)T .

In this paper, we aim to expand the concept of first-order seasonal
periodic autoregressive processes to include Hilbertian processes. To
illustrate the relevance and potential of this extension, lets consider some
motivating examples. Consider the analysis of S&P 500 data. In 2022,
Mäınassara and Amir applied seasonal periodic autoregressive moving
average (SPARMA) models to analyze the daily log returns of the S&P
500 (New York) stock market index from January 4, 1999, to November
20, 2020. While their study focused on the closing values of the index, an
alternative approach could involve analyzing intraday 5-minute S&P 500
indexes, as explored by [17]. This approach enables viewing daily S&P
500 indexes as functional data, allowing the analysis of entire functions
rather than single closing values. Similarly, functional data analysis has
been applied in other contexts, such as electricity demand forecasting,
[26]. In 2022, Shah et al. highlighted the complexity of forecasting in
such data due to factors like ”multiple periodicities reflecting cyclical
variations over days, weeks, or seasons.” The proposed SPARH models
offer the potential to enhance forecasting accuracy in these scenarios by
capturing intricate seasonal and periodic dependencies.

The rest of this paper is as organized as follows. Section 2 introduces
preliminary notations and definitions. In Section 3, we introduce Sea-
sonal Hilbertian Autoregressive Processes with Periodically Varying Pa-
rameters (SPARH), along with their autocovariance operators. Section
4 is dedicated to examining the limiting properties of these processes.
Finally, the conclusion and some ideas on future works are presented in
Section 5.



4 A. ZAMANI, M. HASHEMI AND Z. SAJJADNIA

2 Preliminary Notations and Definitions

Consider H as a real separable Hilbert space equipped with the Borel
σ-algebra, B. This space is furnished with an inner product, denoted
as 〈·, ·〉H , and a corresponding norm, ‖·‖H . Furthermore, the space of
bounded linear operators acting on H is represented by L(H). For any
operator A within L(H), the notation A∗ is used to signify the adjoint
of A.

A random variable, denoted as X, possessing values within a Hilbert
space H, is defined as a measurable function that maps from a sample
space Ω into H. This mapping adheres to the measurability criteria es-
tablished by the F/B sigma-algebra, where F represents the Borel field
associated with the probability space (Ω,F , P ) . Furthermore, the ran-
dom variable X is categorized as strongly second-order if the expected
value of its squared Hilbert space norm, denoted as E ‖X‖2H , is finite.
In the context of this paper, for the sake of brevity and clarity, random
variables that are strongly second-order and possess values in H will be
referred to as H-valued random variables.

In the realm of zero-mean H-valued random variables X and Y , the
covariance and the cross-covariance operators are defined, respectively,
as:

CX (x) :=E [(X ⊗X)x] = E 〈X,x〉H X, (1)

CX,Y (x) :=E [(X ⊗ Y )x] = E 〈X,x〉H Y, (2)

where x belongs to H. For any two elements u and v within H, the ex-
pression u⊗v denotes the tensorial products of u and v. It is imperative
to note that the expectations in equations (1) and (2) are computed via
the Bochner integral.

We define a sequence of T -periodic operators as follows:

Definition 2.1. A sequence of operators {φn, n ∈ Z} in the space L (H)
is said to be T -periodic if condition φn = φn+T is true for each n ∈ Z.

The investigation of time series data crucially involves the study of
noise processes. In the context of Hilbertian processes, the concepts
of H-white noise and H-strong white noise processes were introduced
by [2]. Subsequently, we defined the periodic H-white noise (PHWN)
processes.
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Definition 2.2. A zero-mean H-valued process {εn, n ∈ Z} is charac-
terized as periodic Hilbertian white noise (PHWN) if, for n = r + kT,
r = 0, 1, . . . , T − 1 and k = 0, 1, . . . , it satisfies the following conditions:

• 0 < E ‖εn‖2H = σ2r <∞,

• for all n ∈ Z, it holds that Cεn = Cεr ,

• Cεn,εn′ = 0, for n 6= n′ .

3 SPARH(1,1) Processses

Consider the H-valued time series {Xn, n ∈ Z} satisfying the seasonal
autoregressive difference equation articulated as follows:

Xn = φnXn−1 + αnXn−T − αnφnXn−T−1 + εn, (3)

where the parameters φn and αn represent T -periodic operators within
the space L(H), and the series {εn} is characterized as PHWN. We
designate the model described by (3) as a first-order seasonal periodic
autoregressive Hilbertian process (SPARH(1,1)) with period T. It is easy
to show that the solution to Eq. (3) satisfies the subsequent pair of
equations:

Xn = φnXn−1 + Zn and Zn = αnZn−T + εn. (4)

If φn ≡ 0, αn ≡ α, and Cεn ≡ C0 for all n ∈ Z, the SPARH(1,1) model
simplifies to the SARH(1)T model as described by [30]. Note that φn = 0
if and only if 〈φn(x), x〉 = 0 for all x ∈ H, [20]. Alternatively, setting
αn ≡ 0 for all n ∈ Z leads to the formulation of a PCARH(1) model, as
introduced by [18]. Consequently, both the SARH(1)T and PCARH(1)
models can be regarded as particular instances of the SPARH(1,1) frame-
work.

Furthermore, the difference equation characterizing the SPARH(1,1)
model can be equivalently represented within the framework of a PCARH(p)
model, where p = T + 1, as presented below:

Xn =
T+1∑
i=1

φn,iXn−i + εn, (5)



6 A. ZAMANI, M. HASHEMI AND Z. SAJJADNIA

with the conditions φn,1 = φn, φn,i = 0 for 1 < i < T , φn,T = αn, and
φn,T+1 = −αnφn.

In this context, lets define the vector Xn = (XnT+1, . . . , XnT+T )′ and
the error vector εεεn = (εnT+1, . . . , εnT+T )′ . Given these definitions, the
SPARH(1,1) model can be expressed as an autoregressive model with
values in the Hilbert space HT :

ΦΦΦ0Xn = ΦΦΦ1Xn−1 + ΦΦΦ2Xn−2 + εεεn, (6)

where ΦΦΦ0, ΦΦΦ1 and ΦΦΦ2 are T ×T matrices of operators defined as follows:

ΦΦΦ0 =


I 0 · · · 0 0
−φ2 I · · · 0 0

...
...

. . .
...

...
0 0 · · · −φT I

 ,

ΦΦΦ1 =


α1 0 · · · 0 φ1
−α2φ2 α2 · · · 0 0

...
...

. . .
...

...
0 0 · · · −αTφT αT

 ,

and

ΦΦΦ2 =


0 0 · · · 0 α1φ1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 .

Lemma 3.1. Consider the time series {Xn, n ∈ Z} , characterized as
a SPARH(1,1) process with a periodicity of T, as defined in (3). Then,
this process can be equivalently formulated as an ARHT (2) model:

Xn = ΦΦΦ−10 ΦΦΦ1Xn−1 + ΦΦΦ−10 ΦΦΦ2Xn−2 + εεε′n, (7)

where the term εεε′n := ΦΦΦ−10 εεεn denotes a mean-zero white noise process
with covariance operator ΦΦΦ−10 diag (Cε1 , · · · , CεT )

(
ΦΦΦ−10

)∗
.

Proof. The proof is an easy consequence of equation (6). �
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Remark 3.2. The invertibility of the matrix operator ΦΦΦ0 is assured due
to its bidiagonal unit structure, as explained in [25]. As an example,
consider the case where T = 3. Here, the inverse of ΦΦΦ0, denoted as ΦΦΦ−10 ,
is explicitly given by:

ΦΦΦ−10 =

 I 0 0
φ2 I 0
φ3φ2 φ3 I

 .

Define the projection function π (x1, x2) = x1, where x1, x2 ∈ HT . The
following theorem presents a condition required for the existence and
uniqueness of the sequence {Xn; n ∈ Z}.

Theorem 3.3. Consider the matrix

ρρρ =

(
ΦΦΦ−10 ΦΦΦ1 ΦΦΦ−10 ΦΦΦ2

I 0

)
.

Suppose there exists an integer j0 ≥ 1 such that∥∥ρρρj0∥∥L(H2T )
< 1, (8)

then equation (7) possesses a unique stationary solution, expressed as

Xn = µµµ+

∞∑
j=0

(
πρρρj
) (

ΦΦΦ−10 εεεn−j
)
, n ∈ Z, (9)

where the series converges in L2
H (Ω,A, P ) and with probability 1.

Proof. The process Xn is conceptualized as an ARHT (2) process as
established in Lemma 3.4. The proof of this theorem follows analogously
to the methodology employed in Theorem 5.1 of [2]. �

It would desirable to reformulate Equation (8) utilizing the specific
parameters of our model, namely α1, . . . , αT and φ1, . . . , φp. To ensure
the validity of Equation (8), the subsequent lemma proposes a condition
derived from these parameters.

Lemma 3.4. If
∑

i ‖αi‖L(H) +
∑

i ‖αi‖L(H)‖φi‖L(H) + ‖φ1‖L(H) < 1,
then (8) holds.
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Proof. It can be shown that under the condition
∑2

j=1 ‖ΦΦΦ
−1
0 ΦΦΦj‖L(HT ) <

1, as per [2], Equation (8) is indeed satisfied. Further, it is demonstrable
that

‖ΦΦΦ−10 ΦΦΦ1‖L(HT ) ≤ ‖ΦΦΦ−10 ‖L(HT )‖ΦΦΦ1‖L(HT ),

‖ΦΦΦ−10 ΦΦΦ2‖L(HT ) ≤ ‖ΦΦΦ−10 ‖L(HT )‖ΦΦΦ2‖L(HT ).

By invoking the definition of the operatorial norm, the ensuing inequal-
ities are established:

‖ΦΦΦ−10 ‖L(HT ) ≤ 1,

‖ΦΦΦ1‖L(HT ) ≤
T∑
i=1

‖αi‖L(H) +

T∑
i=2

‖αi‖L(H)‖φi‖L(H) + ‖φ1‖L(H),

‖ΦΦΦ2‖L(HT ) ≤ ‖α1‖L(H)‖φ1‖L(H).

Thus, these considerations collectively complete the proof. �
The next theorem deals with a result concerning the projection of SPARH(1,1)
process.

Theorem 3.5. Let {Xn, n ∈ Z} be a zero-mean SPARH(1,1) process.
Suppose that there exists an element e ∈ H and scalar values λ1,n and
λ2,n ∈ R, fulfilling the conditions φ∗n (e) = λ1,ne and α∗n (e) = λ2,ne, in
conjunction with E 〈ε0, e〉2H > 0. Under these conditions, {〈Xt, e〉H ; t ∈ Z}
constitutes a SPAR(1,1) process, which adheres to the following relation:

〈Xn, e〉H =λ1,n 〈Xn−1, e〉H + λ2,n 〈Xn−T , e〉H
−λ1,nλ2,n 〈Xn−T−1, e〉H + 〈εn, e〉H . (10)

Proof. The derivation of this theorem is straightforward, resulting from
the fundamental properties of operators and inner products. �

3.1 The Autocovariance Operators

Let µµµ := E (Xn) . Consider Yn = Xn − µµµ, which constitutes a mean
zero ARHT (2) process as mentioned in Lemma 3.4. If the condition
mentioned in Eq. (8) holds, Yn is designated as a standard ARHT (2)
process.
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The autocovariance operator for this process, denoted as {Ch; h ∈ Z} ,
represents a bounded linear operator within L

(
HT
)

and is defined by:

Ch = CY0,Yh
.

It is evident that C−h = C∗h, h ∈ Z.

Theorem 3.6. Assuming Yn as the standard ARHT (2) processes, which
are derived from the standard SPARH(1,1) process as specified in Lemma
3.4, the following relations hold:

Ch = ΦΦΦ−10 ΦΦΦ1Ch−1 + ΦΦΦ−10 ΦΦΦ2Ch−2, (11)

and

C0 = ΦΦΦ−10 ΦΦΦ1C1 + ΦΦΦ−10 ΦΦΦ2C2 + ΦΦΦ−10 Cε

(
ΦΦΦ−10

)∗
, (12)

where Cε := diag (Cε1 , · · · , CεT ) is the covariance operator of the process
{εεεn, n ∈ Z} .

Proof. Utilizing the definition of the tensorial product, it can be shown
that for a bounded linear operator A, the relation x ⊗ Ay = A (x⊗ y)
holds. Applying this property, we derive:

Y0 ⊗Yh = Y0 ⊗ΦΦΦ−10 ΦΦΦ1Yh−1 + Y0 ⊗ΦΦΦ−10 ΦΦΦ2Yh−2

+Y0 ⊗ΦΦΦ−10 εεεh −Y0 ⊗
(
I−ΦΦΦ−10 ΦΦΦ1 −ΦΦΦ−10 ΦΦΦ2

)
µµµ

= ΦΦΦ−10 ΦΦΦ1 (Y0 ⊗Yh−1) + ΦΦΦ−10 ΦΦΦ2 (Y0 ⊗Yh−2)

+ΦΦΦ−10 (Y0 ⊗ εεεh)−
(
I−ΦΦΦ−10 ΦΦΦ1 −ΦΦΦ−10 ΦΦΦ2

)
(Y0 ⊗µµµ) . (13)

Given the properties of the Bochner integral, it follows that E (Y0 ⊗µµµ) =
0. Since {εεεn, n ∈ Z} constitutes the innovation process of Yn, we can
concluded that

E (Y0 ⊗ εεεh) = E (εεε0 ⊗ εεεh) =

{
Cε h = 0
0 h 6= 0

. (14)

The remainder of this proof seamlessly follows from the integration of
equations (13) and (14). �
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4 Limit Theorems

This section introduces a lemma presenting the Law of Large Numbers
as it applies to a standard SPARH(1,1) process.

Theorem 4.1. Consider Yt representing the standard ARHT (2) pro-
cesses, which are derivatives of the standard SPARH(1,1) process as
outlined in Lemma 3.4. As n→∞, the following relationship holds:

n1/4

(Log (n))β
Sn
n
→ 0, β > 0.5, (15)

where Sn = Y1 + · · ·+ Yn.

Proof. This theorem’s proof parallels the methodology employed in the
proof of Theorem 5.6, as explained in [2]. �

The subsequent theorem articulates the Central Limit Theorem spe-
cific to a standard SPARH(1,1) process.

Theorem 4.2. Let Yt be identified as the standard ARHT (2) processes,
initially introduced in Lemma 3.4, with a strong white noise εεεt. Assume
that the matrix I−ΦΦΦ−10 ΦΦΦ1−ΦΦΦ−10 ΦΦΦ2 is invertible. Under these conditions:

Sn
n
→ N (0,ΓΓΓ) , (16)

where ΓΓΓ is defined as:

ΓΓΓ =
(
I−ΦΦΦ−10 ΦΦΦ1 −ΦΦΦ−10 ΦΦΦ2

)−1
ΦΦΦ−10 Cε

(
ΦΦΦ−10

)∗ (
I−

(
ΦΦΦ−10 ΦΦΦ1

)∗ − (ΦΦΦ−10 ΦΦΦ2

)∗)−1
,(17)

and Cε is represented as:

Cε := diag (Cε1 , · · · , CεT ) .

Proof. The foundation of this proof lies in the established relationship
between the SPARH(1,1) and ARHT (2), as delineated in Lemma 3.4.
Applying Theorem 5.9 from [2] leads to the derivation of the result.
�
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5 Conclusion and Future Works

This paper introduces the first-order seasonal periodic autoregressive
Hilbertian process, a novel model that enhances functional time series
analysis by incorporating both periodic and seasonal dynamics. The
analysis of key properties, such as autocovariance operators, demon-
strates the model’s theoretical soundness. Additionally, its consistency
with fundamental statistical principles, including the law of large num-
bers and the central limit theorem, highlights its robustness and po-
tential for practical applications. As future work, we plan to develop
parameter estimation methods and investigate the consistency of the
estimated parameters. Additionally, implementing this model in real-
world scenarios and exploring extensions to enhance its applicability
in functional data analysis present promising directions for further re-
search.
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