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1 Introduction

1.1 Literature

We will encounter nonlinear equations in many physical, chemical, fi-
nancial and mathematical problems, many of which are impossible to
solve analytically. A powerful tool is the use of iterative methods.
We have used multi-step methods that they were more efficient than
the one-step methods. Therefore, we use the without-memory methods
which are based on the weight functions to solve them. In the follow-
ing, we turn these methods into single-parameter with memory methods.
The accelerating parameter has been approximated by using the Secant
method, quasi-Secant and Newton’s interpolatory polynomial. We have
constructed the new family of with-memory methods by 50% conver-
gence improvement in the third section.We review the two-step iterative
methods as follows.

1.2 Existing iterative methods

In 2007, Kou et al. [1&8] proposed the following quasi-Halley quadratic
method:

Wy = Ty — f/(xn)an:OaLQf" )
f'(an) (1)
2f(wn) )f(wn)

anrl = Wnp — (1 + f(mn)—af(wn) f’(l’n) ’

In 2008, Chun [9] introduced the first optimal two-step method using
the weight function

_ _ f(zn) _ flwn)
Wp = Tn F(zn)’ tn = Fn)’

H(0)=1, H(0) = -2, H"(0) < o0, (2)
— f(wn)

Il = Wn T H ) @n)
M.S. Petkovi¢ and Petkovi¢ in [29] presented a fourth-order method as
follows Fen) o)

Yn
Yn = T F@a) ST )
H(0) =1, H'(0) = 2, H"(0) < (3)

(Sn) f(yn)

Tn+l = Yn —
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Soleymani in [32] proposed the following three-parameters two-point
methods

N fn)  _ fm) . Flum) f(zn)
Yn = Tn = Flzayr n = Flog) Un = Flaa) Un = Flan)
G(0) =1, G'(0) = 0, G"(0) < oo, H(0) = 1, H'(0) < oo,
K(0) =1, K'(0) = 0, K”(0) < o0,

_ _ S (@n)2 48 (@n) f (un)+vf (Un)?  f(yn)
Tnt1 = Yo — G (tn) H(un) K (Vn) 72, 2552 F (o) Flam) 7 F ) F () \

The fourth-order Soleymani et al.’s method [33] is defined by

N 2 f@n) , _ flam) . f(wn)
Wn =Tn = 37y In = Fa.) Un = Fla.)

Q(0) =1, Q(0) =0, Q"(0) =0, P(1) =1, P'(1) = 7,
P"(1) =5, P"(1) < 00,Q"(0) < o0,
Tnt1 = T — Qty )P(un)%

()

In 2012, Lee and his colleague Kim [22] proposed a family of two-step
methods based on a two-variable function

Y=oy, + ﬁf(ﬂ?n)k, Zn = Yn — f[];(gj;)n]a Up = }CE;:;’
wn—fé;nganzo)]-727"'7k257 (6)
HO0 =1, HOl =2 — H10, Zns1 = 2n — H(vn,wn)f{;(:z)n}.

Six years after Chun, Lotfi [23] presented the following two-step without-
memory method for solving nonlinear equations.

2 fm) _ [yn)

Wp = Tn f(zn)’ RACHE

H(0) = 2, B(0) = 57, H'(0) = 3, H"(0) < s, ")
o 21‘7%)

Tpy1 =T, — H(s )f’ (zn)+f"(yn) "

In 2016, the two-point iterative method that constructed by Kansal et
al. [17]

_ _ f(zn)
Yn = Tp F(an)’

f(zn) 125f($n)3 + 25f(xn)2 (Yn) — 150f(37n)f(?/n)2 - 96f(yn)3

f
Ten) 125 f ()3 — 100 ()2 () — 300.f (20) f (yn)? — 156 (yn)3”
(8)

Tn+l1 = Tn —
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In 2019, Junjua et al. [16] proposed the following two-point method
based on inverse interpolation

Yn = Tn F@n)’
1 . 1 (9)
= U =T @) nyn] — Flyn)—F@n ) (@n)’
Tp+1 = (0) =Yn + glf(xn)Q-

Cordero et al. [12] , in 2021, solved the nonlinear systems by usining
the following parametric family of iterative schemes

y™ = 20— al (207 (),
A = UGS GO A
+ul G oL )T )T ).
(10)
Torkashvand et al. [39], in 2023, found the following iterative methods

based on with-memory method

wOZ-’BO_IYOf(xO)a’Yk:ma k:172737"'7

9(0) = ¢'(0) = 1, [g"(0)| < oo,
f(zk) _
ve = Tlem el ¥ (2 Flan) © = ?( 1)2 aa
Yk _ Yk
by = flay)r Tkl = Yk = g(t )f[yk swrl+e—zr) f(yr)

1.3 Motivation and organization

Among many indices for comparison of different methods such as the
index of efficiency, radius of convergence, improvement convergence or-
der, etc.; here, we try to build a family of with-memory methods that
fits better to improving the degree of convergence. For this reason,in
this paper, we firstly propose an efficient fourth-order without-memory
method. Then, we have converted the new two-step methods to the with-
memory methods. It has shown that the proposed with-memory schemes
mostly efficiency index better than the optimal method second-, fourth-
, eighth-, sixteenth-order.
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The rest of this paper has been prepared as follows. In Section 2, the con-
struction of the new without-memory schemes has been offered. Section
3 includes its analysis of convergence of some with-memory methods and
it shows the with-memory proposed methods have fifth- sixth-order. Nu-
merical examples and comparisons of the proposed methods with others
with- and without-memory methods have been given in Section 4. In Sec-
tion 5, the basins of attraction of the given weight functions from the
proposed method. We have used the second and third-degree polyno-
mial equations for selecting the most appropriate ones. Finally, we have
illustrated conclusions.

2 The Methods and Analysis of Convergence

Firstly, suppose the double Newton’s method as follows

_ _ f(zn)

Yn = Tn = F(z,) (12)

T _ _ f(yn)
=Y T )

The error equation of the method (12) is as follows
eni1 = coer + O(eD). (13)

As can be seen, this method has four evaluations of the functions f(x,),
f(xn), f(yn) and f'(yn). Also,its convergence order is equal to four.
Therefore, this method is not optimal in terms of Kung-Traub conjec-
ture for multi-step methods without memory. Hence, one of the function
evaluations should be omitted. Besides, to eliminate the calculation of
the derivative, we will approximate f’(z,) and f’(y,) in terms of previ-
ous information and the use of the weight function as follows

~ f n,Tn _ f n
f'(ga) ~ D) o = 425, Flwn)~f ()
Wp = Tp + Bf(xna f/(xn) ~ f[wnal'n] = Lo )

Wn,—Tp,

(14)

B € R . In the following, we will specify the conditions of the weight
function. Therefore, we start from the scheme (12),the approximations
(14) and state the following two-point method
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il - T (o) (15)
n = Fwnyr ot = Yo — Hta) 35,700

{wn = @0+ Bf (), Yo = 7 = 722,

The following theorem illustrates that under what conditions on weight
function, the convergence order of two-step family (15) will arrive at the
optimal level 4.

Theorem 2.1. Let H, f: D C R — R have a single root o € D, for an
open interval D. And the f(z) is sufficiently differentiable. If the initial
point xqg s sufficiently close to «,then the sequence x,, generated by
any method of the family (15) converges to «. If H is any function with
H(0) =1, H(0) =1, |H"(0)| < 00 and 8 # 0 then the methods defined
by (15) have convergence of order at least 4.

Proof. By using Taylor’s expansion of f(x) about o and taking into
calculation that f(a) = 0, we earn

f(zn) = f(a)(en + 262 + c3€3 + caet + O(ed)). (16)
Then, computing e, ,, = wy, — a, we attain w, = x, + Bf(zy)
En,w = €n + enﬁf/(a)(l + en(CQ + en(c;), + enC4))) + 0(62)’ (17)

and

flwn) =f'(a)(en + enBf (@) (1 + enc2 + enles + encs)))
+ealen + enBf (@) (14 en(ea + enles + enca))))”
+ c3(en + enBf (@) (1 + enlca + en(cs + ency))))?
+ calen + enBf (@) (1 + enlcz + en(cs + ency))))?).
(18)
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Considering f[z,y] = ! (Ia);g @) js Newton’s first order divided differ-
ence. We get

flen, wa] = = 1/(enBf (@) (1 + enlca + enlcs + enca)))) ™"
(enf'(a)(1 + en(ca + en(cs + enca))) — f(a)
(en + enBf () (1 + en(co + en(cs + ency)))
+ calen + enf () (1 + en(co + enlcs + ency))))?
+ c3(en + enBf (@)1 4 en(ca + en(cs + enca))))?
+ calen + enBf (@) (1 + enlca + enlcs + enca))))h). (19)
),

From (16) and (19), we now have

yn =a + (1+ B (@))en + (=2 + Bf(a)(2 + Bf'(@))c3)
+ (14 Bf()(2+ Bf'(@))esep + (4 + B () (5+
B (@)B+ B ()3 — (T+ Bf (a)(10 + 5 ()
(7T+28f"(@))))cacs + (1 + Bf (@) (B + B () (3+
Bf'(@)))ea)en + O(ey,). (20)

The expansion of f(y,) about « is given as

Flyn) =f' (@) (1 + Bf' () caer + /(@) (—(2 4 Bf (o) (2+
Bf' ()3 + (1+ B ()2 + Bf'(a))ezey, + f'(a)
(5 + B (a)(7+ Bf () (4 + Bf'())))e3 — (T+
B (a)(10 + Bf(a)(T + 2B f())))e2cs + (1+
Bf ()34 Bf ()34 B (@)))ea)ep + Ofey). (21)
Using (18) and (21), we obtain

f(yn)
f[y’m JIn]

=(1+Bf'(a))czes + (—(3+ Bf (@) (3 + Bf (@) 3+

(14 Bf ()2 + Bf'(@))ese) + (T + Bf (@) (8 + B
F(@) @+ 81" (@)es =205+ Bf () (T + Bf'(«)

4+ Bf'(a))))eacs + (1 + Bf ()3 + Bf'(a)

(34 B (a))ca)en + O(e)). (22)
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Using the Taylor expansion H(t;) we have

Now by using relations h0 = H(0), h1 = H'(0), h2 = H"(0) and from
(23), we get

H(

tn)

=h0 + hlcse, + (

(h2 — 2h1(3 4 2Bf"(a))c3 + h1(2+
Bf'(a))ese? + ((—h2(3 + 2B (o)) + h1(8 + Bf (cv)
(84381 (a))))c3 + (h2(2 + Bf'(a)) — h1(10 + Bf'(cv)
(11 + 48" (a))))ezes + h1(3 + Bf (o) (3 + B (a)))
ea)ed + (%(h2(25 +28f(a) (14 4 BAF (@) — 201 (204
B (a)(26 + Bf (@) (15 + 48" (a) (3 + Bf (@))))ca+
(—2h2(8 + 38" (a)(3+ Bf' () + h1(37 + Bf' ()
(52 + 36/ (@) (11 + 357'()))Bes + 5 (h2(2 + 6
F(@))? = 2h1(8 + B (a)(13 + Bf (@) (9 + 2B/ ())))
5+ (h2(3+ B (a)(3+ Bf' () — h1(14+ Bf (o)
(21 +28f"(a)(7T+ 28 (a)))))caca + h1(2 + Bf'(a))
2+ Bf (@) (2+ Bf'())es)en + O(ed). (24)

L\D\»—t

Finally, replacing (20), (21), (22) and (24) in the last step of (15),we
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get

f(yn) _ (o

caep + (—(=2 4+ hL(L+ Bf' () + Bf'(a)(2+ Bf (a))—
hO(3 + B (@) (3 + Bf'(@)))* = Bf (@) (2 + B () c5—

(=14 hO)(1+ BF () (2 + B ())es)el + () — 8+

h2 = 108f"(a) + Bf' () (h2 — 2B () (3 + Bf'(cr))) — 2
h1(6 + Bf'(a)(8 + 3B ())) + 2h0(T + Bf () (8 + Bf' ()
(44 B ()3 + (=7 =211+ Bf' () (2 + B ()

— Bf(a)(10 + Bf'(a) (7 + 28 () + 2h0(5 + Bf' ()

(74 Bf' (@) (4 + Bf'()))))eacs — (=1 4 h0)(1 + Bf' ()
(34 B (a)(3+ Bf'(@)))ea)en + O(ed). (25)

By putting h0 = 1 and A1 = 1 the final error expression is given by

Tptl — @ =Yy —a— H(t,)

enst = (1 4+ B (@))ea)((~6+ h2 — 45 (@) +2(1 + 6 (a)
c3))ep + Oey). (26)
If we set h0 = 1, h1 = 1 and h2 = 2 the error equation is
enrt = (1+ B/ (0)Pea(2 — es)el + O(€]). 1)

Hence, the fourth-order convergence is established. O
Some concrete weight functions that satisfy the conditions H(0) = 1,
and H'(0) =1 are

Hl(tn> =1 +tn, H2(tn) = ﬁv HS(tn) = etn’
Hy(ty) = cos(ty) + sin(ty,), Hs(t,) = 1+ tan(t,), (28)
Hg(ty,) = 1+ arcsin(t,,).

Some of the weight functions that apply to the given conditions H(0) =
1, H'(0) =1 and H”(0) = 2 are as follows

1
Hr(ty) = 14+t, +12, Hg(t,) = 5 (arctan(t,) +arcsin(t, ) +t2 41, (29)
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Remark 2.2. From Theorem 2.1 can be resulted that the new fourth-
order convergent iterative method (15) satisfies the conjecture of Kung
and Traub that a multipoint without memory method with three evalu-

ations of functions and can achieve an optimal fourth-order of conver-
gence and an efficiency index of /4 ~ 1.58.

In the next section, we extend these schemes into with memory meth-
ods for solving the nonlinear equations.

3 Acceleration of the Family of Two-point Meth-
ods

In this section, we propose the following iterative method with memory
based on (15)

_ -1 —
/Bn—m,n—172,3,"‘,

W, :xn+/8nf<xn)7 Yn = Tp — f[fllE:j;)n}) n:071727"’ )

30
by = HL H(0) = H'(0) = 1, [H"(0)] < o0, (30)
Tn+1 = Yn — H(tn)f[{;g:u)n}‘

We observe from (26) that the order of convergence of the presented
methods (15) is 4 when 5 # ﬁ;) The exact root of the equation is not
available, so the value of f’(«) cannot be calculated accurately. So it can
be approximated as follows: f'(a) ~ f’(a)). We could approximate the
parameter 8 by 3,,. Therefore, one of the following methods can be used
to approximate the self-accelerator parameter

Method 1. .
~ _ _ Tpn — Tn—1 )
O™ F@) = " Fam) = Fan 1) (31)
Method 2. )
- Wp — Tp—1
n N = = — . 32
= @) = Flwn) = Fan) (32
Method 3.
/Bn ~ -1 o Yn — Tn—-1 (33)
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Method 4.
1 1
n ~ = = - ) 34
™ Fita) ~  Ni(an) (34)

where N3(z,,) are defined as follows N3(x,,) = N3(t; Zpn, Tn—1, Wn—1, Yn—1),

Theorem 3.1. Let « is a simple root of f(x) = 0 and f(x) is sufficiently
differentiable. If an initial approximation xg is sufficiently close to the
zero a of f(x) = 0 and the parameter (3, in the iterative method (30)
is recursively calculated by the forms given in (31)-(34). Then, the R-
order of convergence of the two-point with-memory methods (30) with
the corresponding expressions (31), (32), (33) and (34) of By is at least
2+/5, %(5 +/13), %(5 +V/17) and 3 + V5 respectively.

Proof. First,we assume that the R-orders of convergence of the se-
quences wy, Y, and xz, are at least P, @ and R, respectively. Hence

R R?
En+l ~ € Y Ey

Eny ™~ eg ~ e'r]z%Qa (35)

The Taylor’s series expansion of f(z) about « is given as

x—onf”a x—agf”a
( 2)! (@)  ( ;! (@)

f(@) = fa)+(z—a)f (a)+ +.... (36)
Method 1. Now using the relations x,—a = e, and z,,_1 —a = e,—1
also the relation (36) we have

flxn) = f(@)+ (zn—a) f'(a) + (#n — ) f"(a) + (#n — @)*f"(2) +....

2! 3!
(37)

and

(zn-1 — a)*f"(a) | (w1 — )’ f"(a)

f(@n—1) = f(a)+(zn_1—a) f'()+ + +....

2! 3!
(38)
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Using (37), (38) and z,, — xp—1 = €5, — €1 We get
f(wn) — f(wn1)

Tp — Tn—1
_ 2 rt _ 3
 (en—en1)f'(0) + Lomen ITA) | fenmen PP
€n — €n—1

_ pey 4 Cnten)f"(@) (e~ enenn £ ) "(@)

21 3l + ...

(39)

Using the relation (31) we have

1
6” = = 7" e2_e e e2 " (e (40)
f/(a) + (en+en5!1)f (a) + ( n_-n ”*1; n—l)f ( ) + ...

Now to calculate (1 + f,,f'(«)) using equation (40) we obtain

1+ an,(a) (41)
L ()
f'(a) + (e"+en§!1)f”(a) + (e%_enen_lgryei_l)fm(a) +...
(en + €n—1)ca + (e% —epntn_1+ 6%_1)03 +...
14 (en + en_1)c2 + (€2 — enen—1 + ei71)03 + ...

~ C2€n—1
Following (17), (20), (27) and (41), we find

ens1 ~ (1 + Buf/(a))el ~ en_1el ~ el

eny ~ (14 Bnf'(a))e? ~ ep_1e2 ~ el 2R (42)

n—1

enw ~ (1+ Buf'(@))en ~ en_1en ~ i,

Now, comparing the error exponents of e,_1 on the right hand sides
of pairs (35) and (42), respectively, we obtain the following system

RP-1-R=0,
RQ—-1-2R=0,
R?—1—4R=0.
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This system has the solution P = —1 4+ /5, Q = /5 and R = 2 +
v/5. Thus, we can conclude that the lower bound of the convegence order
of the with-memory methods (30) and (31) is R = 2+ v/5. We show this
method with TM4.2.

Method 2. Also, by using the relations w,—1 —a = ep—1w, Tn—Wp—1 =
en — en—1. and the relation (36) we have

flwn1) = (43)

(wn1 — )?f"(@) | (wn1 —a)’f"(a)

F(@) + (waes — @) f'(@) + + +o..

2! 3!
and

flan) — fwp—1)

Tp — Wg—1

(44)

(6”76n—1,w)2f”(a) (en*en—l,w)SfW(a)

_ (en—en—1.0)f(@) + ol + 3! T

€n —En—1lw

(en + en—1,w)f" () N (€2 — enen—1,w + 6121_171”)]0///(0[)
2 3!

= f(a) + +...

Now to calculate (1 + 3, f'(«)) using eq. (44) we get

1+ Bnf'(c) (45)
/()

o " 2 _ 1 wHte? 11 (%
f/(a)+ (en+en721!,w)f (Oé) + (en €nén—1, -g!enfl,w)f (I ) 4+

(en + en—1,w)C2 + (€2 — enén—1w + e%_l,w)@, +...
1+ (en +en—1,w)c2 + (€2 — enen—1w + ei_Lw)Cg, + ...

=1

~ C2€pn—1,w

Following (17), (20), (27) and (45), we find

eni1~ (L+ Buf'(a))eh ~ en_1wer ~ el HHE,

En,y ™~ (1 + an,(a))ei ~ en—l,wei ~ ekI;Dija (46)

Enw ™ (1 + /an/(a))en ~ €n—1,wen ™~ egj_le

13
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Now, comparing the error exponents of e,_1 on the right hand sides of
pairs (35) and (46), respectively, we achieve as follows system:

RP—-P—-R=0,
RQ—-P—-2R=0,
R*—P—4R=0.

This system has the solution P = %(—1 +V13),Q = %(1 + V13)
and R = 1(5 + /13). Thus, we can conclude that the lower bound of

the convegence order of the with-memory methods (30) and (32) is
r = (54 V/13). We show this method with TM4.3.

Method 3. Using the relations x, — yp—1 = €, — €n_1,y, Yn—1 — @ =
en—1,y and (35) we have

(Yn—1 — )*f"(@) | (Yn-1 — )’ f"(a)

fn-1) = f(@)+(Yn-1—a) f'(a)+ + ...

2! 3!
(47)

Similarly, we have
1 -+ 6nf/(0é) ~ C2€n—1,y (48)

Following (17), (20), (27) and (48), we find

4R
eny1 ~ (1 + /an/(a))ei ~ en—l,yei ~ egjl )

Cn,y ™~ (1+ /an/(a))ei ~ en—l,ye% ~ egffR, (49)
n

Cn,w ™ (1 + 5nf/(04 )6 ~ €pn—1,y€k ~~ 65;):??,

Now, comparing the error exponents of e;_; on the right hand sides of
pairs (35) and (49), respectively, we obtain the following system:

RP - (Q+ R) =0,

RQ - (Q+2R) =0,

R?— (Q+4R) =0.

This system has the solution P = %(9 —V17),Q = %(1 + V/17) and
R = }(5+ V/17). Thus, we can conclude that the lower bound of the
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convegence order of the with-memory methods (30) and (33) is R =
$(54 V/17). We show this method with TM4.5.

Method 4. To prove the last-part of Theorem 3.1, we use the following
code written in Mathematica software:

ClearAl1["Global’*"]

A[t_]:=InterpolatingPolynomial [{{e,fx},{ew,fw},{ey,fy}, {el,fx1}},t]
Approximation=-1/A’[e1]//Simplify;

fx=fla*(e+c2*e”~2+c3*e”~3+cd*e”4);

fu=fla*(ew+c2xew”2+c3*ew”3+cld*ew”4) ;

fy=flax(ey+c2xey~2+c3*ey~3+cd*ey 4);

fxi1=fla*(el+c2*el”2+c3*el”3+cd*el”4)

\beta =Series[Approximation,{ e,0,2}, { ew,0,2}, { ey,0,2}, { e1,0,0}]//Simplify;
Collect[Series[1+\betaxfla,{e,0,1},{ew,0,1},{ey,0,1},{e1,0,0}],{e,ew,ey,el},Simplify]

which results in
cyieewey (50)

Therefore, one may obtain

1+ Buf(a) ~ Caen—1€n—1,wen—1,y (51)

Using Eq. (51) and the error equation of the two-step with-memory
method in Equation (30), we have:

1+P+Q+4R
€n+1 (1 + /an/(a))ei ~ 6nfl61171,11)67171,3/6;11 n~ ent1+Q+ 5
14+P 2R
Eny ™~ (1 + an,(a))ei ~ en—len—l,wen—l,yei ~ entl—i_Q—i_ s
14+P R
En,w ™~ (1 + ﬁnf/(a))en ~ €n—1€n—1,wln—1,y€n ™~ en—t1+Q+ .
(52)
By comparing the error exponents of ep_; on the right hand sides of
pairs (42) and (52), respectively, we achieve as follows system:

RP—(14+P+Q+R)=0,
RQ—-(1+P+Q+2R)=0,
R?— (14 P+Q+4R)=0.

This system has the solution P = v/5, Q = (14 1/5) and R = (3 + /5)
. Thus, we can conclude that the lower bound of the convegence order of
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the with-memory methods (30) and (34) is R = 3 + /5. We show this
method with TM5.2. This completes the proof. U

Remark 3.2. Convergence order of the two-point with-memory methods
(30) with the corresponding expressions (31), (32), (33) and (34) of Bk
is at least 2+/5, $(5+V/13), 1(54+V/17), and 3+/5. Therefore, theirs
efficiency index is (2 + \/5)% = 1.61, (3(5 + \/ﬁ))% = 1.62,(3(5 +
VIT7))3 = 1.65 and (3 + /5)5 = 1.73.

In the following, we convert the without-memory method (15) to a

with-memory method with weight function conditions H(0) = H'(0) =
1, H"(0) = 2 as follows.

51<ZW31%),16:17273’...7

wy = T + B f(Tk), Yk = o8 — fiilglikl’)k]’ k=0,1,2,---,

b= J{((ZZ))’ H(0) = H'(0) =1, H"(0) = 2, 211 =y — H(tk)f[J;(kZ{ZJ)k].
(53)

Then, by approximating the self-accelerator parameter §; by Newton’s
interpolation polynomial, we propose the method whose convergence or-
der is equal to 6. The next Theorem shows a proof of the order of con-
vergence of method (53).

Theorem 3.3. Let the function f(x) be sufficiently differentiable in
a neighborhood of its simple zero «. If an initial approrimation xg is
sufficiently close to a, then, the R-order of convergence of the two-step
method (53) with memory is at least 6.

Proof. We apply Herzberger’s matrix method [11] to define the con-
vergence order. Observe that the order lower bound for a single-step
s-point method (53) x,, = p(xp—1,Tn—2, -+ ,Tn_s) is the spectral radius
of a matrix N(®) = (n;;), related to the method with elements:

n1; = amount of information required at point x,_j;, j =1,2,3, -

Nji—1 :17i:2737"' » S,

n;; = 0 otherwise
(54)
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So, the order lower bound of an s-step method 1) = 11 oy 0--- 0 g
is the spectral radius of the product of matrices N = N1.Ns.--- .Ns;. We
can state each approximation z,41,yn,and w, as a function of acces-
sible information f(y,), f(w,) and f(z,) from the n-th iteration and
f(Yn-1), f(wp—1) and f(zp—1) from the previous iteration, depending on
the accelerating technique. Now, we construct the corresponding matri-
ces as follows

1 1 1 1
1 0 0 0
In+1 = wl(yna Wnps T, ynfl); = Nl - 01 0 0}’
0010
1 1 10
1 0 00
Yn = w2(wnaxmyn717wn*1); = Ny = 010 0]’
0 010
1 1 0 0
1 000
Wn = Y3(Tn, Y1, Wn—1,Tn-1); = N3 = | o |
0 01 0

Hence, we obtain

N = N1NaN3 =

— o= N
S = N

0
0
K
0

o O oo

an its eigenvalues are (6,0,0,0). Since the spectral radius of the matrix
N is 6, we conclude that the R-order of the methods with memory (53)
is at least 6. O

At the end of Section 3,we note that recently several multi-point
with-memory methods for solving nonlinear equations have been studied
by Lalehchini et al. [21] and Zafar et al. [13]. Also some new families
have been proposed of with-memory methods by Torkashvand et al.
[36, 37, 38, 40, 12]. They approximated the self-accelerator parameter
by using Newton’s interpolation polynomials. Also, Argyros [2, 19] and
Moccari et al. [20] have studied the local and semilocal convergence
iterative methods. In the sequal, we study the efficiency of the proposed
methods by five numerical examples.

17
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4 Numerical Results

In this section, we check the effectiveness of the new optimal fourth-
order family of methods (15),taking Sy = 0.1, which is denoted by
TM4; compared with the with-memory methods (TM4.2), (TM4.3),
(TM4.5), (TM5.2), (TM6) and Compos et al.’s method (CCTVM)[0],
Chicharro et al.’s method (CCGTM)[7], Choubey et al.’s method (CPGM)[3],
Petkovi¢ et al.’s method (PDPM)[30], Mohamadi et al.’s method (MLAM)[27]
and Traub’s method (TM)[11]. The five nonlinear functions, and the ex-

act root also the initial approximation of the roots can be seen below

to check the degree of convergence as well as the efficiency index of the
proposed methods with other methods:

fi(z) =25 + 2% + 422 — 15, a ~ 1.34, 2 = 1.1,

fo(x) = 23 —|—4x —10, a = 1.36, xp = 1,

fa(x) = 10z -1, ax1.67, 20 =1,

fa(z) =21 (1 + zsin(z)) + e_1+x2+“05(”‘") sin(rz), a =0, 9 = 0.6,
f5(x) =vz 881n($27:_2 $4+1 —V6+ 3 75, @ = —2, 19 = —2.3.

The convergence criterion selected is a toleration of 1076 with a max-
imum of 150 iterations. All computations have been done on Intel
Coreib — 4210UCPUQ@1.70GH 22.40GH Z with 4 GB RAM, using Mi-
crosoft Windows 10, 32 bit based on X32-based processor. Mathematica
10 has been used to generate all graphs and computations. The symbols
used in these tables are as follows:

1. The number of iterations to approximate the zero (Iter).

2. The value of the computational order of convergence r. approximated

by (see ([15])

g |f(w)/ f(xh1)]
" log | f (k1) /f(wns)| (55)

3. The errors |ry1 — x| of approximations to the corresponding zeros
of the functions fi(x) — f5(z).
4. In 1960, Ostrowski [28] defined the efficiency index of an iterative

method as follows:
1

EI =1, (56)
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The R-order of convergence r and the number of function evaluations
0 per iteration. The efficiency index is still an important indicator by
comparing iterative methods for solving nonlinear equations.

The results of the numerical calculations shown in Tables 1 to 6 confirm
that the degree of convergence of the methods proposed in Equations
(TM4), (TM4.2), (TM4.3), (TM4.5), (TM5.2) and (TM6) is the same as
theoretically proved in Theorems (2.1), (3.1) and (3.3).

Table 1: Numerical results of the method TMA4.

functions TMA4, H,(t) | TM4, Hy(t) | TM4, Hy(t) | IM4, Ha(f) | TM4, Hs(2)
fi,z0=1.1 |Zp+1 — zn| | 0.00e-0 4.21e-7 2.54e-6 0.00e-0 0.00e-0

|f(ns1)| | 24217 | 3.78e-24 | 626021 | 5.22e-15 | 3.22¢-16

Iter 3 3 3 3 3

Te 3.95 3.98 3.97 3.92 3.94
fo,xo =1 |@pt1 — 2| | 6.64e-8 2.94e-9 1.34e-8 2.10e-7 8.82¢-8

|f(znr1)] | 13328 | 345e-34 | 2.11e-31 | 1.58¢-26 | 4.18¢-28

Tter 3 3 3 3 3

Te 3.99 3.99 3.99 3.99 3.99
fa,xop=1 |@pt1 — 2| | 2.63e-8 1.68e-8 2.15e-8 3.11e-8 1.75e-8

If(znsr)| | 3.23¢-30 | 3.50e-31 | 1.19e-30 | 7.46e-30 | 3.97e-31

Tter 3 3 3 3 3

Te 4.00 4.00 4.00 4.00 3.99
f1,20 = 0.6 |Xp41 — 2| | 0.00e-0 0.00e-0 0.00e-0 0.00e-0 0.00e-0

[f(zn+1)| 4.27e-9 6.20e-18 6.00e-17 1.75e-15 4.36e-16

Iter 3 3 3 3 57

Te 3.98 4.02 4.03 4.06 4.05
fsy20 = =23 | |zpt1 — xp| | 1.10e-14 8.50e-15 9.76e-15 1.25e-14 0.00e-0

\f(znr1)| | 217e-57 | 6.27e-58 | 1.20e-57 | 3.75e-57 | 4.36e-16

Iter 3 3 3 3 10

Te 3.99 4.00 3.99 4.00 4.05
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Table 2: Numerical results of the method TM4.2.

functions TM4.2, Hy () | TM4.2, H(t) | TMA.2, Ha(t) | TMA4.2, Hy(t) | TM4.2, Hy ()
fi,zo=1.1 [Zn+1 — znl| | 9.20e-7 1.94e-8 2.32e-8 5.60e-6 1.75e-6
|f(@ns1)| | 164e-24 3.72¢-33 2.10e-31 4.52¢-21 2.61e-23
Tter 3 3 3 3 3
Te 4.09 4.37 4.03 4.08 4.07
fo,mo=1 |@pt1 — zp| | 2.55e-9 9.24e-11 1.41e-10 1.24e-8 3.38¢-9
|f(zns1)| | 8.28¢-37 6.13e-45 2.760-42 9.12e-34 2.75e-36
Iter 3 3 3 3 3
Te 4.15 4.40 4.11 4.16 4.15
f3,x0=1 |@pt1 — 2| | 4.44€-9 1.60e-9 3.00e-9 5.88¢e-9 4.45e-9
If(@ns1)| | 8.96e-36 2.88¢-38 9.23¢-37 4.18¢-35 9.04¢-36
Iter 3 3 3 3 3
Te 4.27 4.44 4.28 4.26 4.27
J6,70 =06 | [Tni1 — 2| | 2.29¢5 5.100-6 1.280-5 3.460-5 2.370-5
If(@net)| | 2.39e-20 6.550-24 1.02e-21 1.96¢-19 2.736-20
Tter 3 3 3 3 3
re 4.27 4.31 4.29 4.27 4.27
fsyx0 = —2.3 | |xpt1 — | | 1.65e-16 4.25e-17 1.01e-16 2.36e-16 1.65e-16
|f(ns1)| | 2.65e-70 9.87e-75 1.82¢-70 1.66e-68 2.64e-69
Tter 3 3 3 3 4
Te 4.22 4.40 4.23 4.22 4.22
Table 3: Numerical results of the method TM4.3.
functions TM4.3, Hy (1) | TM4.3, Ho({) | TM4.3, Hs(¢) | TM4.3, Hy(t) | TM4.3(32), Hs(t)
fi,mo=1.1 |@nt1 — | | 9.76e-7 3.41e-8 9.29e-9 6.70e-6 1.86e-6
If(2ns1)| | 7.37e-25 5.41e-33 1.87e-33 3.33¢-21 1.15¢-23
Tter 3 3 3 3 3
Te 4.19 4.57 4.03 4.21 4.17
Forzo =1 [Tns1 — an] | 2.700-9 1.240-10 9.91c-11 1.370-8 3.580-9
|f(ns1)| | 2.44-37 1.15¢-44 1.55¢-43 3.19¢-34 8.11e-37
Iter 3 3 3 3 3
Te 4.25 4.58 4.16 4.27 4.25
Farzo=1 [Znit — 2] | 4.460-0 1.61e-9 3.026:9 5.916-9 1.476-9
If(@ni1)] | 2.79¢-36 2.700-40 2.920-37 1.29¢-34 2.82¢-36
Tter 3 3 3 3 3
Te 4.35 4.59 4.36 4.35 4.35
f1,20 = 0.6 |Tnt1 — 2| | 7.63e-10 9.87e-11 3.63e-10 1.35e-9 7.44e-10
If(@ns1)| | 6.77e-40 3.03e-46 1.62e-41 1.06e-38 6.07e-40
Iter 3 3 3 3 3
Te 4.32 4.57 4.32 4.32 4.32
fs,20 = =23 | |Tps1 — xp| | 1.65e-16 4.23e-17 1.01e-16 2.36e-16 1.65e-16
If (@ns1)] | 1.85e-70 4.82¢-77 1.27e-71 1.160-69 1.84e-70
Tter 3 3 3 3 3
Te 4.31 4.58 4.32 4.31 4.31




CONVERGENCE AND DYNAMICS OF ...

Table 4: Numerical results of the method TM4.5.
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functions TM4.5, H,(t) | TMA4.5, Hy(t) | TM4.5, Hs(t) | TMA.5, Hy(t) | TM4.5, Hy(f)
a0 =11 | [Zni1—an] | 6.43e-7 2.79¢-9 5.71e-8 2.99¢-6 1.226-6
|f(zni1)] | 1.96e-27 8.13¢-42 2.39¢-32 2.52¢-24 3.65¢-26
Tter 3 3 3 3 3
e 4.52 4.98 4.54 4.51 4.51
faymo = 1 [Zns1 — Zn] | 1.01e-9 5.24e-12 1.36¢-10 4.08¢-9 1.35¢-9
|f(zns1)| | 9.97c-42 3.81e-57 7.99¢-46 6.41¢-39 3.58¢-41
Tter 3 3 3 3 3
e 4.55 4.99 4.54 4.55 4.54
fa.z0 =1 [Zni1 — Zn| | 2.60e-10 1.57e-11 1.21e-10 4.01e-10 2.61e-10
|f(zns1)| | 3.14e-44 2.25¢-54 7.28¢-45 2.66e-43 3.19¢-43
Iter 3 3 3 3 3
e 453 4.91 4.50 4.54 4.53
f4,20 =06 | [Tni1 — @n| | 1.35e-10 4.71e-12 5.53¢-11 2.55¢-10 1.32e-10
|f(zns1)| | 1.02e-45 2.66e-57 1.24e-47 2.20e-44 9.14c-46
Iter 3 3 3 3 3
Te 4.56 4.97 4.54 4.57 4.56
F5:00 = —2.3 | [Tni1 — @n| | 6.99¢-18 1.40e-19 3.40e-18 1.09e-17 6.08¢-18
|f(zni1)] | 5.48e-81 4.83¢-97 1.49¢-82 5.04e-80 5.45¢-81
Tter 3 3 3 3 3
e 4.55 4.98 4.54 4.55 4.55
Table 5: Numerical results of the method TM5.2.
functions TM5.2, H (t) | TM5.2, Hy(t) | TM5.2, Hs(t) | TM5.2, Hy(t) | TM5.2, Hy(f)
fLzo =11 | [Tni1— @n| | 2.64c-26 1.06e-10 1.34e-8 1.70e-6 5.99e-7
|f(zni1)] | 6.14e-32 1.31e-58 1.04e-38 1.04e-26 3.68¢-30
Tter 3 3 3 3 3
re 4.97 5.98 4.99 4.95 4.96
far w0 = 1 [Zns1 — Tn] | 1.91e-10 5.36e-14 1.68¢-11 1.0le-9 2.73e-10
|f(zni1)| | 2.44e-49 1.94e-80 6.51e-55 1.51e-45 1.45¢-48
Tter 3 3 3 3 3
re 4.99 5.99 4.99 4.99 4.99
fa.z0=1 [Tni1 — 2o | 8.38¢-12 1.36e-14 4.07e-12 1.28¢-11 8.42¢-12
|f(zns1)] | 9.60e-56 1.19e-83 1.30e-57 1.226-54 9.77e-56
Iter 3 3 3 3 3
Te 4.89 5.85 4.89 4.88 4.89
fa,20 = 0.6 [Xnt1 — | | 4.36e-12 6.31e-8 7.84e-7 2.36e-6 1.63e-6
|f(zns1)] | 1.83e-57 7.85e-45 1.62¢-30 1.26¢-28 1.30e-29
Iter 3 3 3 3 3
Te 4.93 6.09 4.96 4.94 4.95
f5: 00 = —2.3 | [Tnt1 — @n| | 6.71e-10 1.32e-21 3.18e-19 1.06e-18 6.70e-19
|f(zni1)] | 1.19¢-93 3.74e-127 1.43¢-95 1.77e-92 1.18¢-93
Tter 3 3 3 3 3
e 5.02 6.01 5.02 5.02 5.02
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Table 6: Numerical results.
functions TM [11] | CCTVM [0] | CPGM[5] | PDPM [30] | MLAM [27]
fi,zo=1.1 |Tnt1 — x| | 3.61e-40 | 0.00e-0 1.06e-122 | 8.95e-95 4.98e-208
|f(zns1)] 2.68e-94 | 1.55e-15 8.05e-434 | 1.86e-397 7.38e-881
Tter 6 3 3 3 5
Te 2.41 4.12 3.56 4.23 4.24
fo,xg=1 |Zn+1 — 2| | 0.00e-0 | 0.00e-0 8.27e-174 | 3.58e-357 5.43e-247
|f(zns1)] 4.51e-10 | 1.03e-10 1.67e-617 | 1.08e-1514 | 6.64e-1049
Iter 3 3 3 3 5
Te 2.42 4.33 3.56 4.24 4.24
f3,mo=1 |Znt1 — xn| | 2.59e-9 | 0.00e-0 1.80e-116 | 3.36e-684 9.99e-159
|f(@ns1)| | 4.28¢-29 | 8.14¢-16 2.460-414 | 7.99¢-2900 | 1.85¢-671
Iter 4 3 3 3 5
Te 2.44 4.07 3.57 4.24 4.24
f1,20 = 0.6 |Znt1 — x| | 1.02e-12 | 1.11e-6 3.03e-54 6.51e-178 8.61e-108
|f(zns1)] 1.60e-29 | 2.20e-25 1.62e-191 | 1.81e-755 2.02e-454
Iter 4 3 3 3 5
Te 2.37 4.08 3.57 4.24 4.24
fs,20=—2.3 | |zps1 — xp| | 3.02e-14 | 1.59¢-12 3.28¢-156 | 9.90e-1394 | 7.25¢-269
|f(znt1)] 2.02e-34 | 3.04e-48 2.28e-555 | 2.42e-5903 | 1.93e-1137
Tter 3 3 3 3 5
Te 2.42 4.03 3.56 4.24 4.24
Table 7: Numerical results.
functions TMG6, Hy(t) | TMG, Hy(t) | TMG6, Hs(t) | TMA.5, He(t) | TM4.3, He(t)
fi,z0=1.1 |@p41 — | | 1.06e-10 4.22e-14 1.02e-14 9.10e-7 1.38¢-6
If(@ns1)| | 1.31e58 | 7.81e79 | 1.65e-82 | 9.41e-27 3.23¢-24
Iter 3 3 3 3 3
Te 5.98 6.01 6.01 4.51 4.18
fayao =1 [Tnt1 — @n| | 5.360-14 8.21e-15 6.45¢-15 1.17e-9 3.12¢-9
If(@ns1)| | 194680 | 3.94e-85 | 9.78¢-86 | 1.92e-41 4.52¢-37
Iter 3 3 3 3 3
Te 5.99 5.99 5.99 4.54 4.25
fa,xo=1 |a?"+1 — xn‘ 1.36e-14 9.17e-14 9.83e-14 2.61e-10 4.46¢-9
If(@ns1)| | 1.19e-83 | 3.54e-78 | 5.55e-78 | 3.16e-44 2.80e-36
Iter 3 3 3 3 3
re 5.85 5.87 5.87 4.53 4.35
f1,20 = 0.6 |@p41 — 2| | 6.31e-8 5.74e-8 6.80e-8 1.33e-10 7.53e-10
|f(zns1)| | 7.850-45 | 2.46e-43 | 6.21e-43 | 9.69¢-46 6.416-40
Tter 3 3 3 3 3
Te 6.09 5.80 5.82 4.56 4.32
fs,00=—2.3 | |Zpt1 — x| | 1.32e-21 1.42e-21 1.43e-21 6.99¢-18 1.65e-16
|f(,rn+1)‘ 3.74e-127 5.96e-127 6.19e-127 5.47e-81 1.84e-70
Iter 3 3 3 3 3
Te 6.01 6.01 6.01 4.55 4.31
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5 Basins of Attraction

We now consider the basins of attraction of iterative root-finding meth-
ods to solve nonlinear equations. We have used the weight functions
relations (28) and (29) for five different polynomials. The polynomi-
als have complex roots and the work have a combination of real and
complex ones. We have used the polynomial which they have simple
zeros. We have taken the following polynomials. fi(2) = 22 — 1, fa(2) =
221, f3(2) = 2241, fa(z) = 23—2, f5(2) = 24 —1. To create the attrac-
tion basins for the zeros of the polynomial, and an iterative method, we
get a grid of 500 x 500 points n in a rectangle D = [—5, 5] x [-5,5] C C.
The criterion for stopping Mathematica programs is |2o1q — Znew| < 1075.
The comparison of the attraction basins Kung-Traub’s method [20], Ma-
heshwari’s method [25] and methods (30) are shown in Figures (1) to
(8). As can be seen, the adsorption region of the proposed methods com-
petes with Kung-Traub and Maheshwari. In some cases, they also have
a larger stability area and does not require the calculation of a function
derivative.

(d) Kung-Traub
Figure 1: Comparison of the attraction basins of the proposed methods
with other methods for finding the roots of the equation f5(z) = z* — 1

23
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() He(t), B=0.01 (k) Hr(tx), 8=0.01 (1) Hs(t), B =0.01
Figure 2: Method TM4 (15) for detecting the roots of the polynomial
fle) =1
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(a) H1 ﬁ =0.001 (b) Hy(t), 8 = 0.001 (c) Hs(t), 8 = 0.001
(d) H4 ), 6= 0001 (e) H5 = 0.001 (f) H6 = 0.001

(g) H7, = 0.001 (h) Hg =0.001

Figure 3: Method TM4 (15) for detecting the roots of the polynomial
fz) =221
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(8) Hr(tr), =0.001  (h) Hs(t), 8 =0.001
Figure 4: Method TM4 (15) for detecting the roots of the polynomial
f(z)=22+1
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(a) (30),h1(¢) (b) (30), ha(t) (c) Maheshwari

(d) Kung-Traub

Figure 5: Comparison of the attraction basins of the proposed methods

with other methods for detecting the roots of the equation fi(z) = 2% —1

(a) (30) h1 (b) (30) h2 (c) Maheshwari

(d) Kung-Traub

Figure 6: Comparison of the attraction basins of the proposed methods

with other methods for detecting the roots of the equation fa(z) = 22 —1

27
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(a) (30), hy(t) (b) (30), ha(t) (c) Maheshwari

(d) Kung-Traub

Figure 7: Comparison of the attraction basins of the proposed methods
with other methods for finding the roots of the equation f3(z) = 22 + 1

(a) (30), hq(¢) (b) (30), ha(t) (c) Maheshwari

(d) Kung-Traub
Figure 8: Comparison of the attraction basins of the proposed methods

with other methods for finding the roots of the equation f4(z) = 23 — 2
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6 Conclusion

In this work, we have constructed the with-memory without-derivative
methods formulae having efficiency indices 1.58, 1.61, 1.62, 1.65, 1.73
and 1.81, respectively, which is higher than the efficiency index of the
methods mentioned in the references of this article, especially references
[5, 13]. From the analysis done in the with-memory methods section and
the computational results shown in the above tables, we observe that
the proposed methods have the efficiency index more than the other
methods. Also, improving the convergence order of the new-family with-
memory methods is higher than other previously proposed methods.
We have shown that the best member of the weight function here is
the Hy(t) = -&;. We found that the worst weight function here with
maximum instability is the H3(t) = e!. Besides, the best value of the
data parameter is 8 = 0.001.

References

[1] F. Ahmad, F. Soleymani, F. Khaksar Haghani, S. Serra-Capizzano,
Higher order derivative-free iterative methods with and without
memory for systems of nonlinear equations, Applied Mathematics
and Computation, 314 (2017), 199-211.

[2] I. K. Argyros, On the Secant method for solving nonsmooth equa-
tions, Journal of Mathematical Analysis and Applications, 322
(2006), 146-157.

[3] D. K. R. Babajee, A. Cordero, F. Soleymani, J. R. Torregrosa, On
improved three-step schemes with high efficiency index and their
dynamics, Numerical Algorithms, 65 (1) (2014), 153-169.

[4] R. Behl, A. Cordero, S. S. Motsa, J. R. Torregrosa, V. Kanwar, An
optimal fourth-order family of methods for multiple roots and its
dynamics, Numerical Algorithms, 71 (4) (2016), 775-796.

[5] C. W. Chang, S. Qureshi, I. K. Argyros, F. I. Chicharro, A. Soomro,
A modified two-step optimal iterative method for solving nonlinear

29



30

V. TORKASHVAND AND M. A. FARIBORZI ARAGHI

models in one and higher dimensions, Mathematics and Computers
in Simulation, 229 (2025), 448-467.

B. Campos, A. Cordero, J. R. Torregrosa, P. Vindel Caas, Stabil-
ity of King’s family of iterative methods with memory, Journal of
Computational and Applied Mathematics, 318 (2017), 504-514.

F. I. Chicharro, A. Cordero, N. Garrido, J. R. Torregrosa, On the
choice of the best members of Kim’s family and the improvement

of its convergence, Mathematical Methods in the Applied Sciences,
43 (14)(2020), 8051-8066.

N. Choubey, B.Panday, J. P. Jaiswal, Several two-point with
memory iterative methods for solving nonlinear equations, Afrika
Matematika, 29 (3-4) (2018), 435-449.

C. Chun, Some fourth-order iterative methods for solving nonlinear
equations, Applied Mathematics and Computation, 195 (2008), 454~
459.

C. Chun, B. Neta, An analysis of a new family of eighth-order opti-
mal methods, Applied Mathematics and Computation, 245 (2014),
86-107.

A. Cordero, M. Fardi, M. Ghasemi, J. R. Torregrosa, Accelerated
iterative methods for finding solutions of nonlinear equations and
their dynamical behavior, Calcolo, 51 (1) (2014), 17-30.

A. Cordero, C. Jordan, E. Sanabria-Codesal, J. R. Torregrosa, De-
sign, convergence and stability of a fourth-order class of iterative

methods for solving nonlinear vectorial problems, Fractal and Frac-
tional, 5 (3) (125) (2021), 1-16.

A. Cordero, R.V. Rojas-Hiciano, J. R. Torregrosa, M. P. Vassileva,
A highly efficient class of optimal fourth-order methods for solving
nonlinear systems, Numerical Algorithms, 95 (4) (2024), 1879-1904.

J. Herzberger, Uber Matrixdarstellungen fiir Iterationverfahren bei
nichtlinearen Gleichungen, Computing, 12 (1974) 215-222.



[15]

[16]

[17]

18]

23]

[24]

CONVERGENCE AND DYNAMICS OF ...

I. O. Jay, A note on Q-order of convergence. BIT Numerical Math-
ematics, 41(2001), 422-429.

M. D. Junjua, F. Zafar, N. Yasmin, Optimal derivative-free root
finding methods based on inverse interpolation, Mathematics, 7
(2)(2019), 1-10.

M. Kansal, V. Kanwar, S. Bhatia, Optimized mean based second
derivative-free families of Chebyshev-Halley type methods, Numer-
ical Analysis and Applications, 9 (2) (2016), 129-140.

J. Kou, Y. Li, X. Wang, A family of fourth-order methods for solv-
ing non-linear equations, Applied Mathematics and Computation,
188(2007), 1031-1036.

S. Kumar, J. R. Sharma, I. K. Argyros, Multi-step methods for
equations, Annali Dell Universita Di Ferrara, 70 (2024), 1193-1215.

H. T. Kung, J. F. Traub, Optimal order of one-point and multipoint
iteration, J. Assoc. Comput. Mach., 21(1974), 643-651.

M. Lalehchini, T. Lotfi, K. Mahdiani, Adaptive Steffensen-like
Methods with Memory for Solving Nonlinear Equations with the
Highest Possible Efficiency Indices, International Journal of Indus-
trial Mathematics, 11 (4) (2019), 337-345.

M. Y. Lee, Y. I. Kim, A family of fast derivative-free fourth or-
der multipoint optimal methods nonlinear equations, International
Journal of Computer Mathematics, 89 (15)(2012), 2081-2093.

T. Lotfi, A new optimal method of fourth-order convergence for
solving nonlinear equations, International Journal Industrial Math-
ematics, 6 (2)(2014), 121-124.

T. Lotfi, S. Sharifi, M. Salimi, S. Siegmund, A new class of three-
point methods with optimal convergence order eight and its dynam-
ics, Numerical Algorithms, 68 (2) (2015), 261-288.

A. K. Maheshwari, A fourth order iterative method for solving
nonlinear equations, Applied Mathematics and Computation, 211
(2009), 383-391.

31



32

28]

[29]

V. TORKASHVAND AND M. A. FARIBORZI ARAGHI

M. Moccari, T. Lotfi, V. Torkashvand, On the stability of a two-
step method for a fourth-degree family by computer designs along
with applications, International Journal of Nonlinear Analysis and
Applications, 14 (4) (2023), 261-282.

M. Mohamadi Zadeh, T. Lotfi, M. Amirfakhrian, Developing two
efficient adaptive Newton-type methods with memory, Mathemati-
cal Methods in the Applied Sciences, 42 (17) (2019), 5687-5695.

A. M. Ostrowski, Solutions of Equations and System of Equations,
Academic Press, New York, (1960).

M. S. Petkovi¢, L . D. Petkovi¢, Families of optimal multipoint
methods for solving nonlinear equations: a survey, Applicable Anal-
ysis and Discrete Mathematics, 4 (2010), 1-22.

M. S. Petkovié¢, J. Dzunié, L. . D. Petkovié, A family of two-point
with memory for solving nonlinear equations, Applicable Analysis
and Discrete Mathematics, 5 (2011), 298-317.

M. Scott, B. Neta, C. Chun, Basin attractors for various methods,
Applied Mathematics and Computation, 218 (2011), 2584-2599.

F. Soleymani, Novel Computational Iterative Methods with Opti-
mal Order for Nonlinear Equations, Advances in Numerical Analy-
sis, 2011 (2011), 1-11.

F. Soleymani, S. K. Khattri, S. Karimi Vanani, Two new classes of
optimal Jarratt-type fourth-order methods, Applied Mathematics
Letters, 25 (2012), 847-853.

F. Soleymani, D. K. R. Babajee, T. Lotfi, On a numerical technique
for finding multiple zeros and its dynamic, Journal of the Egyptian
Mathematical Society, 21 (3) (2013), 346-353.

R. Thukral, Further Development of Jarratt Method for Solving
Nonlinear Equations, Advances in Numerical Analysis, 2012 (2012),
1-9.



[36]

[37]

[41]

[42]

[43]

CONVERGENCE AND DYNAMICS OF ...

V. Torkashvand, T. Lotfi, M. A. Fariborzi Araghi, A new family
of adaptive methods with memory for solving nonlinear equations,
Mathematical Sciences, 13 (2019), 1-20.

V. Torkashvand, M. Kazemi, On an Efficient Family with Memory
with High Order of Convergence for Solving Nonlinear Equations,
International Journal of Industrial Mathematics, 12 (2) (2020), 209-
224.

V. Torkashvand, M. A. Fariborzi Araghi, Construction of iterative
adaptive methods with memory with 100% improvement of conver-
gence order, Journal of Mathematical Extension, 15 (3) (16) (2021),
1-32.

V. Torkashvand, M. Kazemi, M. J. Lalehchini, An efficient family of
two-step with-memory methods with convergence order 6 and their
dynamics, Boletin de la Sociedad Matemdtica Mexicana, 29 (3) (90)
(2023), 1-19.

V. Torkashvand, M. Momenzadeh, T.Lotfi, Creating a new two-
step recursive memory method with eight-order based on Kung

and Traub’s method, Proyecciones Journal of Mathematics, 39 (5)
(2020), 1167-1189.

J. F. Traub, Iterative Methods for the Solution of Equations, Pren-
tice Hall, New York, USA, (1964).

M. Z. Ullah, V. Torkashvand, S. Shateyi, M. Asma, Using matrix
eigenvalues to construct an iterative method with the highest pos-
sible efficiency index two, Mathematics, 10 (1370) (2022), 1-15.

F. Zafar, A. Cordero, J.R. Torregrosa, A. Rafi, A class of four
parametric with-and without-memory root finding methods, Com-
putational and Mathematical Methods, 1 (3) (2019), 1-13.

Vali Torkashvand

Instructor

Department of Mathematics

Farhangian University, Tehran, Iran.

ShQ.C., Islamic Azad University, Tehran, Iran

33



34 V. TORKASHVAND AND M. A. FARIBORZI ARAGHI

E-mail: torkashvand1978@gmail.com

Mohammad Ali Fariborzi Araghi
Full Professor of Applied Mathematics
Department of Mathematics

CT.C., Islamic Azad University
Tehran, Iran

E-mail: ma.fariborzi@iau.ac.ir



	1 Introduction
	1.1 Literature
	1.2 Existing iterative methods
	1.3 Motivation and organization

	2 The Methods and Analysis of Convergence
	3 Acceleration of the Family of Two-point Methods
	4 Numerical Results
	5 Basins of Attraction
	6 Conclusion
	References

