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Abstract. The problem of characterizing the maximal left algebras
of Toeplitz matrices with quaternion entries is a complex as well as a
harder problem that has not received much attention until now. In the
current paper, we introduce certain families of maximal left algebras of
Toeplitz matrices with entries from an algebra of quaternions that cover
various classes of the left algebras of quaternion Toeplitz matrices.
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1 Introduction

Matrix theory and algebra comprise the theory and application of linear
spaces, linear transformation, and unifying otherwise disparate topics (
functional analysis, differential geometry, quantum physics, etc.). Up
to now, these fields of study have been active and are used by several
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researchers working in different specializations as well as by every math-
ematician.

A square matrix is called Toeplitz if every descending diagonal from
left to right is constant. In other words, the elements of the matrix are
arranged in such a way that each row is a shifted version of the previous
row.

These matrices arise naturally in many areas of Mathematics and
are important both in theory and applications. For instance, it is well
known that a large class of matrices is similar to Toeplitz matrices [7, 20].
Moreover, it is proved that every matrix can be expressed as a product
of Toeplitz matrices (see [27]). Apart from this, these matrices have
some of the most attractive computational properties and are amenable
to a wide range of disparate algorithms. We refer the reader to [26] for
a detailed study of these matrices.

Quaternions are a fascinating Mathematical construct and extend
the concept of complex numbers. Instead of two real components like
complex numbers, quaternions have four real components. These num-
bers play important roles across many areas of Mathematics generally as
algebraic systems, signal processing, differential geometry, and quantum
mechanics, etc.

Matrices over commutative rings received attention but, matrices
having noncommuting entries (quaternion entries) have not been inves-
tigated very much yet. This is basically due to intrinsic algebraic dif-
ficulties that appear with respect to their non-commutativity. During
the last decade, a large amount of research has been concentrated on
Toeplitz matrices over the field of complex numbers, while their study
over quaternions is quite negligible.

Hamilton first introduced the set of real quaternions (see [8, 9]),
while the seminal work concerning commutative quaternions was first
presented by [21]. Kosal and Tosun [17, 18] investigated some algebraic
properties of commutative quaternion matrices using complex represen-
tations of commutative quaternion matrices. We refer the reader to
[3, 5, 10, 16, 17, 18, 19, 23, 24] and [1, 25, 28] for a detailed study
of quaternions and their matrices. In [6], the authors provide basic
properties of Toeplitz and Hankel matrices over the algebra of complex
numbers; most of the results therein deal with the products of these
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structured matrices, which, in general, are not structured over the al-
gebra of quaternions. The most usual and basic reference for complex
Toeplitz matrices is Grenander and Szego [5].

The collection of quaternion Toeplitz matrices is not closed with
respect to the multiplication of matrices. So, it is interesting to find
classes of quaternion Toeplitz matrices that have the structure of left
vector space as well as the structure of ring, that is, left algebras of
Toeplitz matrices (see [16] about the theory of Linear Algebra over Di-
vision ring). The charactarization of maximal commutative algebras of
scalar Toeplitz matrices was carried out by [22]. Building on this, the
authors of [11, 12, 13, 14, 15] explored the algebraic properties of block
Toeplitz matrices and their maximal algebras in greater depth. In par-
ticular, they extended the characterization by considering block Toeplitz
matrices whose entries all belong to a prescribed maximal commutative
subalgebra of scalar matrices.

The general problem of characterizing the left algebras (or right al-
gebras) of quaternion Toeplitz matrices is a very hard problem and no
work has been done hitherto. The purpose of the present paper is to
obtain the classification of maximal left algebras of quaternion Toeplitz
matrices. It is probably too tough to hope for a complete classification,
but the purpose is to identify possible classes of such left algebras for
quaternion Toeplitz matrices.

This paper is structured as follows: By means of Section 2, we want
to make sure that the reader has become familiar with quaternions and
their algebraic properties required when we start the main work in up-
coming sections. In Section 3, we will introduce Toeplitz matrices over
the algebra of quaternions. In the last Section, we introduce a certain
class of maximal left algebras of quaternion Toeplitz matrices and prove
some fundamental results concerning it.

2 Quaternions and their Basic Algebraic Prop-
erties

In this section, the main object of study is the set of real quaternions
and their algebraic properties. We begin with their formal definition.
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Definition 2.1. The set of real quaternions denoted by H and is defined
as

H :=
{
α = α0 + α1i+ α2j + α3k : α0, α1, α2, α3 ∈ R

}
,

where i, j, k /∈ R are versors satisfying the following multiplication rule:

i2 = j2 = k2 = ijk = −1.

Since quaternion arithmetic is defined by the behavior of versors, one
can also derive lots of other relations from these, for instance, ij = k,
ki = j, jk = i, ji = −k, ik = −j, kj = −i and jki = −1. As an additive
group H is isomorphic to four copies of R, i.e., R⊕R⊕R⊕R. The map
α0 +α1i+α2j+α3k −→ (α0, α1, α2, α3) is clearly a group isomorphism
of H onto R⊕ R⊕ R⊕ R.

For any quaternion α = α0+α1i+α2j+α3k, where α0, α1, α2, α3 ∈ R,
we define ℜ(α) = α0, the real part of α, and ℑ(α) = α1i + α2j + α3k,
the vector part (or imaginary part) of α. The conjugate of α is defined
by α0 − α1i− α2j − α3k = ℜ(α)−ℑ(α) and is denoted as α.

The real quaternions are the obvious generalization of complex num-
bers, we define their addition and multiplication as follows:
If α = α0+α1i+α2j+α3k and β = β0+β1i+β2j+β3k are in H, then

α+ β = (α0 + β0) + (α1 + β1)i+ (α2 + β2)j + (α3 + β3)k,

and

αβ = (α0β0 − α1β1 − α2β2 − α3β3)

+ (α0β1 + α1β0 + α2β3 − α3β2)i

+ (α0β2 + α2β0 + α1β3 − α3β1)j

+ (α0β3 + α3β0 + α1β2 − α2β1)k.

It is easy to see that with respect to the above operations, H is a di-
vision algebra and also that under multiplication quaternions are not
commutative. Due to this reason, one must take some care in order to
perform the multiplication of quaternions. The reality that quaternions
form a division algebra is among their most fundamental properties.
This shows that every non zero quaternion is invertible with respect to
multiplication, which is quite rare in higher dimensional algebras, just
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as real and complex numbers algebras do. Under the usual operation of
addition and scalar multiplication, H is a four-dimensional vector space
over R.

The following theorem from [28] summarizes some of the main alge-
braic properties of quaternions.

Theorem 2.2. Let α = α0+α1i+α2j+α3k and β = β0+β1i+β2j+β3k
in H, then

(i) Every α can be expressed in a unique way as α = γ0+γ1j, γ0, γ1 ∈
C;

(ii) In general, (α+ β)2 ̸= α2 + 2αβ + β2;

(iii) α2 + 1 = 0 has infinitely many roots over H.

It is also notable that one can express any quaternion in terms of a
2× 2 matrix having complex entries. Let α = α0+α1i+α2j+α3k is in
H. Expressing the versors 1, i, j, and k as

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

Then simple computation imply that i2 = j2 = k2 = −1 and ij = k,
jk = i, and ki = j. So α takes the following form

α = α0 + α1j + α2j + α3k

=

(
α0 + α1i α2 + α3i
−α2 + α3i α0 − α1i

)
.

We now quote from [2], the definition of the inner product on Hn.

Definition 2.3. Let n ∈ Z+, and x =


x0
x1
...

xn−1

 and y =


y0
y1
...

yn−1

 be in

Hn. The quaternion valued function < ·, · >: Hn ×Hn −→ H given by

< x, y >=
n−1∑
k=0

yk xk

defined an inner product on Hn.
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With this inner product, Hn is a left inner product space over H and
likewise the unitary space Cn, the set of vectors

e0 =


1
0
...
0

 , e1 =


0
1
...
0

 , · · · , en−1 =


0
0
...
1


forms an orthonormal basis for Hn(these vectors also serve as the stan-
dard Hamel Basis for Hn).

3 Toeplitz Matrices with Quaternion Entries

Throughout we label the indices of any matrix A from 0 to n − 1. We
denote by Mn [H], the set of all square matrices with quaternion entries.
Thus if A ∈ Mn[H] then A = (αrs)

n−1
r,s=0, with αrs ∈ H for every 0 ≤

r, s ≤ n− 1.

If A = (αrs)
n−1
r,s=0, B = (βrs)

n−1
r,s=0 are in Mn [H] and α ∈ H, then

define matrix addition and scalar multiplication component-wise as fol-
lows:

A+B = (αrs + βrs)
n−1
r,s=0,

αA = (ααrs)
n−1
r,s=0.

With respect to the above defining operations, Mn [H] is a left vector
space over H. If one multiply A = (αrs)

n−1
r,s=0 ∈ Mn[H] by α ∈ H from

right then, Mn [H] is also a right vector space over H. Now we define a
Toeplitz matrix, whose entries all belong to H.

Definition 3.1. A finite square matrix is called a quaternion Toeplitz
matrix if its entries along each negative sloping diagonal are constant.
That is, the matrix A = (αrs)

n−1
r,s=0 is quaternion Toeplitz if αr1,s1 =

αr2,s2 whenever r1 − s1 = r2 − s2, for all r1, s1, r2, s2 = 1 − n, 2 −
n, · · · ,−1, 0, 1, · · · , n− 1.

From the definition, it is clear that a quaternion Toeplitz matrix of
size n2 depends upon 2n−1 parameters 1−n, 2−n, · · · ,−1, 0, 1, · · · , n−
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1. The word “quaternion” refers to the fact that in the above matrix
representation, the entries are from the algebra of quaternions. Thus, if
A ∈ Mn[H] is Toeplitz, then it has the following structure:

A =


α0 α−1 α−2 · · · α1−n

α1 α0 α−1 · · · α2−n

α2 α1 α0 · · · α3−n
...

...
...

. . .
...

αn−1 αn−2 αn−3 · · · α0

 , αr ∈ H for all 1−n ≤ r ≤ n−1.

We denote by Tn[H] the set of all Toeplitz matrices with entries from H.
If A = (αr−s)

n−1
r,s=0 is in Tn[H], then A is called a quaternion circulant

matrix if αr = αr−n for every 1 ≤ r ≤ n− 1.

Suppose S be the matrix consisting of zeros except for ones below
the principal diagonal, i.e.,

S =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 1 0

 .

Then its adjoint S∗ is the matrix given as

S∗ =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0


.

It is clear that both S and S∗ are in Tn[H]. Recall that if x and y are
in Hn, then the tensor product x⊗ y is a square matrix of size n2 over
H and is defined as x⊗ y(z) =< z, y > x, for every x, y ∈ Hn.

The following result characterized all the matrices of Tn[H] among
the matrices of Mn[H]. We are giving here its detailed proof.
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Proposition 3.2. A ∈ Mn[H] is in Tn[H] if and only if there exist
vectors x and y in Hn such that

A−SAS∗ = x⊗ e0 + e0 ⊗ y.

Proof. Suppose that A is in Tn[H], then A has the form A = (αr−s)
n−1
r,s .

Simple computation yields that

A−SAS∗ =


α0 α−1 α−2 · · · α1−n

α1 0 0 · · · 0
α2 0 0 · · · 0
...

...
...

. . .
...

αn−1 0 0 · · · 0

 .

If one take x =


α0

α1
...

αn−1

 and y =


0

α−1
...

α1−n

, then it is easy to see

that

A−SAS∗ = x⊗ e0 + e0 ⊗ y.

In order to establish converse, let A = (αrs)
n−1
r,s=0 be any arbitrary

n× n matrix such that for some x =


α0

α1
...

αn−1

 and y =


δ0
δ1
...

δn−1

 in Hn,

the identity A −SAS∗ = x ⊗ e0 + e0 ⊗ y holds. In the standard basis
of Hn, one has

x⊗ e0(er) =


n−1∑
k=0

αkek for r = 0,

0 for r = 1, 2, · · · , n− 1,

.

and

e0 ⊗ y(er) = δre0, for r = 0, 1, · · · , n− 1.
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Therefore

x⊗ e0 + e0 ⊗ y =


α0 + δ0 δ1 · · · δn−1

α1 0 · · · 0
...

...
. . .

...
αn−1 0 · · · 0

 . (1)

On the other hand, one note that

A−SAS∗ =


α00 α01 · · · α0,n−1

α10 α11 − α00 · · · α1,n−1 − α0,n−2
...

...
. . .

...
α1−n,0 αn−1,1 − αn−2,0 · · · αn−1,n−1 − αn−2,n−2

 .

(2)
Comparing corresponding entries of (1) and (2), one sees that αr,s =
αr−1,s−1 for every 1 ≤ r, s ≤ n−1. This shows that A is in Tn[H], which
is what we wanted to prove. □

Proposition 3.3. Tn[H] is a subspace of the left vector space Mn[H].

Note that A = (αr−s)
n−1
r,s=0 with

αr−s =


i if r = s+ 1,

j if r = s− 1,

0 otherwise,

is purely a quaternion Toeplitz the matrix, but its product

A2 =


k 0 0 0 · · · 0
0 0 0 −1 · · · 0
−1 0 0 0 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · −k


is not a quaternion Toeplitz matrix. Thus, likewise the case of complex
entries, the product of two quaternion Toeplitz matrices needs not be a
quaternion Toeplitz matrix.

The following proposition gives us the precise criteria in this direc-
tion.
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Proposition 3.4. Suppose that A = (αr−s)
n−1
r,s=0 and B = (βr−s)

n−1
r,s=0

are Toeplitz matrices with quaternion entries, then AB is in Tn[H] if
and only if

αrβs−n = αr−nβs for all r, s = 1, 2, . . . n− 1. (3)

Proof. Suppose that AB is in Tn[H]. Let us denote the product AB
by C = (γr,s)

n−1
r,s=0, then for every r, s = 1, 2, . . . , n− 1, we have

γr,n−s =
n−1∑
k=0

αr−kβk+s−n, (4)

γr−1,n−s−1 =

n−1∑
k=0

αr−k−1βk+s−n+1. (5)

Subtracting (4) and (5) yields

γr,n−s − γr−1,n−s−1 = αrβs−n − αr−nβr. (6)

Since the product AB is a quaternion Toeplitz matrix, its elements along
the negative sloping diagonals have the same value, consequently from
(6)

αrβs−n = αr−nβr for every r, s = 1, 2, . . . , n− 1.

Conversely suppose that the identity (3) is true, then for every r, s =
1, 2, . . . , n− 1, we have

γr,n−s − γr−1,n−s−1 = αrβs−n − αr−nβr

= 0.

This shows that AB is a quaternion Toeplitz matrix. □

Proposition 3.5. If A = (αr−s)
n−1
r,s=0 and B = (βr−s)

n−1
r,s=0 are in Tn[H]

with commuting entries, and their product AB is also in Tn[H], then A
and B commute with each other.
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Proof. We have for every r, s = 0, 1, · · · , n− 1,

(AB)r,s =
n−1∑
k=0

αr−kβk−s,

(BA)r,s =

n−1∑
k=0

βr−kαk−s.

Since entries are commuting, rewriting the sum by denoting k′ = r+s−k,
we obtain

(BA)r,s =
n−1∑
k=0

αk−sβr−k =
r+s∑

k′=r+s−(n−1)

αr−k′βk′−s.

If r + s = n − 1, then the above sum is the same as the formula for
(AB)r,s. So, (BA)r,s = (AB)r,s. Now, for instance, let us suppose that
r+ s < n−1. Then only part of the sum is the same, and from the rest,
we obtain

(AB)r,s − (BA)r,s =
n−1∑

k=r+s+1

αr−kβk−s −
−1∑

r+s−(n−1)

αr−kβk−s

=
n−1∑

k=r+s+1

(αr−kβk−s − αr−k+nβk−s−n).

Applying Proposition 3.4, we get (AB)r,s − (BA)r,s = 0. The proof for
the case r + s > n− 1 can be established in a similar fashion. □

The converse of the above proposition is not true in general. This is
because, if one takes

A =


0 0 0 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 and B =


0 0 0 · · · k
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

k 0 0 · · · 0

 .
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Then A and B are commuting quaternion Toeplitz matrices but their
product

AB =


k 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · k

 .

is not a quaternion Toeplitz matrix.

4 Algebras of Toeplitz Matrices with Quater-
nion Entries

Fixing an algebra A in H and σ, ρ ∈ A′, where A′ denotes the commutant
of A (the set of all quaternions commuting with each element of A). It
is easy to see that A′ is also an algebra. We symbolize by Tn [A] the
left vector space of Toeplitz matrices contained in Tn[H]. We define the
family by

Gσ,ρ[A] :=
{
A = (αr−s)

n−1
r,s=0|αr ∈ A, σαr−n = ραr, for all r = 1, 2, · · · , n−1

}
.

We will use the following simple Lemma.

Lemma 4.1. Suppose that σ, ρ ∈ H be fixed. If α is any arbitrary
element of H such that σα = ρα = 0, then α = 0.

Proof. Since H is a division algebra, the left multiplication by any
nonzero element is an injective operation. This means that if σα = 0
for nonzero σ, then necessarily α = 0 . Similarly, if ρα = 0 for nonzero
ρ, then again α = 0. Since we assume at least one of σ or ρ is nonzero,
it follows immediately that α = 0. Thus, the desired conclusion holds.
□

The above Lemma enables us to prove the following main result of
this section.

Theorem 4.2. The family Gσ,ρ[A] forms a left algebra in Tn[A].
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Proof. A simple straightforward verification shows that Gσ,ρ[A] is a
left subspace of Tn[H]. We need to only show that it is closed up to the
usual multiplication of matrices. For this, let us suppose that A and B
be any two arbitrary elements of Gσ,ρ[A], then we must have

A = (αr−s), σαr−n = ραr,

B = (βr−s), σβr−n = ρβr.
(7)

We have

(AB)r,s − (AB)r+1,s+1 =

n−1∑
k=0

αr−kβk−s

= αr−n+1βn−1−s + αr+1β−1−s.

Using formulas given in (7) and multiplying with σ and ρ, it follows that

σ [(AB)r,s − (AB)r+1,s+1] = 0,

ρ [(AB)r,s − (AB)r+1,s+1] = 0.

By applying Lemma 4.1, we obtained that

(AB)r,s − (AB)r+1,s+1 = 0.

Consequently, AB is in Tn[A]. We denote the product AB by C =
(γr,s)

n−1
r,s=0, and since σ, ρ ∈ A′, we have

ργr = ρ(AB)r,0 = ρ

n−1∑
k=0

αk−rβk =

n−1∑
k=0

αk−rσβk−n = σ

n−1∑
k=0

αk−rβk−n = σγr−n.

Therefore, the product AB is in Gσ,ρ[A]. This proves, along with the
previous fact that Gσ,ρ[A] is a left vector space, that Gσ,ρ[A] is a left
algebra in Tn[A]. □

The following result shows that these algebras include an important
general class of quaternion Toeplitz matrices algebras.

Theorem 4.3. Suppose that A be an inverse closed algebra in H and
G an algebra contained in Tn[A]. Let G contains an element whose at
least one off-diagonal entry is invertible. Then G ⊂ Gσ,ρ[A] for some
σ, ρ ∈ A.
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Proof. Let A = (αr−s)
n−1
r,s=0 be in G such that αr ∈ A and is invertible

for some nonzero r. Furthermore, suppose that B = (βr−s)
n−1
r,s=0 be any

arbitrary element ofG. Proposition 3.4 implies that since G is an algebra
included in Tn[A], then the product AB is in G if and only if

αrβs−n = αr−nβs (s = 1, 2, · · ·n− 1). (8)

Let us assume, for instance, that r > 0, it follows from (8) that

βs−n = α−1
r αr−nβs (s = 1, 2, · · ·n− 1),

as we have assumed that αr is invertible. Due to the inverse closeness
of A, α−1

r αr−n ∈ A. Thus, G ⊂ Gσ,ρ[A] gets obtained if one take σ = 1
and ρ = α−1

r αr−n. The proof can be completed for r < 0 by using a
similar argument. □

Apart from that, as can be seen below, the algebra Gσ,ρ[A] covers
several other classes of the algebras of Tn[A].

� If σ = ρ = 1, then G1,1[A] is the left algebra of all quaternion
circulant matrices.

� If σ = 0, then G0,ρ[A] is the left algebra of all upper triangular
quaternion Toeplitz matrices.

� Similarly, if ρ = 0, then Gσ,0[A] is the left algebra of all lower
triangular quaternion Toeplitz matrices.

� Gσ,ρ[A] obviously contains the algebra of diagonal quaternion Toeplitz
matrices.

The below result concerns the commutativity of Gσ,ρ[A], and its proof
follows directly from Proposition 3.5 in a straightforward manner.

Proposition 4.4. If A is commutative then Gσ,ρ[A] is commutative.

The following result describes when two left algebras of this type are
equal.

Theorem 4.5. Suppose that there also exist σ̆, ρ̆ ∈ A, then Gσ,ρ[A] =
Gσ̆,ρ̆[A] if and only if σρ̆ = σ̆ρ.
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Proof. Suppose that σρ̆ = σ̆ρ, and A = (αr−s)
n−1
r,s=0 is in Gσ,ρ[A], then

σαr−n = ραr. Multiplying the identity σαr−n = ραr with σ̆, we have

σ̆σαr−n = σ̆ραr

= σρ̆αr

or

σ(σ̆αr−n − ρ̆αr) = 0.

In the same way, multiplying both sides of σαr−n = ραr with ρ̆, we get

ρ(σ̆αr−n − ρ̆αr) = 0.

Lemma 4.1 then imply that σ̆αr−n = ρ̆αr. Consequently, A ∈ Gσ̆,ρ̆[A]
and therefore Gσ,ρ[A] ⊆ Gσ̆,ρ̆[A]. Now for the reverse inclusion, let
A = (αr−s)

n−1
r,s=0 ∈ Gσ̆,ρ̆[A], then we have σ̆αr−n = ρ̆αr. Multiplying the

equation σ̆αr−n = ρ̆αr by ρ and using σρ̆ = σ̆ρ, we get σαr−n = ραr.
Therefore, Gσ̆,ρ̆[A] ⊆ Gσ,ρ[A].

Conversely suppose that Gσ,ρ[A] = Gσ̆,ρ̆[A]. We will show that σρ̆ =
σ̆ρ. Since the matrix

Ãσ,ρ =


0 ρ ρ · · · ρ
σ 0 ρ · · · ρ
σ σ 0 · · · ρ
...

...
...
. . .

...
σ σ σ · · · 0


is in Gσ,ρ[A] = Gσ̆,ρ̆[A], and therefore ρ̆σ = σ̆ρ. Finishing the proof.
□

The next result regards Gσ,ρ[A] maximality as a left algebra in Tn[A].

Theorem 4.6. Gσ,ρ[A] is maximal left algebra in Tn[A] if and only if
{σ, ρ}′ = A.

Proof. Suppose that Gσ,ρ[A] is a maximal left algebra in Tn[A]. We will

show that {σ, ρ}′ = A. Let {σ, ρ}′ = Ă. Since σ, ρ are in the commutant
of A then by definition {σ, ρ}′ ⊃ A and as a consequence, we have
Gσ,ρ[A] ⊂ Gσ,ρ[Ă]. This shows that Gσ,ρ[A] is not a maximal left algebra,
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which is a contradiction to our assumption. Thus the maximality of
Gσ,ρ[A] imply that {σ, ρ}′ = A.

For the converse, let us assume that {σ, ρ}′ = A and G be any arbi-
trary left algebra of quaternion Toeplitz matrices such that Gσ,ρ[A] ⊆ G.
Let A = (αr−s)

n−1
r,s=0 be any arbitrary element of G. Since {σ, ρ}′ = A,

then the matrix G̃σ,ρ = (gr−s)
n−1
r,s=0 given as

gr−s =


σ if r = s+ 1,

ρ if r = 0, s = n− 1,

0 otherwise.

is in Gσ,ρ[A]. The product

G̃σ,ρA =


ραn−1 ραn−2 · · · ρα0

σα0 σα−1 · · · σα1−n
...

...
. . .

...
σαn−2 σαn−3 · · · σα−1


is in G because Gσ,ρ[A] ⊆ G. Because G is assumed to be a left algebra
of quaternion Toeplitz matrices, the resulting matrix G̃σ,ρA must also
have a Toeplitz structure. By explicitly comparing diagonal entries of
G̃σ,ρA, we obtain the identity σαr−n = ραr for all r = 1, 2, · · · , n − 1.
This shows that A is in Gσ,ρ[A] and hence G = Gσ,ρ[A], i.e., Gσ,ρ[A] is
maximal in Tn[A]. This is what we wanted to prove. □

Example 4.7. Suppose that y is one of i, j, k, then define Ay as

Ay = {a+ by : y ∈ {i, j, k}},

then it is straightforward to check that Ay is a subalgebra of H, and
{σ, ρ}′ = Ay, where σ = 1 + y and ρ = 2− y. We have

G1+y,2−y[Ay] =

{
α0 α1 · · · αn−1

3+y
2 αn−1 α0 · · · αn−2

...
...

. . .
...

3+y
2 α1

3+y
2 α2 · · · α0

 : αr ∈ Ay for all 0 ≤ r ≤ n−1

}
.

By using the procedures described in Theorem 4.6, the reader is left with
the task of verifying that G1+y,2−y[Ay] is, in fact, a maximal algebra
inside Tn[Ay].
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Université de Amar Telidji
Laghouat, Algeria

E-mail: a.yagoub@lagh-univ.dz


	1 Introduction
	2 Quaternions and their Basic Algebraic Properties
	3 Toeplitz Matrices with Quaternion Entries
	4 Algebras of Toeplitz Matrices with Quaternion Entries
	References

