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1 Introduction

Coronaviruses transmit infection to humans and animals and are one of
the biggest viruses that have caused epidemiological problems in recent
years. For the first time, this complex virus appeared in December 2019
in Wuhan China[31]. The corona virus was transferred through various
methods such as sneezing, coughing and talking to an infected person.
In this field, several investigations have been performed to illustrate the
transmission of the virus through contact with contaminated surfaces
[32]. The spread of this virus caused many social, economic and health
problems in the world and several million people in the world got infected
with this virus or died and researchers were looking for a vaccine for this
virus[6, 11].

In mathematical epidemiology, the authors have proposed models
for the transmission of this disease, such as the susceptible-infected-
recovered model (SIR) and the susceptible-exposed-infected-recovered
model (SEIR)[10, 2, 34]. Mathematical modeling of the spread of in-
fectious diseases is a momentous tool for understanding the dynamics
of disease spread. It is also very beneficial for policy makers to make
timely decisions to reduce and control the disease [26, 9].

Mathematical modeling has been very successful in recommending
critical decisions for various diseases, including the flu, corona virus,
etc. Also, to check the isolation of a person infected with Covid-19, it is
suggested to quarantine the people who have been in contact with them,
limit travel and stay at home. Several models have been suggested to
reduce the spread of Covid-19 in different regions of the world. Contreras
[25] propsed a multi-group SEIRA model. Maier and Brockmann studied
the effect of effective control in disease outbreak in China[5]. Crokidakis
[20] investigated the spread of COVID-19 in Brazil. The model proposed
by Mohsen et al. considers the effects of media coverage [4]. Hataf and
Yousefi’s model describes interactions within the host [14]. Also, Zine
et al. [12], to show the effectiveness of the restrictions of Covid-19 in
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Morocco, a random time delay model has been presented. Khoshnaw
et al. [27] suggested that they should pay attention to people’s health
and quarantine. Serhani and Labbardi [17] stated that staying at home
plays an essential role in controlling Covid-19.

The first confirmed cases of Covid-19 in Iran were reported in Qom
on February 19, 2020. Then, the Iranian government announced the clo-
sure of all schools, universities, Bekaa Motbaraka shopping centers, and
markets, and canceled Friday prayers. The government also took eco-
nomic measures, including helping families and businesses. Heavy traffic
between cities continued before Nowruz Eid. The government later an-
nounced that despite the ban on travel between cities, the number of
infected people increased. The government gradually eased restrictions
from April and the number of infected reached its lowest point in May,
but with the easing of restrictions, a new wave was reported on June
4 and the number of deaths increased. Figure 1 clearly shows the to-
tal cases and deaths of Corona virus, smoothed new cases, and total
confirmed cases in Iran, from the actual data. In Iran, from 3 January
2020 to 2:09 pm CEST, 12 October 2023, 7,618,727 confirmed cases of
COVID-19 with 146,436 deaths, reported to WHO. On 14 August 2023,
a total of 155,445,801 vaccine doses were administered.

Multi-group modeling of infectious diseases is a vital field of applied
mathematics, and because the transmission of many infectious diseases
such as measles, influenza, AIDS, and hepatitis can be modeled, it has
attracted the attention of researchers [3]. For the multigroup model
of an infectious disease, the disease-free equilibrium is first checked to
see, it is globally asymptotically stable. Therefore, it is necessary to
first obtain the basic reproduction number, which means that if the
basic reproduction number is less than or equal to one, the disease-free
equilibrium is globally asymptotically stable. Otherwise, it is unstable
when the reproduction number is greater that one.[13, 15, 24, 25, 18, 7,
8, 28].

In this paper, a new multi-group model of Covid-19 is presented.
First, we examine the global stability of the disease-free equilibrium.
Then we prove that the asymptotically globally stability of the system
is dependent on the basic reproduction number. Furthermore, the exis-
tence of optimal controls is proved and their forms are obtained using
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the Hamiltonian function and maximum principle. Finally, we use the
multigroup COVID-19 model to simulate the COVID-19 outbreak in the
Isfahan, Fars, and Khorasan-Razavi provinces in Iran. The aim of this
research is to study the dynamics of COVID-19 in Iran.

This paper is organized as follows. In Section 1, an introduction is
given. In Section 2, we will introduce the model and analyze the stability
of the disease-free equilibrium. In Section 3, we analyze the stability of
the endemic equilibrium. Section 4 presents the control strategy for the
proposed multigroup COVID-19 model. Section 5 provides a simulation
of the COVID-19 outbreak in the Isfahan, Fars, and Khorasan-Razavi
provinces of Iran. Finally, the conclusion is given in Section 6.

(a) Total Coronavirus cases
and deaths in Iran

(b) Smoothed new cases in
Iran

(c) Total confirmed cases in
Iran

Figure 1: Covid-19 in Iran

2 Model Introduction

Let consider the following Covid-19 model [21]:

dS

dt
= b− α

1 + δIu
SIu − d1S,

dIu
dt

=
α

1 + δIu
SIu − (β + d1)Iu,

dIk
dt

= βIu − (γ + d2)Ik, (1)

dR

dt
= γIk − d1R,

where S, Iu, Ik and R stand for the susceptible, infective without symp-
tom, infective with symptom and the recovered, respectively.
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Corresponding to model (1), we make the multi-group model of
Covid-19. Each population group is meant to be in a specific geograph-
ical location, and the model is such that the total population is dis-
tributed among the same 4 subsets mentioned in the model (1). The
flow diagram of Multi-group COVID-19 model is given in Figure 2.
Based on model (1), we suggest the following model:

Ni(t) = Si(t) + Iui(t) + Iki(t) +Ri(t), i = 1, 2, · · · , N,

dSi
dt

= bi −
N∑
j=1

αij

1 + δiIuj

SiIuj − d1iSi + ϵiRi,

dIui

dt
=

N∑
j=1

αij

1 + δiIuj

SiIuj − (βi + d1i)Iui ,

dIki
dt

= βiIui − (γi + d2i)Iki , (2)

dRi

dt
= γiIki − d1iRi − ϵiRi.

In model (2), We have the following assumptions:

(1) Symptomatic patients are assumed to be those identified and they
are being treated in the hospital and have no connection with the society
and they are discharged from the hospital after complete recovery and
then they enter the improved ones but due to the long-term spread of
the disease and due to contact with susceptible people, they can enter
the susceptible group again.

(2) It is possible that an asymptomatic patient enters another group
unintentionally. For this reason, the second sentence of the first equation
is considered as accumulation that in the i-th group of the population in
the susceptible section with enough contact with asymptomatic infected
people of the j-th group, they enter the population of asymptomatic
infected people.

(3)The population in the susceptible section enters the population of
asymptomatic infectious individuals with sufficient contact with asymp-
tomatic infectious individuals.

(4) Some of the recovered people are again susceptible to this disease
and re-enter the group of susceptible people.
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Figure 2: Flow diagram of the multigroup COVID-19 model

All parameters are described in Table 1.

Table 1: Description of the parameters

Parameter Description

Si The susceptible population of ith group

Iui asymptomatic infectious population of ith group

Iki symptomatic infectious population of ith group

Ri Recovered population of the ith group

Ni The total population in ith group

bi The rate at which new individuals enter the population of the ith group
αij The transmission coefficient from Si to Iuj

δi The parameter describing the psychological
effect of the general public on the infectives.

βi The transmission coefficient from an asymptomatic
infectious population to an symptomatic infectious population

γi The transmission coefficient from infective population to treatment

d1i Natural death rate of the ith group

d2i Death rate due to COVID-19 plus d1i of i
th group

ϵi The rate of transmission from the recovered population
to the susceptible population

For non-negative and bounded solutions, the following Proposition
can be proven.
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Proposition 2.1. The closed set

∆ =

{
(S1, Iu1 , Ik1 , R1, · · · , SN , IuN , IkN , RN ) ∈ R4N

+ : 0 ≤ Ni ≤
bi
d1i

}
so that i = 1, · · · , N , is positively invariant according to model (2).

proof. Let (Si, Iui , Iki , Ri) be the solution of (2) starting from a point
in ∆. Then we have

Ṅi = Ṡi + İui + İki + Ṙi = bi −
N∑
j=1

αij

1 + δiIuj

SiIuj − d1iSi + ϵiRi

+
N∑
j=1

αij

1 + δiIuj

SiIuj − (βi + d1i)Iui + βiIui − (γi + d2i)Iki

+γiIki − d1iRi − ϵiRi = bi − (Si + Iui +Ri)d1i − d2iIki .

Then we have

Ṅi + d1iNi = bi − (d2i − d1i)Iki .

Therefore

Ṅi ≤ bi − d1iNi.

According to the theory of differential equation, we have

Ni(t) ≤ e−d1itNi(0) +
bi
d1i

(1− e−d1it),

and for t→ ∞, we have

lim
t→∞

Ni(t) ≤
bi
d1i

.

The second equation of system (2) can be written as:

dSi
dt

= bi + ϵiRi − (

N∑
j=1

αijIuj

1 + δiIuj

+ d1i)Si
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Therefore

dSi
dt

≥ −(
N∑
j=1

αijIuj

1 + δiIuj

+ d1i)Si(t)

dSi
dt

+ (
N∑
j=1

αijIuj

1 + δiIuj

+ d1i)Si(t) ≥ 0

Then multiplying the equation by exp(
∫ t
0 (d1i +

∑N
j=1

αijIuj (S)

1+δiIuj (S)
)dS), we

have

d

dt
[Si(t) exp(d1it+

∫ t

0

N∑
j=1

αijIuj (S)

1 + δiIuj (S)
dS)] ≥ 0.

Then by integration we have

Si(t) exp(d1it+

∫ t

0

N∑
j=1

αijIuj (S)

1 + δiIuj (S)
dS)− Si(0) ≥ 0.

Then

Si(t) ≥ Si(0) exp[−(d1it+

∫ t

0

N∑
j=1

αijIuj (S)

1 + δiIuj (S)
dS)].

This implies that if Si(0) ≥ 0, then Si(t) ≥ 0, ∀t ≥ 0.
For other variables, it is simply proved that they are nonnegative with
nonnegative initial conditions. Therefore, this completes the Proof.

2.1 Stability analysis of disease-free equilibrium of the
model

The system of (2) has a disease-free equilibrium P0

P0 =
(
S0
1 , I

0
k1 , I

0
u1
, R0

1, · · · , S0
N , I

0
kN
, I0uN

, R0
N

)
=

(
b1
d11

, 0, 0, 0, · · · , bN
d1N

, 0, 0, 0

)
.
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For model (2), first we consider the system components that are directly
related to contamination, that is, Iui and Iki . Let Fi and Vi represent
the rate of infection and the number of people entering the study area,
respectively, in the ith compartment. Then


dIui
dt

dIki
dt

 =


∑N

j=1

αijSiIuj
1+δiIuj

0

−


(βi + d1i)Iui

−βiIui + (γi + d2i)Iki

 = Fi − Vi.

According to [29]

F = [
∂Fi(P0)

∂xj
], V = [

∂Vi(P0)

∂xj
], xj = (Iuj , Ikj ), j = 1, 2, · · · , n.

As pointed out in [30], F = (fij)N×N and V = diag {v11, · · · , vNN},
where

fij =


αijS

0
i 0

0 0

 ,

vii =


βi + d1i 0

−βi γi + d2i

 .
Therefore V −1 = diag

{
v−1
11 , · · · , v

−1
NN

}
, where

v−1
ii =


1

βi+d1i
0

βi

(βi+d1i)(γi+d2i)
1

γi+d2i

 .
Hence, FV −1 = (fijv

−1
ii )N∗N , where,

fijv
−1
ii =

 αijS
0
i

βi+d1i
0

0 0

 .
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Definition 2.2. Let R0 = ρ(FV −1) is the spectral radius of FV −1

matrix. In the epidemic literature it is referred by basic reproduction
number.[22]

Theorem 2.3. For the system (2), define the function fij(Si, Iuj ) =
SiIuj

1+δiIuj
with the basic assumptions. Let consider the following [23]: (H1)

0 < limIuj→0+
fij(Si,Iuj )

Iuj
= Cij ≤ +∞, 0 < Si ≤ S0

i ;

(H2) fij(Si, Iuj ) ≤ Cij(Si)Iuj for all Iuj > 0 and 0 < Si ≤ S0
i ;

(H3) Cij(Si) < Cij(S
0
i ), for all 0 < Si ≤ S0

i .
Then, the disease-free equilibrium P0 is globally asymptotically stable if
R0 ≤ 1 , and the disease-free equilibrium P0 is unstable if R0 > 1.

proof. Since

V −1F = V −1FV −1V,

Then V −1F is similar to FV −1 and the similar matrices have the same
eigenvalues. Therefore,

ρ(V −1F ) = ρ(FV −1) = R0.

On the other hand V −1F is a nonnegative matrix, because we have

v−1
ii fij =


αijS

0
i

βi+d1i
0

βiαijS
0
i

(βi+d1i)(γi+d2i)
0

 .
It is easy to see that all its terms are nonnegative and by Perron–Frobenius
Theorem [1], V −1F has a corresponding left eigenvector x such that is
positive. Therefore, we have

x(V −1F ) = ρ(FV −1)x.

Let § = (v1, v2, · · · , vn, w1, w2, · · · , wn); such that vk, wk > 0, k = 1, · · · , n.
Then

(v1, v2, · · · , vn, w1, w2, · · · , wn)V
−1F = R0(v1, v2, · · · , vn, w1, w2, · · · , wn).
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Let W =
∑N

i=1 kiIui +
∑N

i=1 liIki be a candidate Lyapunov function,
where

(k1, l1, k2, l2, · · · , kn, ln) = (v1, v2, · · · , vn, w1, w2, · · · , wn)V
−1.

If the derivative of W are calculated along the solution of (2), we obtain

Ẇ =

N∑
i=1

[ki
dIui

dt
+ li

dIki
dt

]

=
N∑
i=1

ki[
N∑
j=1

αijSiIuj

1 + δiIuj

− βiIui − d1iIui ] +
N∑
i=1

li[βiIui − γiIki − d2iIki ]

≤
N∑
i=1

ki[

N∑
j=1

αijS
0
i Iuj

1 + δiIuj

− βiIui − d1iIui ] +

N∑
i=1

li[βiIui − γiIki − d2iIki ]

≤
N∑
i=1

ki[
N∑
j=1

(αijS
0
i Iuj )− βiIui − d1iIui ] +

N∑
i=1

li[βiIui − γiIki − d2iIki ]

= (k1, k2, · · · , kn)[
N∑
j=1

αijbiIuj

d1i
− (βi + d1i)Iui ]

+(l1, l2, · · · , ln)[βiIui − (γi + d2i)Iki ]

= (k1, l1, k2, l2, · · · kn, ln)(F − V )X

= (v1, v2, · · · , vn, w1, w2, · · · , wn)V
−1(F − V )X

= (v1, v2, · · · , vn, w1, w2, · · · , wn)(V
−1F − I)X

= (v1, v2, · · · , vn, w1, w2, · · · , wn)(R0 − 1)X,

where X = (Iu1 , Ik1 , Iu2 , Ik2 , · · · , Iun , Ikn). So we derive the following
results:
(i) When the basic reproduction number is less than unity, we obtain
Ẇ ≤ 0.
(ii) When R0 < 1 then Ẇ = 0 if and only if X = 0.
(iii) When R0 = 1 then Ẇ = 0 implies that Iui = 0, Iki = 0 or Si = S0

i ,
i = 1, 2, · · · , n. It can be verified that the only compact invariant subset
of the set where Ẇ = 0 is the singleton P0.
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Therefore, LaSalle’s principle guarantees that P0 is globally asymptoti-
cally stable.
If R0 > 1 and X ̸= 0 then Ẇ > 0 in a neighborhood of P0. Hence,
the disease-free equilibrium P0 is unstable when R0 > 1. The proof is
complete.

3 Global Stability of Endemic Equilibrium

The P∗ = (S∗
1 , I

∗
u1
, I∗k1 , R

∗
1, · · · , S∗

n, I
∗
un
, I∗kn , R

∗
n) in the interior of ∆ is

the endemic equilibrium, where

bi −
N∑
j=1

αij

1 + δiI∗uj

S∗
i I

∗
uj

− d1iS
∗
i + ϵiR

∗
i = 0,

N∑
j=1

αij

1 + δiI∗uj

S∗
i I

∗
uj

− (βi + d1i)I
∗
ui

= 0,

βiI
∗
ui

− (γi + d2i)I
∗
ki

= 0, (3)

γiI
∗
ki
− d1iR

∗
i − ϵiR

∗
i = 0, i = 1, 2, · · · , N.

Let I∗ki > 0 Therefore

R∗
i =

γi
(di1 − ϵi)

I∗ki

I∗ui
=

(γi + d2i)

βi
I∗ki

S∗
i =

bi
d1i

− [
(βi + d1i)(γi + d2i)

d1iβi
− ϵiγi

(d1i − ϵi)d1i
]I∗ki i = 1, 2, · · · , N.

And if I∗ki = 0 then P∗ = ( bi
d1i
, 0, 0, 0); i = 1, 2, · · · , N . To establish the

global stability of the endemic equilibrium, the following theorems are
proven.

Theorem 3.1. [19] Let us assume that:
(1) There exist functions Vi(t, ui), Fij(t, ui, uj), and constants aij ≥ 0
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such that

V̇i(t, ui) ≤
n∑

j=1

aijFij(t, ui, uj), t > 0, ui ∈ Di, i = 1, 2, · · · , n.

(2) Fij(t, ui, uj) ≤ Gi(t, ui) −Gj(t, uj), 1 ≤ i, j ≤ n, if there exist func-
tions Gi(t, ui), i = 1, 2, · · · , n.
(3) Assume n ≥ 2. Then ci =

∑
T∈Ti

W (T ), i = 1, 2, · · · , n, where Ti
is the set of all spanning trees T of (G, A) that are rooted at the vertex
i, and W (T ) is the weight of T . In particular, if (G, A) is strongly con-
nected, then ci > 0 for 1 ≤ i ≥ n.

Then V (t, u) =
∑n

i=1 ciVi(t, ui) is a Lyapunov function for u̇i =

fi(ti, ui) +
∑N

j=1 gij(t, ui, uj), i = 1, 2, · · · , N , that is, V̇ (t, u) ≤ 0 for
t > 0 and u ∈ D.

Theorem 3.2. If R0 > 1, then the endemic equilibrium P∗ is unique
and globally asymptotically stable in the interior of ∆.

proof. Let

fij(Si, Iuj ) =
SiIuj

1 + δiIuj

.

Then, for Si ̸= S∗
i ,

(Si − S∗
i )[fii(Si, I

∗
ui
)− fii(S

∗
i , I

∗
ui
)]

= (Si − S∗
i )[

SiI
∗
ui

1 + δiI∗ui

−
S∗
i I

∗
ui

1 + δiI∗ui

] (4)

= (Si − S∗
i )

2 I∗ui

1 + δiI∗ui

> 0.
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And

[fii(S
∗
i , I

∗
ui
)fij(Si, Iuj )− fij(S

∗
i , I

∗
uj
)fii(Si, I

∗
ui
)]

×[
fii(S

∗
i , I

∗
ui
)fij(Si, Iuj )

Iuj

−
fij(S

∗
i , I

∗
uj
)fii(Si, I

∗
ui
)

I∗uj

] (5)

= [
S∗
i I

∗
ui
SiIuj

(1 + δiI∗ui
)(1 + δiIuj )

−
S∗
i I

∗
uj
SiI

∗
ui

(1 + δiI∗uj
)(1 + δiI∗ui

]

×[
S∗
i I

∗
ui
SiIuj

(1 + δiI∗ui
)(1 + δiIuj )Iuj

−
S∗
i I

∗
uj
SiIui

(1 + δiI∗uj
)(1 + δiIui)I

∗
uj

]

=
−δS∗2

i I
∗2
ui
S2
i (Iuj − I∗uj

)2

(1 + δiI∗ui
)2(1 + δiIuj )

2(1 + δiI∗uj
)2

≤ 0.

Then let

Vk =

∫ Sk

S∗
k

fkk(ζ, I
∗
uk
)− fkk(S

∗
k , I

∗
uk
)

fkk(ζ, I∗uk
)

dζ + (Iuk
− I∗uk

ln Iuk
)

+(Ikk − I∗kk ln Ikk)(
βk + d1k
βk

)

=

∫ Sk

S∗
k

(1−
S∗
k

ζ
)dζ + (Iuk

− I∗uk
ln Iuk

)

+(Ikk − I∗kk ln Ikk)(
βk + d1k
βk

).

Then by using the equilibrium equations (3), one obtains

V̇k = (1−
S∗
k

Sk
)[bk − d1kSk −

N∑
j=1

αkj

SkIuj

(1 + δkIuj )
+ ϵiRi]

+(1−
I∗uk

Iuk

)[
N∑
j=1

αkj

SkIuj

(1 + δkIuj )
− (βk + d1k)Iuk

]

+(1−
I∗kk
Ikk

)(
βk + d1k
βk

)[βkIuk
− (γk + d2k)Ikk ]
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= (1−
S∗
k

Sk
)[

N∑
j=1

αkj

S∗
kI

∗
uj

(1 + δkI∗uj
)
+ d1kS

∗
k − ϵkR

∗
k

+ϵkRk − d1kSk −
N∑
j=1

αkj

SkIuj

(1 + δkIuj )
]

+(1−
I∗uk

Iuk

)[
N∑
j=1

αkj

SkIuj

(1 + δkIuj )
−

N∑
j=1

αkj

S∗
kI

∗
uj

(1 + δkI∗uj
)

Iuk

I∗uk

]

+(1−
I∗kk
Ikk

)(

∑N
j=1 αkj

S∗
kI

∗
uj

(1+δkI∗uj )

I∗uk
βk

)[βkIuk
− βkI

∗
uk

Ikk
I∗kk

]

= −d1k
Sk

(Sk − S∗
k)

2 + ϵk(Rk −R∗
k)(Sk − S∗

k)

+
N∑
j=1

αkj

S∗
kI

∗
uj

(1 + δkI∗uj
)
[3−

S∗
k

Sk
− Ikk
I∗kk

+
S∗
k

Sk

SkIuj

(1 + δkIuj )

(1 + δkI
∗
uj
)

S∗
kI

∗
uj

−
I∗uk

Iuk

SkIuj

(1 + δkIuj )

(1 + δkI
∗
uj
)

S∗
kI

∗
uj

−
Iuk

I∗kk
I∗uk

Ikk
].

Let akj = αkj

S∗
kI

∗
uj

(1+δkI∗uj )
, and

Fkj(Sk, Iuk
, Iuj , Ikk) = 3−

S∗
k

Sk
− Ikk
I∗kk

+
S∗
k

Sk

SkIuj

(1 + δkIuj )

(1 + δkI
∗
uj
)

S∗
kI

∗
uj

−
I∗uk

Iuk

SkIuj

(1 + δkIuj )

(1 + δkI
∗
uj
)

S∗
kI

∗
uj

−
Iuk

I∗kk
I∗uk

Ikk

Since recovered people can be susceptible to the disease again, so the
susceptible people increase and the recovered ones decrease, and we have:
(Rk −R∗

k)(Sk − S∗
k) ≤ 0 and then equation (4) indicates

V̇k ≤
N∑
j=1

akjFkj(Sk, Iuk
, Iuj , Ikk).

Let ϕ(c) = 1− c+ ln c, therefore ϕ(c) ≤ 0 for any c > 0 and the equality
holds only when c = 1.



16 N. DAVARIAN et al.

Furthermore, the equation (5) gives the result

Fkj = ϕ(
S∗
k

Sk
)− ln(

S∗
k

Sk
)

+ϕ(
I∗uk

Iuk

SkIuj

(1 + δkIuj )

(1 + δkI
∗
uj
)

S∗
kI

∗
uj

)− ln(
I∗uk

Iuk

SkIuj

(1 + δkIuj )

(1 + δkI
∗
uj
)

S∗
kI

∗
uj

)

+ϕ(
Iuk

I∗kk
I∗uk

Ikk
)− ln(

Iuk
I∗kk

I∗uk
Ikk

)− Ikk
I∗kk

+ 1 +
Iuj

I∗uj

−
Iuj

I∗uj

SkI
∗
uk

(1+δkI∗uk
)

SkIuj
(1+δkIuj )

S∗
kI

∗
uj

(1+δkI∗uj )

S∗
kI

∗
uk

(1+δkI∗uk
)

+(

S∗
kI

∗
uk

(1+δkI∗uk
)

S∗
kI

∗
uj

(1+δkI∗uj )

SkIuj
(1+δkIuj )

SkI∗uk
(1+δkI∗uk

)

− 1)(1−
Iuj

I∗uj

SkI
∗
uk

(1+δkI∗uk
)

SkIuj
(1+δkIuj )

S∗
kI

∗
uj

(1+δkI∗uj )

S∗
kI

∗
uk

(1+δkI∗uk
)

)

≤ − ln(
S∗
k

Sk
)− ln(

I∗uk

Iuk

SkIuj

(1 + δkIuj )

(1 + δkI
∗
uj
)

S∗
kI

∗
uj

)− ln(
Iuk

I∗kk
I∗uk

Ikk
)

−Ikk
I∗kk

+
Iuj

I∗uj

+ ϕ(
Iuj

I∗uj

SkI
∗
uk

(1+δkI∗uk
)

SkIuj
(1+δkIuj )

S∗
kI

∗
uj

(1+δkI∗uj )

S∗
kI

∗
uk

(1+δkI∗uk
)

)

− ln(
Iuj

I∗uj

SkI
∗
uk

(1+δkI∗uk
)

SkIuj
(1+δkIuj )

S∗
kI

∗
uj

(1+δkI∗uj )

S∗
kI

∗
uk

(1+δkI∗uk
)

)

+(

S∗
kI

∗
uk

(1+δkI∗uk
)

S∗
kI

∗
uj

(1+δkI∗uj )

SkIuj
(1+δkIuj )

SkI∗uk
(1+δkI∗uk

)

− 1)(1−
Iuj

I∗uj

SkI
∗
uk

(1+δkI∗uk
)

SkIuj
(1+δkIuj )

S∗
kI

∗
uj

(1+δkI∗uj )

S∗
kI

∗
uk

(1+δkI∗uk
)

)

≤ − ln(
I∗uk

Iuj

IujI
∗
uj

)− ln(
Iuk

I∗kk
I∗uk

Ikk
)− Ikk

I∗kk
+
Iuj

I∗uj

= − ln(
IujI

∗
kk

I∗uj
Ikk

)− Ikk
I∗kk

+
Iuj

I∗uj
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= (−Ikk
I∗kk

+ ln
Ikk
I∗kk

)− (−
Iuj

I∗uj

+ ln
Iuj

I∗uj

)

= Gk(Ikk)−Gj(Iuj ).

Taking Gk(Ikk) = (− Ikk
I∗kk

+ ln
Ikk
I∗kk

), therefore Vk, Fkj , Gk, akj satisfies the

assumptions of Theorem 3.1.
So, the function V =

∑n
k=1 ckVk as defined in Theorem 3.1 is a Lyapunov

function for system (2), namely, V̇ ≤ 0 for all (S1, Iu1 , Ik1 , R1, ..., Sn, Iun ,
Ikn , Rn) ∈ ∆. One can only show that the largest invariant subset where
V̇ = 0 is the singleton P∗. By LaSalle’s invariance principle, P∗ is glob-
ally asymptotically stable in ∆.

4 Optimal Control

In this section, we calculate an optimal control model for the multigroup
Covid-19 epidemic model.

If R0 > 1, then the disease-free equilibrium P0 is unstable. In this
case, we want to design a suitable control that is stable P0 and its goal
is to minimize the total number of infectious people symptomatic and
asymptomatic.
There was no vaccine and treatment anywhere in the world until the
end of 2020. During this time, scientists were researching for the cor-
rectness three control strategies to reduce the spread of Covid-19. First,
washing hands regularly with soap, using face masks and stay away from
infected people. Second, in case of contact with an infected person, go to
quarantine. Third, inform infected people to go to hospital or isolation.

In the optimal control we tend to minimize the total number of
asymptomatic and symptomatic infectious people. To do this, three
types of control in the controlled system (6) are introduced. The first
control wi is to using face masks and washing hands with soap and stay
away from infected people. The second control θi is to encourage them
to join the quarantine if they come into contact with an infected person.

The third control vi is to notify infected people to stay at home or
in the hospital. In this case, the model of system (2) with control is as
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follows:

dSi
dt

= bi − (1− wi)
N∑
j=1

αij

1 + δiIuj

SiIuj − d1iSi + ϵiRi,

dIui

dt
= (1− wi)

N∑
j=1

αij

1 + δiIuj

SiIuj − (βi + d1i)Iui − θiIui ,

dIki
dt

= βiIui − (γi + d2i)Iki − viIki + (1− ti)θiIui , (6)

dRi

dt
= γiIki − d1iRi + tiθiIui + viIki − ϵiRi.

where Si(0) ≥ 0, Iui(0) ≥ 0, Iki(0) ≥ 0 and Ri(0) ≥ 0 for all i =
1, 2, · · · , n are given initial values of variables. The objective function is
as follows:

J(wi, θi, vi) =

∫ T

0
(Iui + Iki +

A1
i

2
w2
i +

A2
i

2
θ2i +

A3
i

2
v2i )dt, (7)

where T is the given final time, A1
i ≥ 0, A2

i ≥ 0, A3
i ≥ 0, are the cost

coefficients at time t associated with applied controls, and i = 1, · · · , n.
Therefore, we want to obtain the controls of w∗

i , θ
∗
i , v

∗
i such that

J(w∗
i , θ

∗
i , v

∗
i ) = minJ(wi, θi, vi), (wi, θi, vi) ∈ Cad,

where

Cad = {(wi, θi, vi) : 0 ≤ wi ≤ 1, 0 ≤ θi ≤ 1, 0 ≤ vi ≤ 1; t ∈ [0, T ]} .

Theorem 4.1. There exists a triple (w∗
i , θ

∗
i , v

∗
i ) of optimal controls for

(6) with fixed initial conditions, such that

J(w∗
i , θ

∗
i , v

∗
i ) = minJ(wi, θi, vi),

if the following conditions hold:
(1) The set of controls and the corresponding state functions are non-
empty.
(2) The control set Cad is compact.
(3) The state system (6) is linear in terms of control variables with
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coefficients depending on time and states.

(4) The integrand L(Si, Iui , Iki , Ri) = Iui + Iki +
A1

i
2 w

2
i +

A2
i
2 θ

2
i +

A3
i
2 v

2
i

of the objective functional is convex on Cad and there exist constants c1
and c2 such that

L(Si, Iui , Iki , Ri) ≥ −3c1 +
c2
2
(|wi|2 + |θi|2 + |vi|2)

proof. (1) Cad is a non-empty set of real-valued measurable functions
on [0, T ]. The corresponding state variables exist and are bounded by
Proposition 2.1.
(2) Consider

Cad =
{
u ∈ R3; ||u|| ≤ 1

}
.

Let u1, u2 ∈ Cad such that ||u1|| ≤ 1 and ||u2|| ≤ 1. Then for any
ρ ∈ [0, 1],

||ρu1 + (1− ρ)u2|| ≤ ρ||u1||+ (1− ρ)||u2|| ≤ 1.

Therefore, Cad is compact.
(3) The dynamical system (6) is linear in terms of control variables wi,
θi and vi while coefficients are dependent on state variables. Therefore,
(3) is satisfied.
(4) Let ρ ∈ [0, 1], u1 = (wi1, θi1, vi1) ∈ Cad, u2 = (wi2, θi2, vi2) ∈ Cad,

g(x, u) = Iui + Iki +
A1

i
2 w

2
i +

A2
i
2 θ

2
i +

A3
i
2 v

2
i we have

g(x, (1− ρ)u1 + ρu2)− [(1− ρ)g(x, u1) + ρg(x, u2)]

= Iui + Iki +
A1

i

2
[(1− ρ)2w2

i1 + 2ρ(1− ρ)wi1wi2 + ρ2w2
i2]

+
A2

i

2
[(1− ρ)2θ2i1 + 2ρ(1− ρ)θi1θi2 + ρ2θ2i2]

+
A3

i

2
[(1− ρ)2v2i1 + 2ρ(1− ρ)vi1vi2 + ρ2v2i2]

−(1− ρ)(Iui + Iki)− [(1− ρ)(
A1

i

2
w2
i1 +

A2
i

2
θ2i1 +

A3
i

2
v2i1)]− ρ(Iui + Iki)

−ρ[A
1
i

2
w2
i2 +

A2
i

2
θ2i2 +

A3
i

2
v2i2]
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= (ρ2 − ρ)[
A1

i

2
(wi1 − wi2)

2 +
A2

i

2
(θi1 − θi2)

2 +
A3

i

2
(vi1 − vi2)

2]

=
(ρ2 − ρ)

2
[(u1 − u2)

2] ≤ 0.

Hence g(x, (1− ρ)u1 + ρu2) ≤ (1− ρ)g(x, u1) + ρg(x, u2), which proves
the convexity of g(x,u) in Cad.
So, let c1 = supt∈[0;T ](Iui , Iki) and c2 = inf(A1

i , A
2
i , A

3
i ). Then L(Si, Iui ,

Iki , Ri) ≥ −3c1 +
c2
2 (|wi|2 + |θi|2 + |vi|2). Therefore, from results stated

in [33](Theorem 2.1 of Chapter 3), we conclude that there exists a set
of optimal controls for system (6).

Now, the Pontryagin’s maximum principle [16] is used to drive nec-
essary conditions for existence of the optimal controls. This principle is
based on minimizing Hamiltonian Hi(t) which is defined by

Hi = Iui + Iki +
A1

i

2
w2
i +

A2
i

2
θ2i +

A3
i

2
v2i +

4∑
k=1

ψk
i fk(Si, Iui , Iki , Ri), (8)

where ψk
i is the kth adjoint variable at time t and fk is the right-hand

side function of system (6) corresponding to the kth state at time t.

Theorem 4.2. The optimal controls of control system (6) have the fol-
lowing form:

w∗
i = max(0,min(1,

−(ψ1
i − ψ2

i )

A1
i

N∑
j=1

αijSiIuj

1 + δiIuj

)),

θ∗i = max(0,min(1,
ψ2
i − tiψ

4
i − (1− ti)ψ

3
i

A2
i

Iui)),

v∗i = max(0,min(1,
(ψ3

i − ψ4
i )

A3
i

Iki)).

where, Si, Iui , Iki and Ri as related states.
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proof. We know that,

f1(Si, Iui , Iki , Ri) = bi − (1− wi)
N∑
j=1

αij

1 + δiIuj

SiIuj − d1iSi + ϵiRi,

f2(Si, Iui , Iki , Ri) = (1− wi)
N∑
j=1

αij

1 + δiIuj

SiIuj − (βi + d1i)Iui − θiIui ,

f3(Si, Iui , Iki , Ri) = βiIui − (γi + d2i)Iki − viIki + (1− ti)θiIui ,

f4(Si, Iui , Iki , Ri) = γiIki − d1iRi + tiθiIui + viIki − ϵiRi,

Pontryagin’s maximum principle determines the adjoint equations and
transversality conditions:

ψ̇1
i = −∂Hi

∂Si
= ψ1

i d1i + (ψ1
i − ψ2

i )(1− wi)
N∑
j=1

αijIuj

1 + δiIuj

ψ̇2
i = −∂Hi

∂Iui

= (βi + d1i + θi)ψ
2
i − βiψ

3
i

+(ψ1
i − ψ2

i )(1− wi)Si

N∑
j=1

αij

(1 + δIuj )
2

−(1− ti)θiψ
3
i − tiθiψ

4
i − 1

ψ̇3
i = −∂Hi

∂Iki
= (γi + d2i + vi)ψ

3
i − γiψ

4
i − viψ

4
i − 1

ψ̇4
i = −∂Hi

∂Ri
= d1iψ

4
i − (ψ1

i − ψ4
i )ϵi,

The tranversality conditions at final time implies that ψ1
i (T ) = 0, ψ2

i (T ) =
0, ψ3

i (T ) = 0, ψ4
i (T ) = 0. Now, solving the optimality conditions

∂Hi

∂wi
= 0,

∂Hi

∂θi
= 0,

∂Hi

∂vi
= 0.

helps us to find the optimal controls w∗
i , θ

∗
i and v∗i for t ∈ [0, T ]. There-
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fore, we obtain

A1
iwi + (−ψ1

i + ψ2)

N∑
j=1

αijSiIuj

1 + δIuj

= 0,

A2
i θi − ψ2

i Iui + tiψ
4
i Iui + (1− ti)ψ

3
i Iui = 0,

A3
i vi − ψ3

i Iki + ψ4
i Iki = 0.

Form system of equations above, we obtain

wi =
−(ψ1

i − ψ2
i )

A1
i

N∑
j=1

αijSiIuj

1 + δiIuj

,

θi =
ψ2
i − tiψ

4
i − (1− ti)ψ

3
i

A2
i

Iui ,

vi =
(ψ3

i − ψ4
i )

A3
i

Iki .

By using Cad, the bounds of the controls, the optimal controls are ob-
tained as:

w∗
i = max(0,min(1,

−(ψ1
i − ψ2

i )

A1
i

N∑
j=1

αijSiIuj

1 + δiIuj

)),

θ∗i = max(0,min(1,
ψ2
i − tiψ

4
i − (1− ti)ψ

3
i

A2
i

Iui)),

v∗i = max(0,min(1,
(ψ3

i − ψ4
i )

A3
i

Iki)).

5 Numerical Results

In this section, we will simulate the model presented for Covid-19 in Iran
in two situations without control and with control. We consider three
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groups as representatives which are respectively the provinces of Isfahan,
Khorasan-Razavi, and Fars in Iran (See Figure 3). Due to lack of direct
data regarding the transfer coefficient from Si to Iuj among the three
provinces, we determined the pollution coefficients as the travel ratio in
Nowruz 1400 (March 21, 2021) and this data is from the country’s road
management center (https://141.ir).

Figure 3: The cross infection among three Iranian

The matrix A = (αij)N×N is

A =


0.76 0.024 0.058

0.034 0.61 0.008

0.02 0.019 0.45

 .
Information obtained from the Iranian National Bureau of Statistics
(www.amar.org.ir) indicates that the annual death rate is equal to 0.00476
and the annual birth rate is equal to 0.0144.

According to the data in (https://behdasht.gov.ir), for COVID-19
the death rate of population is 0.00076. Hence, d2i is the death rate
due to COVID-19 plus d1i of i

th group, is d2i = 0.00552, i = 1, 2, 3. In
addition, because there is no real data about δi, βi, γi, ϵi so we assume
δi = 2, βi = 0.019, γi = 0.03, ϵi = 0.001, i = 1, 2, 3.
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So, the matrix FV −1 is as follows, based on the above values of
parameters:

FV −1 =


95.792 3.025 7.310

4.285 76.886 1.008

2.521 2.395 56.719

 .

Since R0 = ρ(FV −1) = 96.9996 > 1, one can know from Theorem 2.4
that P0 is unstable.

We set March 10, 2021 as time zero. The number of people who
remain susceptible in each province is similar to that of its resident
population. The number of people who remain asymptomatic in an
infected population of each province is equal to 0.1 of the population of
the center of that province.

The data obtained from Isfahan University of Medical Sciences in
March 10, 2021, show that the number of symptomatic infectious popu-
lation in Isfahan is Ik1(0) = 286, and the recovery population of Isfahan
is R1(0) = 21. (mui.ac.ir).

Furthermore, data from Razavi Khorasan University of Medical Sci-
ences (https://www.mums.ac.ir) reveal that the number of symptomatic
infectious populations in Razavi Khorasan is Ik2(0) = 170, and the re-
covery population in Razavi Khorasan is R2(0) = 40.

The data from Fars University of Medical Sciences (sums.ac.ir) in-
dicate that the number of symptomatic infectious population in Fars is
Ik3(0) = 151, and the recovery population of Fars is R3(0) = 18.

The parameters and initial conditions that describe the model are
listed in Table 2, and Table 3.
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Table 2: Value the parameters

Parameter Value Parameter Value

S1(0) 6120850 R1(0) 21
S2(0) 6434501 R2(0) 40
S3(0) 5054700 R3(0) 18
Iu1(0) 286126 bi 0.0144
Iu2(0) 361900 δi 2
Iu3(0) 169081 βi 0.019
Ik1(0) 286 γi 0.03
Ik2(0) 170 d1i 0.00476
Ik3(0) 151 d2i 0.00552

ϵi 0.001

Table 3: The values of cost coefficients associated with controls

A1
1 A1

2 A1
3 A2

1 A2
2 A2

3 A3
1 A3

2 A3
3 t1 t2 t3

7 3 3 1 1 1 1 1 1 0.001 0.001 0.001

The simulation of the COVID-19 outbreak in the Isfahan, Fars and
Khorasan-Razavi provinces has been performed.

Furthermore, from Figure 4 we observe that the number of suscepti-
ble in the three provinces decreased rapidly. The reason is that suscep-
tible people have entered other groups. Therefore, the infection rate has
been very high, and Iu, Ik shows in the three provinces that is increasing
rapidly.

Figure 5 depicts that S, and R in the three provinces will increase
rapidly. The reason is that susceptible people do not enter other groups.
Therefore, the infection rate has been very down and the number of those
who have recovered has also increased.

Figure 6 shows the number of susceptible people, infected without
symptoms, infected with symptoms, and those who have recovered in
60 days and without control, demonstrating the speed of spread of the
disease. If we can identify infected people without symptoms, it will
have a great impact on controlling this disease.
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Figure 4: Plots for S, Iu, Ik, and R in the three provinces under no control using
data from Table 2.
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Figure 5: Plots for S, Iu, Ik, and R in the three provinces under control using data
from Table 2.

Figure 7 shows the effectiveness of the controls in the number of
susceptible people, infected without symptoms, infected with symptoms
and recovered in 60 days, which aims to reduce the number of infected
people.
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Figure 6: Time series of S, Iu, Ik, and R in the three provinces under no control
(in 60 days).
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Figure 7: Time series of S, Iu, Ik, and R in the three provinces under control (in
60 days).

The obtained results show that with the application of controls, the
number of susceptible and recovery people has increased, while the num-
ber of asymptomatic infectious population and the number of symp-
tomatic infectious population has decreased drastically.
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6 Conclusions

In this article, a multi-group model of covid-19 disease according to
the outbreak process and measures taken in three provinces of Iran is
presented. Also, the stability of disease-free and endemic equilibrium
has been studied. To prevent the spread of the disease, we designed
some suitable control strategies whose purpose was to reduce the number
of symptomatic and asymptomatic infected people. Finally, to show
the effectiveness of these results, we used almost real data from the
provinces of the Isfahan, Khorasan-Razavi and Fars in Iran. The graphs
obtained from the results of the simulations clearly show that the number
of infected people with symptoms and without symptoms has greatly
decreased.
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