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Abstract. This paper presents a numerical method for fractional dif-
ferential equations using Chebyshev finite difference method. The frac-
tional derivatives are described in the Caputo sense. Numerical results
show that this method is of high accuracy and is more convenient and
efficient for solving boundary value problems involving fractional ordi-
nary differential equations.
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1. Introduction

The idea of a derivative which interpolates between the familiar inte-
ger order derivatives was introduced many years ago and has gained
increasing importance only in recent years due to the development of
mathematical models of a certain situations in engineering, materials
science, control theory, polymer modelling etc. For example see [20, 22,
25, 26).

Most fractional order differential equations describing real life situa-
tions, in general do not have exact analytical solutions. Several numerical
and approximate analytical methods for ordinary differential equation
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have been extended to solve fractional order differential equations. Ac-
cording to [26], these methods include Adomian decomposition method
[6], homotopy perturbation method [23], finite difference method [33],
fractional linear multi-step method [19], extrapolation method [11] and
predictor-corrector method [7, 10]. Whilst much work has been published
on fractional differential equation to date, most of the work is focused
on initial value problems. Boundary value problems for fractional dif-
ferential equations has received attention in [1, 2, 3, 26, 29]. Also other
studies that has been done in the field of fractional differential equations
can be found in [16, 4, 15].

In numerical analysis, Taylor polynomials are often used to expand func-
tions. Chebyshev polynomials can be used to expand functions. An ad-
vantage of using Chebyshev polynomials to expand functions is the good
representation of smooth function by finite Chebyshev expansion if the
function y(t) is infinitely differentiable [12]. Chebyshev finite difference
method (ChFD) has been successfully used in the numerical solution of
boundary value problems, boundary layer equations, nonlinear system of
second-order boundary value problems and Fredholm integro-differential
equations [12, 13, 27, 8|.

Since the Chebyshev finite difference method for solving ordinary differ-
ential equations is an appropriate method, we have extended it to the
fractional differential equations. So, the objective of this work is to use
ChFD method to solve boundary value problems involving fractional
differential equations.

2. Preliminaries

To develop our proposed technique, we require the following definitions
of fractional integral, fractional derivatives and Chebyshev polynomials.

Definition 2.1. [25] Let « € R™. The operator J$, defined on the usual
Lebesgue space Ly [a,b] by

Jo f(x) = r(la> / “(@— 62 f (),
1f(x) = f(z),
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for a < x < b, is defined to be the Riemann-Liouville fractional integral
operator of order v . Some properties of the operator J$ are as follows:
For f € Ly [a,b],a, 3 >0 and v > —1,

(1) J& f(z) exists for almost every x € [a,b],
(2) Jo i f () = J&T7 f (),
(3) J i () = JUTg f (),

L'(v+1)

(4) J&(x —a)Y = Taty+1)

(x —a)*t.

Definition 2.2. [25] The fractional derivative of f(t) in the Caputo
sense can be defined by

1 t_Smfafl (m)S p
>/a“ ==t ) ().

I'(m — «

oD f(E) =

Herem—-—1<a<mmeN,t>a.
Ifm—1<a<m,t>a then the following properties hold:

(1) oDk =0,
(2) o DE(JGf (1)) = (D),

m1 (t—a)k
(3) Jg(aD2) = f(t) = X fP(a)

k=0 k!

Definition 2.3. [21] The Chebyshev polynomials of the first kind of
degree n are defined on the interval [—1,1] by

T, (t) = cos(n arccos(t)), n=0,1,..,

Obviously, Tp(t) = 1, T1(t) = t and they satisfy the following recurrence
relations:

Top1(t) = 2T (t) — Tpor(t), n=1,2,....
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[5] has given the following approximation of the function y(t)

where
2 XL,
= NZ y(t)Tn(t;)
=0

and t; = cos(jj\T;), j =0,1,..., N are Gauss-Lobatto points. As in [12]
the summation symbol with double primes denotes a sum with both the
first and last terms halved.

The derivatives of the Chebyshev function are formed as follows:

n—1
T= Y T, @)
(ntkyodd ’
n—2 n ) )
ORI LIt 3)
(n+k)even

where co =2 and ¢; = 1 for ¢ > 1.

From equation (2) and (3) it can be obtained

4 N N n—1
Z Z Z *2/ ()T (t5) T (1), (4)
n=0 j5=0 k=0
(n+k)odd
9 N N n—2 n
=52 — (0" = Byt L) Tk(1),  (5)
n=0 j=0 B k
n+k)even

The derivatives of the function y(t) at the points tx,k = 0,1,...N are
given by [8, 12, 14]

N
=>"dM y(t)), n=1.2 (6)

=0
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where
) 4M N n—1 i
1) _ Au, nep g P
dk,j =N nE_O ;0 Cl Tn(t)Ti(ty), k,j=0,1,...,N, (7)
B (n+7)odd

@ 25 2 npa(n® 1)
=y S B m), k=01,
n=0 1=0

(n+l)even
(8)
with pug = puny = % and p; =1for j=1,2,...,N — 1.

As can be seen from equation (6), the derivatives of y(t) at any point
from the Gauss-Lobatto nodes are expanded as a linear combination of
the values of the function at these points.

3. Description of the Method

In this section by using Chebyshev finite difference method, the bound-
ary value problem of fractional order of the form

—1DYy(t) +az(t)y” (t) + ar(t)y'(t) + ao(t)y(t) = f(t), —1<t<1 (9)

with the boundary condition

y(=1) =1, y(1) =P (10)

where 1 < a < 2, ag(t),a1(t),a2(t) and f(t) are given function in
L?[-1,1] and f31, 32 are real given numbers is solved.

In order to find the solution y(¢) in equation (9), one needs to first cal-
culate equation (9) in Gauss-Lobatto nodes ¢ for k = 1,2,..., N — 1 and
use equations (6), (7), (8) as well as definition 2.2 to obtain

1 tk N " N " piz 2p 2 9
T2—a) / (k=) 2 Z:; Z e 7 = P)ltq)Ty(tg) T (5)ds

(p+r)even
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+Zy Yan(ty)dy) + Zy Jar (te)dy)) + ao(ti)y(te) = f(tx). (1)
For k =0 and k = N the boundary condition (10) is used to obtain

y(to) = y(1) = B2, y(tn) =y(=1) = b1. (12)

Therefore equations (11) and (12) generate a set of N + 1 algebraic
equations, which can be solved for unknown y(to),y(t1), ..., y(tny—1) and
y(tn) and thus y(t) in equation (1) can be calculated.

Theorem 3.1. ([18]) The error |Ep(N)| = |D%y (x) — D2yn(z)| in ap-
prozimation D%y (x) by D{yn(x) is bounded by

00 i k—[a]
Br(N<| D Z > i ||
i=N+1 —[a] =0

(1'% 2i (i+k—1)! T(k—a+1)
h; T(k+3) (i—k)! T(k—a—j+1) T(k+j—a+1)

where 0; ;1 =
1L, j=1,2,....

7h0:2>hj:

Remark 3.2. For system of fractional differential equation we can apply
Chebyshev finite difference method similarly. Therefore, we solve two exa-
mples in the next section.

Remark 3.3. If the interval under consideration in the boundary con-
dition is [a,b], we transform it to the interval [—1,1] by the change of

variable,
b—a b+a

t =
5 Tt

4. Numerical Examples

In this section, we apply the ChFD method to solve different types
of linear fractional differential equations to show the accuracy of the
proposed method. All results were computed using Maple 13.
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4.1 Ordinary fractional differential equations

Example 4.1.1. Consider the boundary value problem of fractional
order

t
(25t —15) +t*, —1<t <1,

y(-1)=-1, y@1)=1
The exact solution of this problem is y(t) = t3. We apply the proposed
method for this problem and achieve the exact solution.

Example 4.1.2. [26] Consider the boundary value problem
1-t¢

YO =1, y(1) = 3.

We apply the ChFD method and the approximate solution of this prob-

lem for different values of a are shown in figure 1.
1
T+t
compare our results with methods based on Taylor’s expansion [32] and

Haar wavelet method [26]. The evaluated absolute errors between the
exact solution and numerical solution are shown in Table 1.

When o = 2, the exact solution is y(t) = [32]. For this case we

T T T T T
0.2 0.4 0.6 0.8 1

t
0=15——0=1.75 ©° exactsolution —— azzl

l

Figure 1. Approximate solution with N=8 and different values of «
for example 4.1.2.

o=1.25
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Table 1: Comparison of the ChFD method for N=20 with the haar
wavelet [26] and methods in ref. [32].

Methods in ref. [32]

Haar wavlet [26]

ChFD method

t

() — y(t)|

y(t) = y(b)|

‘yHaar - y(t)‘

lyenrp(t) = y(t)|

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.590477 x 10~*
1.047506 x 10~*
2.784706 x 107°
4550068 x 10~°
1.167467 x 10~*
1.812416 x 10~*
2.228086 x 10~*
2.213083 x 10~*
1.543950 x 10~*

2.281673 x 10~*
2.469834 x 1074
1.858469 x 10~*
1.157510 x 10~*
6.412753 x 1075
3.403860 x 10~°
2.153643 x 10~°
1.719699 x 10~°
1.205234 x 107°

1.855711 x 1077
1.307581 x 1077
5.238972 x 1078
2.279295 x 1078
6.420743 x 1079
2.6709901 x 10~°
5.052727 x 1072
1.285991 x 108
2.474367 x 1078

5.196667 x 10~17
8.692174 x 10717
2.484844 x 10716
1.933657 x 10716
1.365740 x 10~7
1.654892 x 10716
1.822994 x 1016
4.105945 x 10717
3.606577 x 10717

4.2 Multi-order fractional differential equations

Example 4.2.1. Consider the boundary value problem of fractional
order

t
oDy(t) + 4/ (t) + yét) = +erf(Vi)e' +1, 0<t<1,
y(0) =1, y(1)=e,

with the exact solution y(t) = e’.

"

Now we define the maximum errors for yy(t) = Efj:o rnTn(t) as

EN = HyN(t) - yexact(t)HOO = maxﬂyN(t) - yemact(t)|7 0<t< 1}

where yy is the computed result with N and ye,qct is the exact solution.
In Table 2 we give the errors ey for different values of V.

Table 2: The maximum errors of ey for different values of N for
example 4.2.1

N[ 4] 6 8 10 12
107410771070 [ 5x 107 [ 25 x 10710

EN
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Example 4.2.2. [26] Consider the boundary value problem
oD2y(t) = oDly(t) —e'™' -1, 1<a<2, 0<3<],

y(0) =0, y(1) =0.

For the general case the exact solution of the problem is not known.
However, for a = 2 and 8 = 1 the problem has the exact solution y(t) =
t(1—e'~1). This problem was solved numerically in [30] using combined
homotopy perturbation method and Green function method. Also in
[26] it was solved by Haar wavelet method. We compare ChFD method
and the two mentioned methods in Table 3. Computer plots for g =1
and different values of « given in Figure 2 show that as a approaches
to 2, the corresponding solutions of fractional order differential equation
approach to the solutions of integer order differential equation.

a=1.25
0.4
0.3
oa=1.75

0.2

0.1

0 0.2 0.4 0.6 0.8

t
|

o=1.75 ¢ exact solution

0=1.25 0=15 o=2]

Figure 2. Approximate solution with N=8, § = 1 and different values
of a for example 4.2.2.
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Table 3: Comparison of the ChFD method for N=20 with the haar
wavelet [26] and HPM [30].

t HPM [30] Haar wavlet [26) exact solution lyorrp — y(t)]
0.1 0.05934820 0.05934300 0.05934303 1.0213 x 10720
0.2 0.11014318 0.11013418 0.11013421 1.0682 x 10726
0.3 0.15103441 0.15102438 0.15102441 1.1182 x 1026
0.4 0.18048329 0.18047531 0.18047535 1.1682 x 1026
05 0.19673826 0.19673463 0.19673467 1.2201 x 1026
0.6 0.19780653 0.19780792 0.19780797 1.2733 x 10726
0.7 0.18142196 0.18142718 0.18142725 1.3297 x 1026
0.8 0.14500893 0.14501532 0.14501540 1.3946 x 10726
0.9 0.08564186 0.08564623 0.08564632 1.4753 x 10726

Example 4.2.3. The Bagley-Torvik equation is of the form
ay”(t) + b oDLy(t) + cy(t) = g(t), te0,1],

y(0) =0, y(1) = yo,

where a,b,c € R and a # 0. The Bagley-Torvik equation which involves
fractional derivative of order % or % arises in the modelling of the motion
of a rigid plate in a Newtonian fluid and a gas in a fluid. According to
[26] several authors, such as Podlubny [25], Saha Ray and Bera [28], Di-
ethelm and Ford [9], Diethelm et al. [10] and Wang and Wang [31], have
proposed different techniques for the solution of Bagley-Torvik equation.
In the present work, we solve this equation with two-point boundary con-

ditions by using the Chebyshev finite difference method.

We choose o = %, a=b=c=1,y9p=1and g(t) = 4\/%—1—152—}—2. It can
be easily verified that the exact solution is y(t) = t2. For solving this
special case we applied the ChFD method with NV = 2 and obtained the

exact solution.

4.3 System of fractional differential equations

Example 4.3.1. Consider the system of fractional differential equations

0D oyi(t) +y5(t) + P4 (8) = f(t), 0<t<1
oDIPys(t) + (8 — )yf(t) = f2(t), 0<t<1,



CHEBYSHEV FINITE DIFFERENCE METHOD FOR ... 67

with the boundary conditions

y1(0) = 0,51(1) =1, 2(0) = y2(1) =0,

where fi(t) = ﬁﬁ%— 2t3 + 3t2 — 1 and fa(t) = %t% +2(t —1).
The exact solutions are yi(t) = ¢? and yo(t) = t3 — t. For solving the
above equations we put

N N
"o . 2 ” .
yi(t) = 2} rpTa(t), 1, = N ZO yi(tj)Tn(tj)v 1=1,2,
n= j=

by using ChFD method and boundary conditions we obtain 2N 42 alge-
braic equations. By solving this system we obtain unknown coefficients
y1(tx) and yo(tx) for £ = 0,1,...,N. Now if we put N = 3 and using
the ChFD method for solving the above system of fractional differential
equation we obtain the exact solutions y;(t) = t? and yo(t) = t3 — t.

Example 4.3.2 [17] Consider the system of fractional differential equa-
tion

{ 0Dy1(t) + (2t — D)yi () + cos(mt)ys(t) = fi(t), 0<t<1
0D2ya(t) + tyi () = falt), 0<t<l,

with the boundary conditions

y1(0) = 0,51(1) =0, 2(0) = y2(1) =0,

where 1 < o, < 2 and fi(t), fa(t) are determined by substituting exact
solutions in the above equations. For a = 3 = 2 the system have exact
solutions y; (t) = sin(nt) and y2(t) = t2 — t. This problem was solved in
[17] using variational iteration method. We compare the absolute error
for y1(t) in Table 4. Note that by using VIM and ChFD method we can
obtain the exact solution for y,(t). Now we suppose o = 1.5, = 1.2
and the exact solutions for this case is the same as above. We apply
ChFD method and obtain the exact solution for y»(¢) and for y;(t) the
absolute errors are reported in Table 5.
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Table 4: Comparison of the CHFD method for N=16
with the VIM [17] .

t VIM [17] ChFD method
0.1 0.0003 8.1492 x 1017
0.2 0.0025 6.5735 x 10718
0.3 0.0078 5.0842 x 1018
0.4 0.0166 1.2769 x 10— 18
0.5 0.0277 3.5625 x 10718
0.6 0.0387 1.2770 x 10718
0.7 0.0459 5.0842 x 10718
0.8 0.0449 6.5832 x 10~18
0.9 0.0309 8.1498 x 10~ 17

Table 5: Absolute error for a = 1.5, 3 = 1.2 with N=16.

t lyenrp — y1(t)]
0.1 4.3004 x 10~ 16
0.2 7.9298 x 10716
0.3 1.1305 x 10715
0.4 1.2186 x 10~ 15
0.5 1.2259 x 10~
0.6 1.2196 x 10715
0.7 8.9839 x 10716
0.8 6.6944 x 10~16
0.9 2.1484 x 1016

5. Conclusion

In this paper we have developed a numerical scheme for solving frac-
tional boundary value problems. Our proposed scheme was based on
the Chebyshev finite difference method. The results obtained were com-
pared with exact solutions and the results agree well with exact solutions
even for small values of N. In some examples, the method achieved the
exact solutions. The obtained results indicate that this approach can
solve boundary value problems involving fractional ordinary differential
equation effectively.
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