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Abstract. Cross-efficiency evaluation in data envelopment analysis is
a useful tool for evaluating the performance of decision-making units
(DMUs). Using secondary goals is one way to overcome the issue of the
existence of multiple optimal solutions in the cross-efficiency evaluation
method. This paper proposes two secondary goals with a neutral aspect
that focuses only on the interests of the DMU being evaluated and is
indifferent to other DMUs. In the proposed models, unlike many of
the existing neutral models, the weights are selected without defining
virtual DMUs and by defining the range of changes for the efficiency of
each output of the DMU being evaluated. In the first proposed model,
the efficiency of all the outputs of the unit under evaluation becomes
as close as possible to each other. In the second model, the efficiency
of all outputs of the evaluated unit moves closer to the upper limit,
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away from the lower limit. Finally, using two numerical examples, the
effectiveness of the proposed models is shown by comparing them with
the previously proposed models. Also, the TOPSIS model is used to
integrate the efficiency scores obtained from different models, resulting
in a unique score for ranking the units.
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Keywords and Phrases: Data envelopment analysis, Cross efficiency,
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1 Introduction

Data envelopment analysis (DEA) is a non-parametric mathematical op-
timization technique to measure the relative efficiency of DMUs, such
as banks, industries, police stations, hospitals, tax offices, schools, and
university departments [3, 9, 10, 19, 24]. The traditional models in
DEA divide DMUs into two groups, efficient and inefficient, so efficient
DMUs give an efficiency score of one, and inefficient DMUs get an effi-
ciency score of less than one. Identical efficiency scores among DMUs
result in an inability to rank them all. To resolve this difficulty, many re-
searchers have done a lot of work to achieve a reasonable ranking of one.
Sexton, Silkman and Hogan [21] suggested the cross-evaluation method
as a ranking method in DEA that involves self-evaluation and peer-
evaluation efficiency. In the self-evaluation section, the standard cross-
efficiency method typically employs the CCR or BCC models, which
are based on linear programming. These models often yield multiple
optimal solutions, leading to potential changes in the ranking of each
DMU based on their cross-efficiency scores, as each DMU receives sev-
eral peer-evaluation efficiency scores [21]. To address this issue,Sexton,
Silkman, and Hogan [21] proposed incorporating a secondary goal into
the cross-efficiency method by introducing two attitudes: aggressive and
benevolent.
Doyle and Green [8] proposed two models with aggressive and benev-
olent attitudes, the ideas of which are widely used in cross-efficiency
evaluation. Both models aim to maximize the efficiency of the DMU
under evaluation. However, the benevolent model simultaneously maxi-
mizes the average efficiency of other DMUs, while the aggressive model
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minimizes the average efficiency of other DMUs. Liang, Wu, Cook and
Zhu [15] proposed benevolent game cross efficiency. This model de-
termines a unique set of weights based on the Nash equilibrium and
the benevolent strategy. Using the symmetric weight assignment tech-
nique, Jahanshahloo, Lotfi, Jafari and Maddahi [11] suggested a new sec-
ondary goal for the evaluation cross-efficiency score. Li, Wu, Zhu, Liang
and Kou [14] explored reciprocal behaviors among DMUs in their cross-
efficiency evaluations, introducing a threshold value to identify positive
or negative reciprocal behaviors by comparing the peer-evaluated effi-
ciency with the threshold value-based efficiency. Zhuang and Luo [29]
introduced two concepts: task conflict cross-efficiency and relationship
conflict cross-efficiency, to address the effects of conflict behavior and
beneficial relationships among DMUs during cross-efficiency evaluation.
Chen, Huang, Li and Wang [6] incorporated a meta-frontier analysis
framework into the cross-efficiency method to create a novel efficiency
evaluation approach. Additionally, Chen and Wang [4] provided an in-
novative definition of cross-efficiency and created two new target-setting
approaches for individual DMUs and global optimization to enhance the
cross-efficiency of DMUs in different decision-making situations. Chen,
Wang and Huang [5] utilized prospect theory to capture how decision-
makers’ subjective preferences influence the aggregation process when
evaluating gains and losses. They developed a new approach for ag-
gregating cross-efficiency based on this theory. Zhang and Liao [28]
proposed a stochastic cross-efficiency approach based on the prospect
theory to determine the winner in public procurement tenders. Firstly,
two cross-efficiency DEA models based on the prospect theory are de-
veloped to derive the cross-efficiencies of bidders. Next, they used a
stochastic Benefit-of-the-Doubt model based on Monte Carlo simula-
tion to aggregate the diverse cross-efficiencies derived from the evalua-
tions of different experts. Contreras, Lozano and Hinojosa [7] designed
a novel cross-efficiency model based on bargaining problems and the
Kalai-Smorodinsky solution. Wu, Wang, Liu and Wu [27] created an
innovative composite method for ranking DMUs by analyzing the Shan-
non entropy of cross-efficiency scores, considering both satisfaction and
consensus perspectives. Liu, Zhang, Huang, Wang and Xiao [17] pro-
posed a novel combined method consisting of dynamic network DEA,
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cross-efficiency evaluation, and Shannon entropy aggregation to evalu-
ate the benefits of bus transit systems in 33 key Chinese cities from 2016
to 2019.
The neutral strategy for cross-efficiency evaluation was first introduced
by Wang and Chin [25]. This approach differs from aggressive or benev-
olent models by aiming to determine a set of weights for each DMU’s
inputs and outputs from its own profit viewpoint. Wang, Chin and Luo
[26] proposed a neutral cross-efficiency evaluation method based on the
distance of each DMU from either the best DMU (IDMU) or the worst
DMU (ADMU). Based upon the method in Wang, Chin and Luo [26],
Carrillo and Jorge [2] proposed a neutral model that determines an op-
timal set of weights that maximize the efficiency score of the IDMU
and minimize the efficiency score of the ADMU simultaneously while
maintaining the evaluated unit’s efficiency. Shi, Wang and Chen [23]
utilized an ideal and anti-ideal frontier as benchmarks and proposed
a new method for evaluating cross-efficiency scores. Using IDMU and
ADMU, Kao and Hung [12] incorporated prospect theory to create a new
secondary objective based on the neutral strategy for evaluating cross-
efficiency scores. Kao and Liu [13] explored two fundamental network
systems, series and parallel, and created a relational model to evaluate
the cross-efficiencies of these systems and their divisions. Based on this
model, Örkcü, Özsoy, Örkcü and Bal [20] introduced a new neutral model
for cross-efficiency evaluation of basic two-stage network systems. This
model ranks each DMU based on the efficiency scores of sub-stages and
the overall efficiency score, with the overall efficiency being the product
of the individual stage efficiencies. Shi, Chen, Chen and Wang [22] pro-
posed a neutral cross-efficiency evaluation method grounded in prospect
theory, which considers the bounded rationality of DMUs when dealing
with gains and losses, as secondary objectives. Liu, Zhang and Xu [18]
proposed the neutral cross-efficiency evaluation method for general par-
allel systems.
Given that most neutral models use virtual units (which do not exist in
the real world) to evaluate units with block box structure, in this article
we aim to present a neutral model based on the input and output values
of the units under study.
This paper presents two secondary goals from a neutral perspective,
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drawing inspiration from the model by Wang and Chin [25]. The pro-
posed models emphasize the efficiency of the outputs of the DMU under
evaluation. The first model focuses on maximizing the equality of the
evaluated unit’s output efficiencies. In the second model, we aim for
the performance of unit outputs under evaluation to be as close to their
best performance as possible while maximizing the distance from their
worst-performance. We compare the performance of the proposed mod-
els against neutral models using two practical examples. Additionally,
we consolidate the efficiency scores for each unit across different models
utilizing the TAPSIS model.
The structure of this paper is organized as follows. Section 2 examines
cross-efficiency models, focusing on well-known neutral models. New
models are introduced in Section 3. The examples in Section 4 illus-
trate the effectiveness of the proposed models. Conclusions are given in
Section 5.

2 Cross-Efficiency Evaluation

Suppose we have a set of n DMUs, and each DMUj(j = 1, 2, ..., n)
produces s different outputs indexes Yj = (y1j , y2j , ..., ysj) ∈ Rs

+ from
m different inputs indexes Xj = (x1j , x2j , ..., xmj) ∈ Rm

+ , where Rs
+

and Rm
+ are two sets of non-negative numbers. As mentioned in the

previous section, cross-efficiency evaluation includes two stages; in the
self-evaluation stage, the multiplier form of the CCR model is often used
to evaluate DMU under evaluation, DMUp, which is as follows [3]:

E∗
pp = Max

s∑
r=1

urpyrp

s.t.

s∑
r=1

urpyrj −
m∑
i=1

vipxij ≤ 0, j = 1, 2, ..., n

m∑
i=1

vipxip = 1,

urp ≥ 0, vip ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m

(1)

Where vip and urprepresent the i
th input and rth output weights for evaluation

DMUp. E∗
pp is referred to as the CCR-efficiency of DMUpwhich also reflects

the self-evaluated efficiency of DMUp. The peer evaluation efficiency of DMUp
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to DMUj(j = 1, 2, ..., n), using the optimal weights that DMUp has chosen in
the model (1), is then [21]:

Epj =

∑s
r=1 u

∗
rpyrj∑m

i=1 v
∗
ipxij

, (p, j = 1, 2..., n) (2)

Where (*) denotes optimal values in model (1). The cross-evaluation matrix
can then be obtained as follows:


E11 E12 ... E1n

E21 E22 ... E2n

. . . .

. . . .

. . . .
En1 En2 ... Enn


The cross-efficiency score for DMUj (j = 1, 2, ..., n) can be obtained by the
following equation [21]:

Ēj =
1

n

n∑
p=1

Epj (j = 1, 2, ..., n) (3)

The optimal weights derived from model (1) are typically not unique, leading to
the arbitrary creation of the efficiency defined in (2) and (3). Sexton, Silkman
and Hogan [21] proposed improving cross-efficiency evaluation by adding a
secondary goal to optimize input and output weights while maintaining CCR-
efficiency. They introduced aggressive and benevolent formulations, resulting in
two weighted goal programming models. Based on the idea of adding secondary
goals, several models have been proposed by researchers to reduce the problem
of multiple optimal solutions in the CCR model for cross-efficiency evaluation.
These models can be considered in three categories: aggressive, benevolent,
and neutral goals. In what follows, We will review some of the most popular
of these models.

2.1 The aggressive and benevolent models

Based on the seminal work of Sexton, Silkman and Hogan [21], introducing a
secondary goal based on aggressive and benevolent attitudes can reduce the in-
fluence of multiple optimal solutions in model (1)for cross-efficiency evaluation.
Building on this idea, Doyle and Green [8]introduced two following models as
secondary goals based on benevolent and aggressive attitudes, whose ideas are
widely used in cross-efficiency evaluation:
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Min

(4− i)
Or

Max

(4− ii)

s∑
r=1

urp

 n∑
j=1 j ̸=p

yrj


s.t.

m∑
i=1

vip

 n∑
j=1 j ̸=p

xij

 = 1

s∑
r=1

urpyrp − E∗
pp

m∑
i=1

vipxip = 0

s∑
r=1

urpyrj −
m∑
i=1

vipxij ≤ 0, j = 1, 2, ..., n; j ̸= p

urp ≥ 0, vip ≥ 0, i = 1, 2, ..., s r = 1, 2, ...,m

(4)

Model (4) aims to find optimal weights that not only maximize the efficiency
of DMUpbut also minimize (4-i), the aggressive model) or maximize (4-ii), in
the benevolent model) the average efficiency of other DMUs[8]. Since the two
formulations optimize the input and output weights in different ways, there is
no guarantee that they lead to the same efficiency ranking or conclusion for
the n DMUs.

2.2 The neutral models

When a DMU can determine a set unique of input and output weights, its
primary goal is to optimize these weights in its favor. In practice, a DMU need
not be concerned with being aggressive or benevolent toward others. This idea
has attracted the attention of researchers in recent years.

2.2.1 The wang and chin [25]’s model

Wang and Chin [25] introduced a new cross-efficiency model, termed the neutral
model, which avoids both aggressive and benevolent stances. Their model is as
follows:

max min
r=1,2,...,s

{
urpyrp∑m
i=1 vipxip

}
s.t. Epj =

s∑
r=1

urpyrj/

m∑
i=1

vipxij ≤ 1, j = 1, 2, ..., n j ̸= p

E∗
pp =

s∑
r=1

urpyrp/

m∑
i=1

vipxip

urp ≥ 0, vip ≥ 0, r = 1, 2, ...,m i = 1, 2, ..., s

(5)
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Where
urpyrp∑m
i=1 vipxip

is the efficiency of the rthoutput of DMUp.

Model (5) for DMUP seeks input and output weights that maximize overall
efficiency while ensuring each of its outputs is individually as efficient as pos-
sible.

2.2.2 The carrillo and jorge [2]’s model

Another of the well-known secondary goahel for cross-efficiency evaluation from
a neutral perspective introduced by Carrillo and Jorge [2]. They used the two
following hypothetical DMUs, IDMU and ADMU, are used that represent the
best and worst possible performers, respectively, within the given production
context.

IDMU =

{
(xmin, ymax)|xmin

i = min
j

{xij}, ymax
r = max

j
{yrj}

}
(6)

ADMU =

{
(xmax, ymin)|xmax

i = max
j

{xij}, ymin
r = min

j
{yrj}

}
(7)

Proposed model by Carrillo and Jorge [2] is as follows:

min

m∑
i=1

vip(x
max
i − xmin

i ) +

s∑
r=1

urp(y
max
r − ymin

r )

s.t.

s∑
r=1

urpyrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, ..., n

m∑
i=1

vipxip = 1,

E∗
pp −

s∑
r=1

urpyrp = 0,

urp ≥ 0, vip ≥ 0, r = 1, 2, ..., s , i = 1, 2, ...,m

(8)

The efficiency of the ideal unit establishes an upper bound for any DMU, while
the efficiency of the anti-ideal unit sets a lower bound. Thus, minimizing the
efficiency of the ideal unit helps approximate the minimization of the maximum
cross-efficiency, and maximizing the efficiency of the anti-ideal unit aligns with
the maximization of the minimum cross-efficiency. Model (8) explores both
approaches within a bi-objective framework.



ALTERNATIVE NEUTRAL SECONDARY GOALS ... 9

2.2.3 The liu, song an yang [16]’s model

Standard cross-efficiency evaluation models typically assume that decision mak-
ers (DMs) are entirely rational, overlooking the significant influence of their
risk attitudes on the evaluation process. To fill this gap,Liu, Song an Yang [16]
introduced a neutral model based on prospect theory, introducing a prospect
value that uses IDMU and ADMU as reference points (RPs) to address the non-
rational psychological factors of a DMU under risk. They by taking ADMU as
RP, constructed the following model, in which DMUp tries to choose a set of
weights to maximize its gain.

Max

m∑
i=1

vip(x
max
i − xip)

α +

s∑
r=1

urp(yrp − ymin
r )α

s.t. model (8) costraints.

(9)

In the next model, Liu, Song and Yang [16] used the IDMU as the RP. In this
model, DMUp attempts to select a set of weights to minimize its losses.

Min

m∑
i=1

vipλ(xip − xmin
i )β +

s∑
r=1

urpλ(y
max
r − yrp)

β

s.t. model (8) costraints.

(10)

2.2.4 The shi, chen, chen and wang [22]’s model

Shi, Chen, Chen and Wang [22] assumed that there is a production possibility
set which can use m interval inputs [aix

min
i , bix

max
i ](i = 1, 2, ...,m) to generate s

interval outputs [cry
min
r , dry

max
r ](r = 1, 2, ..., s) where a = (a1, a2, ..., am), b =

(b1, b2, ..., bm), c = (c1, c2, ..., cs) and d = (d1, d2, ..., ds) are all vectors, and

1 ≤ ai ≤
xmax
i

xmin
i

,
xmin
i

xmax
i

≤ bi ≤ 1(i = 1, 2, ...,m), 1 ≤ cr ≤ ymax
r

ymin
r

,
ymin
r

ymax
r

≤ dr ≤

1(r = 1, 2, ..., s) where this DMU is called an interval-DMU.
Based on interval reference points (IRPs) to consider bounded rational be-
havior, Shi, Chen, Chen and Wang [22] proposed the following neutral cross-
efficiency evaluation model.

Min

m∑
i=1

vipW
interval−in
ip +

s∑
r=1

urpW
interval−out
rp

s.t. model (8) costraints.

(11)

where W interval−in
ip and W interval−out

rp are defined as follows [22]:
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W interval−in
ip =

−λ(−bix
max
i + xip)

β , xip > bix
max
i

−λ(−aix
min
i + xip)

β + (bix
max
i − xip)

α, aix
max
i ≤ xip ≤ bix

max
i

(aix
max
i − xip)

α, xip < aix
min
i

W interval−out
rp = −λ(−yrp + cry

min
r )β , yrp < cry

min
r

−λ(−yrp + dry
max
r )β + (yrp − cry

min
r )α, cry

min
r ≤ yrp ≤ dry

max
r

(yrp − dry
max
r )α, yrp > dry

max
r

Model (11) differs from models (9-10) in that the RPs can be any precise num-
ber or interval DMU inferior to ADMU and superior to IDMU, rather than
being restricted to just ADMU and IDMU. In this case, the RPs illustrate
the bounded rationality of decision-makers regarding gains and losses. Conse-
quently, model (11) accommodates irrational behavior of DMs while overcoming
the limitations of the precise reference point in application.

Remark 2.1. Model(9) is special case of model(11) when ai =
xmax
i

xmin
i

, bi =

1, cr = 1, dr =
ymin
r

yrmax

.

Remark 2.2. Model(10) is special case of model(11) when ai = 1, bi =
xmin
i

xmax
i

, cr =

ymax
r

ymin
r

, dr = 1.

Remark 2.3. In the numerical examples section of this article, the interval-
DMU uses interval inputs [xmin, xmax] to produce interval outputs[ymin, ymax].

The values of parameters α, β, and λ in (9), (10) and (11) are constants and
reflect the bounded rationality of the decision-maker and vary from person to
person. The research findings indicate that α= β= 0.88 and λ = 2.25 effec-
tively represent the bounded rational behavior of most decision-makers.
In the sections that follow two new models will be suggested and their perfor-
mance will be compared with the above models.

3 Proposed Model

As mentioned in the last section, in neutral cross-efficiency models, DMUs typ-
ically focus on maximizing gains and minimizing losses without considering the
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interests of their peers. In this section, we introduce two new neutral secondary
goal models for cross-efficiency evaluation. The first proposed model is inspired
by the model (5). This model sets input and output weights to minimize the
gap between the minimum and maximum efficiency of the evaluated DMU out-
puts. Let DMUp(p = 1, 2, ..., n) be DMU under evaluation. The first proposed
model is as follows:

min max
r=1,2,...,s

{
Er

p

}
− min

r=1,2,...,s

{
Er

p

}
s.t. Epj =

s∑
r=1

urpyrj/

m∑
i=1

vipxij ≤ 1, j = 1, 2, ..., n , j ̸= p

E∗
pp =

s∑
r=1

urpyrp/

m∑
i=1

vipxip

urp ≥ 0, r = 1, 2, ...,m
vip ≥ 0, i = 1, 2, ..., s

(12)

Where Er
p =

urpyrp∑m
i=1 vipxip

is defined in (5). The above model searches for a

set of input and output weights for DMUp to maximize its efficiency as a
whole while trying to make Er

p(r = 1, 2, ..., s) as close as possible to being
equal. In other words, the proposed model aims to make the evaluated DMU
outputs as similar as possible in efficiency. In contrast to model (5), which
focuses solely on improving the worst-performing DMUp outputs, the model
(12) aims to equalize the efficiency scores of all DMUp outputs. Via Charnes
and Cooper’s transformation [3], model (12) can be transformed into the next
linear programming model as follows:

λ∗ = Minλ2 − λ1

s.t.

s∑
r=1

urpyrj −
m∑
i=1

vipxij ≤ 0, j = 1, 2, ..., n

m∑
i=1

vipxip = 1,

E∗
pp −

s∑
r=1

urpyrp = 0,

λ1 ≤ urpyrp ≤ λ2, r = 1, 2, ..., s
urp ≥ 0, r = 1, 2, ...,m
vip ≥ 0, , i = 1, 2, ..., s

λ1 ≥ 0

(13)

Where urp (r = 1, 2, ...,m) , vip(i = 1, 2, ..., s),λ1 and λ2 are decision variables.
From the perspective of multi-criteria decision analysis, DMU under evaluation
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can choose a set of input and output weights to make each of its outputs’
efficiency distance from λ2 as small as possible, and each of outputs’ efficiency
distance from λ1 as large as possible. Based on this idea, we propose another
neutral cross-efficiency model in the following form:

Min

s∑
r=1

(λ2 − urpyrp)−
s∑

r=1

(urpyrp − λ1)

s.t.

s∑
r=1

urpyrj −
m∑
i=1

vipxij ≤ 0, j = 1, 2, ..., n

m∑
i=1

vipxip = 1,

E∗
pp −

s∑
r=1

urpyrp = 0,

λ1 ≤ urpyrp ≤ λ2, r = 1, 2, ..., s
urp ≥ 0, r = 1, 2, ...,m
vip ≥ 0, i = 1, 2, ..., s
λ1 ≥ 0

(14)

In model (14),the variation between Er
p(r = 1, 2, ..., s) and λ2 is minimized

while that between Er
p(r = 1, 2, ..., s) and λ1 is maximized.

Models (12) and (14) determine the input and output weights from the angle
of the DMUp itself and have nothing to do with the efficiency of other DMUs.
Thus, the proposed model is a neutral model rather than an aggressive or
benevolent model.
As with all DEA models for cross-efficiency evaluation, models (13) and (14)
need to be solved n times for each DMU. Therefore, n efficiency scores are
generated for each DMU, and its cross-efficiency score can be calculated using
(3).

4 Numerical Example

In this section, we evaluate the performance of our proposed models using two
numerical examples from previous DEA studies.
Example 4.1. In this example, 17 forest districts with four inputs ( x1

:Budget, x2 :Initial stocking, x3 :Labor, x4 :Land) and three outputs (y1 :Main
product, y2 :Soil conservation, y3 :Recreation) are considered for measuring
efficiency. The real value is taken from [12] and it is shown in Table 1.

The last column of Table 1 shows the efficiency scores of the 17 forest districts
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Table 1: Input and output data of the 17 forest districts in Taiwan.

Inputs Outputs CCR
DMU x1 x2 x3 x4 y1 y2 y3 Efficiency

(dollars) (m3) (persons) (ha) (m3) (m3) (visits)

1 51.62 11.23 49.22 33.52 40.49 14.89 3166.71 1
2 85.78 123.98 55.13 108.46 43.51 173.93 6.45 1
3 66.65 104.18 257.09 13.65 139.74 115.96 0 1
4 27.87 107.6 14 146.43 25.47 131.79 0 1
5 51.28 117.51 32.07 84.5 46.2 144.99 0 1
6 36.05 193.32 59.52 8.23 46.88 190.77 822.92 1
7 25.83 105.8 9.51 227.2 19.4 120.09 0 1
8 123.02 82.44 87.35 98.8 43.33 125.84 404.69 1
9 61.95 99.77 33 86.37 45.43 79.6 1252.62 1
10 80.33 104.65 53.3 79.06 27.28 132.49 42.67 0.94047
11 205.92 183.49 144.16 59.66 14.09 196.29 16.15 0.93462
12 82.09 104.94 46.51 127.28 44.87 108.53 0 0.82896
13 202.21 187.74 149.39 93.65 44.97 184.77 0 0.79983
14 67.55 82.83 44.37 60.85 26.04 85 23.95 0.77316
15 72.6 132.73 44.67 173.48 5.55 135.65 24.13 0.76247
16 84.83 104.28 159.12 171.11 11.53 110.22 49.09 0.74348
17 71.77 88.16 69.19 123.14 44.83 74.54 6.14 0.68679

Table 2: Cross efficiency score for 17 forest districts by different models.

Aggressive Benevolent wang2010 call2018 Liu2019AD Liu2019ID ShiChen2021 Model(13) Model(14)
DMU Model(4-i) Model(4-ii) Model(5) Model(8) Model(9) Model(10) Model(11)

1 0.651 (5) 0.886 (4) 0.7361 (8) 0.6898 (9) 0.5885 (9) 0.7425 (3) 0.5475 (9) 0.8337 (5) 0.8471 (5)
2 0.6579 (4) 0.9448 (2) 0.8498 (4) 0.8611 (2) 0.7325 (4) 0.681 (5) 0.6781 (4) 0.853 (3) 0.8587 (3)
3 0.5807 (8) 0.8692 (6) 0.7702 (5) 0.7733 (6) 0.6818 (5) 0.631 (7) 0.5802 (8) 0.8128 (6) 0.7709(7)
4 0.7170 (1) 0.9147 (3) 0.857 (3) 0.8342 (3) 0.7757 (2) 0.7376 (4) 0.7287 (2) 0.8406 (4) 0.9180(2)
5 0.7139 (2) 0.9638 (1) 0.9038 (2) 0.8924 (1) 0.7743 (3) 0.7649 (1) 0.7242 (3) 0.9173 (1) 0.9565(1)
6 0.7012 (3) 0.8776 (5) 0.9321 (1) 0.8083 (4) 0.8366 (1) 0.7467 (2) 0.7301 (1) 0.8812 (2) 0.8550(4)
7 0.6505 (6) 0.7942 (9) 0.7169 (9) 0.7231 (8) 0.6735 (6) 0.6606 (6) 0.6559 (5) 0.707 (9) 0.7945(6)
8 0.5839 (7) 0.8379 (7) 0.7397 (7) 0.7752 (5) 0.6386 (8) 0.6079 (9) 0.5868 (7) 0.758 (7) 0.7457(8)
9 0.5399 (10) 0.691 (12) 0.6486 (10) 0.6449 (11) 0.532 (12) 0.6175 (8) 0.515 (10) 0.6877(10) 0.7426(9)
10 0.5688 (9) 0.8261 (8) 0.7447 (6) 0.7495 (7) 0.6407 (7) 0.5794 (10) 0.5919 (6) 0.7376 (8) 0.7269(10)
11 0.4377 (13) 0.635 (13) 0.5857 (13) 0.5802 (13) 0.5036 (13) 0.4305 (15) 0.4665 (13) 0.5589 (13) 0.5151(15)
12 0.5145 (11) 0.7131 (10) 0.6327 (11) 0.6641 (10) 0.5441 (10) 0.5606 (11) 0.5118 (11) 0.6658 (11) 0.6961(11)
13 0.4255 (14) 0.6122 (15) 0.5579 (14) 0.5638 (14) 0.4767 (15) 0.4356 (13) 0.44 (14) 0.5566 (14) 0.5308(14)
14 0.4863 (12) 0.6923 (11) 0.6266 (12) 0.6364 (12) 0.5349 (11) 0.5098 (12) 0.4973 (12) 0.6374 (12) 0.6347(12)
15 0.4053 (15) 0.6187 (14) 0.5385 (15) 0.5388 (15) 0.4837 (14) 0.3798 (16) 0.4389 (15) 0.5067 (16) 0.5072(16)
16 0.3181 (17) 0.536 (17) 0.4381 (17) 0.4698 (17) 0.4049 (17) 0.3108 (17) 0.3252 (17) 0.4029 (17) 0.3930(17)
17 0.3906 (16) 0.5714 (16) 0.4994 (16) 0.5334 (16) 0.4328 (16) 0.4314 (14) 0.3827 (16) 0.5372 (15) 0.5590(13)

Sum 9.3428 12.9840 11.7778 11.7382 10.2550 9.8274 9.4010 11.8942 12.0517
Average 0.5496 0.7638 0.6928 0.6905 0.6032 0.5781 0.5530 0.6997 0.7089
STD 0.1202 0.1345 0.1398 0.1221 0.1251 0.1367 0.1192 0.1448 0.1571
Max 0.7170 0.9638 0.9321 0.8924 0.8366 0.7649 0.7301 0.9173 0.9565
Min 0.3181 0.5360 0.4381 0.4698 0.4049 0.3108 0.3252 0.4029 0.3930

calculated from the Model (1). These scores are the highest values that the
districts can attain. As can be seen, the CCR model identifies DMU1 through
DMU9 as DEA-efficient units. To re-rank all units, we use models (4-i,ii), (5),
(8-11) and (13-14). The cross-efficiency scores obtained from different models
for each forest district are shown in the second through tenth columns of Table
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Figure 1: Illustrative comparison between the cross-efficiency score of
neutral models for each DMU in example 4.1.

2. Also, the highest score for each model is bolded and underlined. It is seen
that the proposed models(13-14) and models (4-ii), (8) and (10) select DMU 5
as the best DMU.
The nineteenth row of Table 2 shows that the sum of efficiencies in models
(13-14) is higher than in model (4-i) (the aggressive model) but lower than in
model (4-ii) (the benevolent model). So, these models have neutral behavior
in the evaluation of each unit. Furthermore, the sum of efficiencies in each of
the model (13-14) is higher than that of each of the neutral model (5, 8, 9-11).
All the above results are reasonable regarding the structures of the proposed
models.
The rank of each DMU in each model next to its efficiency score (in parentheses
in blue) is given in Table 2. As can be seen, DMU5 took first place in 5 out
of 9 methods. Note that DMU16 has the worst performance of all methods.
Efficient DMUs 1 to 8 have been ranked 1 to 9 in all methods, while efficient
DMU9 has obtained a worse ranking than inefficient DMU10 in most methods.
Figure 1 compares the results of models (4-i,ii), (5), (8-11), and (13-14) in Ex-
ample 4.1. It uses the efficiency scores in Table 2. As can be seen, Model (14)
generally produces the highest efficiency score, while Model (11) tends to have
the lowest.
The last four rows of Table 2 present the statistical characteristics of the ef-
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ficiency scores from the compared models. Figure 2 illustrates the normal
distribution of the efficiency scores produced by the proposed models. As can
be seen in Figure 2, the efficiency of DMUs produced by the first proposed
model follows an almost symmetric distribution, while the efficiency of DMUs
produced by the second proposed model follows an asymmetric distribution
with right-skewness.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Model(13)

Model(14)

Figure 2: The normal distribution of the efficiency scores produced by
the proposed models in example 4.1.

Example 4.2. By inspiration from the empirical example in [2], this example
looks at the performance of some top worldwide research and development (R&
D) investment companies in software and computer services. R& D includes
activities that companies undertake to innovate and introduce new products
and services. It is often the first stage in the development process. The goal
is typically to bring new products and services to market and add to the com-
pany’s bottom line. The EU Industrial R&D Investment Scoreboard provides
economic and financial data and analysis of the top corporate R&D investors
from the EU and abroad. This is based on company data extracted directly
from each company’s Annual Report. The Scoreboard is published annually
to offer a reliable benchmarking tool for comparing companies, sectors, and
regions, and to analyze emerging investment trends. It also aims to increase
public awareness and support for R&D investments among companies and pol-
icymakers, encouraging them to disclose their R&D funding. The 2022 edition
of the Scoreboard analyzes the 2500 companies that invested the largest sums
in R&D worldwide in 2021. These companies, with headquarters in 41 coun-
tries and more than 900k subsidiaries all over the world, each invested over
EUR 48.5 million in R&D in 2021. The total investment across all 2500 com-
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Table 3: Data of the 20 software & computer companies in among
the top corporate R& D according the EU Industrial R&D Investment
Scoreboard in 2021.

Inputs Outputs
DMU Companies Country x1 x2 x3 y1 y2 CCR

(¿million) (¿million) (¿million) (¿million) (¿million) Efficiency

1 ALPHABET US 156500 21755.2 27866.8 227473.9 769312.7 1
2 META US 71970 16393.2 21768.5 104122.3 798490.6 1
3 MICROSOFT US 221000 21089.5 21642.2 175057.3 2002997.3 1
4 ALIBABA GROUP HOLDING China 254941 7388.5 7687.3 118232.6 400766.9 1
5 TENCENT China 112771 4061.2 7190.5 77631.2 523059.9 1
6 ORACLE US 143000 3982.9 6373.8 37471.3 219716.5 0.499
7 IBM US 307600 1820.6 5248.1 50635.7 111062.6 0.9459
8 SAP Germany 107415 800.0 5168.0 27842.0 156634.3 0.64801
9 SALESFORCE US 73541 633.1 3942.3 23390.4 229294.8 0.7747
10 BAIDU China 45500 1510.2 3456.4 17254.5 39254.2 0.54187
11 VMWARE US 37500 340.8 2754.7 11346.5 14659.6 0.54363
12 ADOBE US 25988 307.3 2242.6 13937.0 279168.8 1
13 NETEASE China 32064 222.0 1950.9 12142.0 55433.5 0.81015
14 ELECTRONIC ARTS US 12900 166.0 1930.1 6172.5 36486.1 0.69635
15 UBER TECHNOLOGIES US 29300 263.1 1813.5 15411.4 65118.6 1
16 HEWLETT -PACKARD ENTERPRISE US 60400 2209.1 1747.3 24531.2 17854.9 0.8327
17 WORKDAY US 15200 384.8 1659.2 4537.2 46065.3 0.40895
18 SOFTBANK Japan 59721 6455.7 1551.4 48096.9 82328.8 1
19 INTUIT US 13500 46.8 1545.1 8505.2 136500.1 1
20 TWITTER US 7500 893.1 1335.0 4483.0 45443.1 0.59784

panies was EUR 1093.9 billion - an amount equivalent to 86% of the world’s
business-funded R&D and passing the trillion Euro mark for the first time [1].
We will be particularly focused on 20 companies among the top 337 corporate
R&D investors within the Software and Computer Services industrial sector.
Based on the information received from the scoreboard, the information of the
investigated companies was based on three inputs (x1: Number of employees,
x2: Capital expenditure, x3: R& D investment) and two outputs (y1: Net sales,
y2: Market capitalization) is shown in Table 3.

As can be seen in the last column in Table 3, 9 of 20 DMUs according
to the efficiency score of the CCR model are efficient DMUs, so these DMUs
cannot be ranked. To reevaluate the performance of efficient and inefficient
DMUs in this example, we used the cross-efficiency models from section two
and our proposed models. The rank of each company within each model along-
side its efficiency score (in parentheses in blue) is shown in the second to tenth
columns of Table 4. Table 4 indicates that DMU17 performs the worst, while
DMU19 achieved 6 first and 3 second places. Also, of the 9 efficient DMUs
(their numbers are in red in Table 4), all except DMU2 ranked from 1 to 9.
DMU13 and DMU9(inefficient DMUs) have achieved ninth place five and three
times, respectively, while DMU2 has done so only once. Additionally, DMU15
has the smallest change in earned ranks (fourth rank).
Figure 3 illustrates a comparison of the results of the models (13-14) with the
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Table 4: Results of models in Example 4.2

Aggressive Benevolent wang2010 call2018 Liu2019AD Liu2019ID ShiChen2021 Model(13) Model(14)
DMU Model(4-i) Model(4-ii) Model(5) Model(8) Model(9) Model(10) Model(11)

1 0.6244 (6) 0.8473 (5) 0.7374 (8) 0.7972 (5) 0.7013 (7) 0.6332 (6) 0.6576 (6) 0.6997 (8) 0.7547 (7)
2 0.4988 (12) 0.6187 (11) 0.5715 (12) 0.6293 (9) 0.518 (12) 0.5128 (11) 0.5007 (12) 0.5341 (13) 0.5888 (11)
3 0.5715 (8) 0.758 (8) 0.7391 (7) 0.7335 (8) 0.6443 (8) 0.6114 (8) 0.5573 (8) 0.7069 (7) 0.7502 (8)
4 0.6518 (5) 0.7923 (7) 0.7844 (6) 0.7414 (7) 0.726 (6) 0.6638 (5) 0.6606 (5) 0.7841 (5) 0.7686 (6)
5 0.7209 (3) 0.9256 (2) 0.8771 (3) 0.8718 (3) 0.8072 (2) 0.7488 (3) 0.7238 (4) 0.8645 (3) 0.875 (3)
6 0.3364 (18) 0.4178 (18) 0.4079 (16) 0.3927 (19) 0.3746 (18) 0.3486 (17) 0.338 (18) 0.4065 (16) 0.403 (16)
7 0.4759 (13) 0.4811 (15) 0.5237 (13) 0.4603 (15) 0.4846 (13) 0.4745 (13) 0.4744 (13) 0.5492 (12) 0.5053 (13)
8 0.4318 (14) 0.4938 (13) 0.4809 (14) 0.4682 (14) 0.4532 (14) 0.4417 (14) 0.4322 (14) 0.4914 (14) 0.474 (14)
9 0.5266 (10) 0.6036 (12) 0.6032 (9) 0.575 (12) 0.5504 (11) 0.5515 (10) 0.5192 (10) 0.6141 (9) 0.5959 (9)
10 0.3451 (17) 0.4504 (16) 0.398 (17) 0.4195 (16) 0.3883 (16) 0.3463 (18) 0.3566 (17) 0.3926 (17) 0.3984 (18)
11 0.3532 (16) 0.4326 (17) 0.3822 (19) 0.4061 (18) 0.382 (17) 0.3512 (16) 0.3637 (16) 0.3848 (18) 0.3808 (19)
12 0.7802 (2) 0.9051 (3) 0.9228 (1) 0.8835 (2) 0.7993 (3) 0.8407 (2) 0.7402 (2) 0.9228 (1) 0.9228 (1)
13 0.5465 (9) 0.6397 (9) 0.5988 (10) 0.6055 (10) 0.5765 (9) 0.5545 (9) 0.5513 (9) 0.6082 (10) 0.5937 (10)
14 0.3974 (15) 0.493 (14) 0.4361 (15) 0.4732 (13) 0.4227 (15) 0.4041 (15) 0.4023 (15) 0.4294 (15) 0.4405 (15)
15 0.7199 (4) 0.8566 (4) 0.7964 (4) 0.8094 (4) 0.7674 (4) 0.7293 (4) 0.728 (3) 0.8059 (4) 0.7902 (4)
16 0.5031 (11) 0.6238 (10) 0.5898 (11) 0.5786 (11) 0.562 (10) 0.4957 (12) 0.5185 (11) 0.586 (11) 0.579 (12)
17 0.2874 (20) 0.3605 (20) 0.3372 (20) 0.3472 (20) 0.3093 (20) 0.2993 (20) 0.2834 (20) 0.3315 (20) 0.3395 (20)
18 0.6205 (7) 0.8218 (6) 0.7856 (5) 0.7489 (6) 0.7263 (5) 0.6264 (7) 0.6479 (7) 0.757 (6) 0.7856 (5)
19 0.8449 (1) 0.9267 (1) 0.8976 (2) 0.9081 (1) 0.8445 (1) 0.8864 (1) 0.8147 (1) 0.8976 (2) 0.902 (2)
20 0.3213 (19) 0.4161 (19) 0.3902 (18) 0.4125 (17) 0.3485 (19) 0.3355 (19) 0.315 (19) 0.3696 (19) 0.3992 (17)

Sum 10.5573 12.8645 12.2599 12.2618 11.3864 10.8556 10.5853 12.1357 12.2472
Average 0.5279 0.6432 0.6130 0.6131 0.5693 0.5428 0.5293 0.6068 0.6124
STD 0.1589 0.1898 0.1867 0.1811 0.1679 0.1690 0.1552 0.1850 0.1871
Max 0.8449 0.9267 0.9228 0.9081 0.8445 0.8864 0.8147 0.9228 0.9228
Min 0.2874 0.3605 0.3372 0.3472 0.3093 0.2993 0.2834 0.3315 0.3395
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Figure 3: Illustrative comparison between the cross-efficiency score
of the proposed, aggressive, and benevolent models for each DMU in
Example 4.2.

benevolent and aggressive models in Table 4. Figure 3 shows that the efficiency
values from models (13-14) mostly fall between benevolent and aggressive effi-
ciency. This means that the proposed models have neutral behavior.
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Table 5: Ranking models correlation test in example 4.2.

Model(4-i) Model(4-ii) Model(5) Model(8) Model(9) Model(10) Model(11) Model(13) Model(14)

Model(4-i) Correlation 1.0000 0.9835 0.9790 0.9714 0.9910 0.9970 0.9985 0.9850 0.97744
Sig.(bilateral) 0 0 0 0 0 0 0 0

Model(4-ii) Correlation 0.9835 1.0000 0.9654 0.9880 0.9895 0.9790 0.9805 0.9609 0.96391
Sig.(bilateral) 0 0 0 0 0 0 0 0

Model(5) Correlation 0.9790 0.9654 1.0000 0.9609 0.9820 0.9790 0.9774 0.9955 0.99549
Sig.(bilateral) 0 0 0 0 0 0 0 0

Model(8) Correlation 0.9714 0.9880 0.9609 1.0000 0.9744 0.9699 0.9699 0.9489 0.96692
Sig.(bilateral) 0 0 0 0 0 0 0 0

Model(9) Correlation 0.9910 0.9895 0.9820 0.9744 1.0000 0.9850 0.9880 0.9820 0.97594
Sig.(bilateral) 0 0 0 0 0 0 0 0

Model(10) Correlation 0.9970 0.9790 0.9790 0.9699 0.9850 1.0000 0.9955 0.9835 0.98195
Sig.(bilateral) 0 0 0 0 0 0 0 0

Model(11) Correlation 0.9985 0.9805 0.9774 0.9699 0.9880 0.9955 1.0000 0.9835 0.97594
Sig.(bilateral) 0 0 0 0 0 0 0

Model(13) Correlation 0.9850 0.9609 0.9955 0.9489 0.9820 0.9835 0.9835 1.0000 0.98797
Sig.(bilateral) 0 0 0 0 0 0 0 0

Model(14) Correlation 0.9774 0.9639 0.9955 0.9669 0.9759 0.9820 0.9759 0.9880 1
Sig.(bilateral) 0 0 0 0 0 0 0 0

The rank correlation coefficient can be used to evaluate the significance
of the relationship between the models mentioned previously. Spearman is a
commonly used non-parametric method that use rank correlation. Spearman’s
rank coefficient calculations are based on the deviation of ranks. Table 5 shows
the value of Spearman’s rank correlation coefficients of the eight models in
Table 4 to assess the similarities between the rankings induced from the corre-
sponding values. In all the cases, the values are statistically significant at the
0.0001 level. The test values correlations among all of the models are all above
0.9. Therefore, it can be concluded that the proposed models are reasonable.
We use the TOPSIS method to rank each DMU uniquely based on the mod-

els mentioned earlier. First, we define IDpoint = [1, 1, ...1]1×9 and ADpoint =
[20, 20, ..., 20]1×9 as ideal and anti-ideal points respectively. According to TOP-

SIS ranking criteria, cj =
d−j

d−j + d+j
, we calculate d+j and d−j as the distance

of the rank vector of each DMUj from the ideal point and anti-ideal point re-
spectively. Table 6 presents the TOPSIS ranking criteria for evaluating rank of
companies (DMUs) based on the results outlined in Table 4. As can be seen in
Table 6, DMU19, DMU12 and DMU5 rank first to third, while DMU17 ranks
last.
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Table 6: Ranking of Companies (DMUs) based on TOPSIS method in
example 4.2.

DMU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOPSIS Score 0.7102 0.4509 0.643 0.7463 0.8967 0.1491 0.3525 0.3219 0.5144 0.1674 0.1507 0.9401 0.5554 0.282 0.8472 0.4738 0 0.7346 0.97 0.0917
Rank 7 12 8 5 3 18 13 14 10 16 17 2 9 15 4 11 20 6 1 19

5 Conclusions

The cross-efficiency score reflects the efficiency scores from the basic DEA mod-
els, specifically the CCR and BCC models. Due to the non-unique weights gen-
erated by these models, the final scores for each DMU in the cross-efficiency
method may vary. To address this, researchers have proposed various secondary
goal models based on different attitudes. In this paper, we introduced two sec-
ondary goal models based on a neutral perspective. Accordingly, in the first
model, the DMU under evaluation seeks a set of input and output weights to
align the efficiency of the evaluated DMU outputs as closely as possible. In
the second model, which is based on multiple criteria decision analysis, the
weights are assigned in a way that the efficiency of each output of the DMU
under evaluation is as close as possible to the maximum efficiency while also
distancing it from the minimum efficiency. Two practical examples were used
to demonstrate the validity and efficiency of the proposed models. Spearman’s
method was employed to assess the similarity between the performances of the
previous models and the proposed models.
Additionally, the TOPSIS method was utilized to combine the ranking results
obtained from different models, and each DMU was assigned a score for rank-
ing. Future research directions should focus on incorporating negative data
and multi-stage systems into these models.
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