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Abstract. In this paper, we consider the semi-infinite programming
problems with non-differentiable emerging functions. Firstly, we give a
counterexample showing that Theorem 3.1 of Ref. [10] is not true. Then,
by modifying the assumptions of this theorem, we establish a new nec-
essary Theorem for optimal solution of the problem.
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1. Introduction

Given the locally Lipschitz functions f, gi : Rn → R ∪ {+∞}, where
i ∈ I, and I is an arbitrary set, not necessarily finite (but nonempty).
We consider the following semi-infinite programming problem:

SIP : inf
{
f(x) | gi(x) 6 0 i ∈ I

}
.

Optimality conditions of SIP have been studied by many authors; see for
example [1, 2, 3, 5, 6, 8, 9, 15] in linear, or convex, or smooth, or locally
Lipshitz cases. Recently, Mishra et al. in [10] proved that, the Karush-
Kuhn-Tucker (KKT, briefly) necessary condition holds for nonsmooth
SIPs. However, Theorem 3.1 in [10], which states the KKT property of
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the optimal point, is not correct. The purpose of this paper is to correct
the result of this paper.
We organize the paper as follows. In Section 2 basic notations and re-
sults of nonsmooth analysis are reviewed. In Section 3, several versions
of KKT type necessary optimality conditions for nonsmooth SIP are
derived under some suitable qualification conditions.

2. Notations and Preliminaries

In this section we describe the notations used throughout this paper
and present some preliminary results on nonsmooth analysis. For more
details, discussions, and applications see [12,13]. To simplify the defini-
tions, we assume in this section that ϕ is a locally Lipschitz function
from Rn into the extended real line R ∪ {∞}, finite at x0 ∈ Rn.

The set

∂Fϕ(x0) :=
{
ξ ∈ Rn | lim inf

x→x0

ϕ(x)− ϕ(x0)− 〈ξ, x− x0

〉
‖x− x0‖

> 0
}
,

is called the Fréchet lower subdifferential of ϕ at x0. Its elements are
referred to as Fréchet subgradients.

The set
∂Lϕ(x0) := lim sup

x→x0

∂Fϕ(x),

is called the Mordukhovich subdifferential. We say that ϕ is regular at
x0 if ∂Fϕ(x0) = ∂Lϕ(x0). The finite convex functions and continuously
differentiable functions are examples of regular functions.
We observe that for two locally Lipschitz functions ϕ1 and ϕ2 from Rn

to R ∪ {+∞}, finite at x0, the following subadditive formula holds:

∂L

(
ϕ1 + ϕ2

)
(x0) ⊆ ∂Lϕ(x0) + ∂Lϕ2(x0). (1)

Notice that if ϕ is regular at x0, then the equality fulfilled in (1). Also,
if the locally Lipschitz function ϕ is finite in a neighborhood of x0, then
the subdifferential ∂Fϕ(x0) and ∂Lϕ(x0) are compact subsets of Rn, with
∂Fϕ(x0) convex.
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The following theorem will be useful in what follows.

Theorem 2.1. If x0 is a local minimizer point of the locally Lipschitz
function ϕ on Rn, then one has 0 ∈ ∂Lϕ(x0).

The Fréchet upper subdifferential, the upper limiting subdifferential,
and the symmetric limiting subdifferential of ϕ at x0 are respectively
defined as:

∂+
F ϕ(x0) := −∂F

(
− ϕ

)
(x0),

∂+
Lϕ(x0) := −∂L

(
− ϕ

)
(x0),

∂0
Lϕ(x0) := ∂Lϕ(x0) ∪ ∂+

Lϕ(x0).

It is easy to check that when one of the sets ∂+
F ϕ(x0) and ∂Fϕ(x0) is not a

singleton, the other is empty. This distinguishes the latter constructions
from the limiting ones ∂+

Lϕ(x0) and ∂Lϕ(x0), which are nonempty simul-
taneously for ever locally Lipschitzian function. Note that ∂Lϕ and ∂+

Lϕ

may be considerably different even in the case of convex and concave
functions. The simple example is given by ϕ(x) := −|x| at x0 := 0 ∈ R,
where ∂Lϕ(0) = {−1, 1} while ∂+

Lϕ(0) = [−1, 1]. If ϕ is concave, ∂+
Lϕ(x0)

reduces to the classical upper subdifferential of convex analysis.
Recall also that the normal cone of a closed subset A ⊆ Rn at x0 ∈ A

is defined by NA(x0) := ∂LχA(x0), where χA(x0) denotes the indicator
function of A at x0, i.e., χA(x) := 0 for x ∈ A, and χA(x) := +∞ oth-
erwise.
The negative polar cone and strictly negative polar cone of A is respec-
tively defined as

A0 :=
{
y ∈ Rn |

〈
y, a

〉
6 0 for all a ∈ A

}
,

As :=
{
y ∈ Rn |

〈
y, a

〉
< 0 for all a ∈ A

}
.

The symbol conv(A) denotes the convex hull of A, respectively.
Having the generally infinite index set T , denote by R(T ) the collection
of multipliers τ := (τt | t ∈ T ) with τt ∈ R and τt 6= 0 for finitely many
t ∈ T . Let R(T )

+ is defined by

R(T )
+ :=

{
τ ∈ R(T ) | τt > 0 for all t ∈ T

}
.
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3. Main Results

Mishra et al. in [10, Theorem 3.1] proved that: if x̂ is an optimal
solution for SIP, then there exists some λ = (λi), i ∈ I where λi > 0
and λi 6= 0 for finitely many i ∈ I such that

0 ∈ ∂Lf(x̂) +
∑
i∈I

λi∂Lgi(x̂) and λigi(x̂) = 0 ∀ i ∈ I. (2)

They used [14, Theorem 3.2] in their proof, but this result is not nec-
essarily correct when |I| = ∞ (In the proof of [14, Theorem 3.2], if
|I| = ∞, then it is possible δ = 0). We observe that their result is wrong
even when |I| < ∞, since they did not consider any constraint qualifi-
cation. As illustrated by Example 3. below, their theorem does not hold
even for the finite differentiable case. Also, their result is not true even
for Fritz-Juhn type condition, i.e.,

0 ∈ λ0∂Lf(x̂)+
∑
i∈I

λi∂Lgi(x̂) and λigi(x̂) = 0 ∀ i ∈ I, and λ0 > 0.

Example 3.2 below, is a counterexample for this fact.

Example 3.1. This is a well-known example. Consider the following
problem:

inf
{
f(x) | g(x) 6 0, x ∈ R

}
,

where f(x) := x and g(x) := x2. It is easy to see that x̂ := 0 is optimal
solution of problem, ∂Lf(x̂) = {1}, ∂Lg(x̂) = {0}. Thus, there is no
scalar λ > 0 satisfying (2).

Example 3.2. Consider the following problem:
inf u(x1, x2) := x1

s.t. vj(x1, x2) := sup
{
a1x1 + a2x2 | (a1, a2) ∈

conv {(− j
√
α,−α) | 0 6 α 6 1}

}
6 0 j ∈ J, (x1, x2) ∈ R2,

where J := N− {1}.
Obviously,

{
(x1, x2) ∈ R2 | x1 > 0, x1 + x2 > 0

}
is the feasible set of

this problem, and x0 := (0, 0) is its optimal solution. Since u is contin-
uously differentiable and v′j s are support function of convex sets, we
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obtain

∂Lu(x0) = {∇u(x0)} = {(1, 0)},
∂Lvj(x0) = conv

{
(− j
√
α,−α) | 0 6 α 6 1

}
.

A short calculation shows that{∑
i∈I λj∂Lvj(x0) | λj > 0, andλj 6= 0

for finitely many j ∈ J, and λjvj(x0) = 0
}

=
{

(x1, x2) ∈ R2 | x2 > x1, x1 < 0, x2 < 0
}
∪

{
(0, 0)

}
:= Π(x0).

Thus, it is easy to see that for each λ0 > 0 we have

(0, 0) /∈ λ0∂Lu(x0) + Π(x0),

Let M denote the feasible solutions of the SIP,

M := {x ∈ Rn | gi(x) 6 0 ∀ i ∈ I}.

For each x0 ∈M , the symbol I(x0) denotes the set of active constraints
at x0, i.e.,

I(x0) := {i ∈ I | gi(x0) = 0}.

Here, we recall the following theorem from [3, Theorem 3.3].

Theorem 3.3. Let I be a compact subset of Rn, and the functions
(x, i) → ξi(x) ant x → ξ(x) are continuously differentiable on Rn × I

and Rn, respectively. suppose further that x̂ is an optimal solution of
the following problem

inf
{
ξ(x) | ξi(x) 6 0 i ∈ I

}
, (3)

and there exists a û ∈ Rn such that〈
û,∇ξi(x̂)

〉
< 0 ∀ i ∈ I(x̂). (4)

Then, there exists a set J ⊆ I(x̂) with |J | < ∞, and scalars λj > 0 for
j ∈ J , such that

∇ξ(x̂) +
∑
j∈J

λj∇ξj(x̂) = 0.



88 N. KANZI

In the purpose of extension the above theorem for nonsmooth SIP, we
shall use to the following theorem. This theorem provides important
variational descriptions of Fréchet subgradients of nonsmooth functions
in terms of smooth supports.

Theorem 3.4. (Variational descriptions of fréchet subgradients)
ξ ∈ ∂Fϕ(x0) if and only if there exist a function ϑ : U → R defined on
a neighborhood of x0 and continuously differentiable on U such that

ϑ(x0) = ϕ(x0) and ∇ϑ(x0) = ξ and ϑ(x) 6 ϕ(x) for all x ∈ U.

The above theorem leads us to the next definition.

Definition 3.5. For a given SIP, condition A is said to hold at x0 ∈
M , if the following conditions are satisfied:

i) I is a compact subset of Rm,
ii) For some choice {ρi}i∈I with ρi ∈ ∂F

(
− gi

)
(x0), there exists a neigh-

borhood Û of x0 together with the functions ϑi : Û → R such that the
mapping (x, i) → ϑi(x) is continuously differentiable on Û × I, and

ϑi(x0) = −gi(x0) and∇ϑi(x0) = ρiandϑi(x) 6 −gi(x)∀ (x, i) ∈ Û×I. (5)

Remark 3.6. Owning to the Theorem 3.4, condition A holds for finite
problems (i.e., |I| <∞).

Now, we prove the nonsmooth counterpart of Theorem 3.3.

Theorem 3.7. (KKT type necessary condition for SIP using ∂+
F )

Let x̂ be an optimal solution of SIP, condition A satisfy at x̂, and the
following qualification condition holds( ⋃

i∈I(x̂)

∂F gi(x̂)
)s
6= ∅. (6)

If ∂+
F f(x̂) and ∂+

F gi(x̂), i ∈ I(x̂) are nonempty, then following assertions
hold:
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(a) There are Fréchet upper subgradients ξi ∈ ∂+
F gi(x̂), i ∈ I, such that

for each ξ ∈ ∂+
F f(x̂), there exist a set J ⊆ I(x̂) with |J | <∞, and

scalars λj > 0 for j ∈ J , such that

ξ +
∑
j∈J

λjξi = 0.

(b) there exist a set J ⊆ I(x̂) with |J | < ∞, and scalars λj > 0 for
j ∈ J , such that

0 ∈ ∂+
F f(x̂) +

∑
j∈J

λj∂
+
F gj(x̂).

Proof. To prove (a) under the general assumptions made, choose the
elements ρi ∈ ∂F

(
− gi

)
(x̂), i ∈ I at which condition A holds. Then,

there exist a neighborhood Û1 of x̂ and functions ϑi : Û1 → R such that
the mapping (x, i) → ϑi(x) is continuously differentiable on Û1× I, and
the condition(5) satisfies.
Take ξi(x) := −ϑi(x) for all (x, i) ∈ Û1 × I. The condition(5) implies
that

ξi(x̂) = gi(x̂) and ∇ξi(x̂) = −ρi and ξi(x) > gi(x) ∀(x, i) ∈ Û × I.

Take ξi := −ρi for each i ∈ I. With regard to the above relation and the
definition of Fréchet upper subdifferential we conclude that

∇ξi(x̂) = ξi ∈ −∂F

(
− gi

)
(x̂) = ∂+

F gi(x̂), (7)

x̂ ∈
{
x ∈ Û1 | ξi(x) 6 0 i ∈ I

}
⊆M ∩ Û1. (8)

Take an arbitrary element ξ ∈ ∂+
F f(x̂) and apply the variational de-

scription from Theorem 3.4 for −ξ ∈ ∂F

(
− f

)
(x̂). In this way we find

a function ϑ form a neighborhood Û2 of x̂ to R, which is continuously
differentiable on Û2 satisfying

ϑ(x̂) = −f(x̂) and ∇ϑ(x̂) = −ξ and ϑ(x) 6 −f(x) for all x ∈ Û2.
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If ξ(x) := −ϑ(x), by optimality of x̂ we obtain that

∇ξ(x̂) = ξ ∈ ∂+
F f(x̂), (9)

ξ(x̂) = f(x̂) 6 f(x) 6 ξ(x), for all x ∈M ∩ Û2. (10)

Owning to (8) and (10), It is easy to check that x̂ is a local optimal
solution to the following problem of the type (3)

inf
{
ξ(x) | ξi(x) 6 0 i ∈ I

}
.

Since the functions (x, i) → ξi(x) ant x → ξ(x) are continuously differ-
entiable and the condition (6) implies (4), owning to Theorem 3.3 we
obtain that there exist a J ⊆ I(x̂), |J | < ∞, and λj > 0, j ∈ J , such
that

∇ξ(x̂) +
∑
j∈J

λj∇ξj(x̂) = 0.

Hence, (a) is proved by (7) and (9). The assertion (b) is immediate from
(a). �

Remark 3.8. The qualification condition as (4) is introduced by Cottle
in the case |I| < ∞ (see [11]). Thus the condition (6) is referred by us
to as the Cottle constraint qualification, denoted for briefly by
CCQF (The index F shows that it is defined by Fréchet subdifferential).
The following example shows that we can not replace ∂+

F by ∂F in Theo-
rem 3.7(a), even when the set I is finite. It also shows that the assump-
tion of ∂+

F f(x̂) 6= ∅ and ∂+
F gi(x̂) 6= ∅ for i ∈ I(x̂) can not be dropped.

Example 3.9. We consider the following problem:

inf
{
f(x) | g(x) 6 0, x ∈ R

}
,

where f(x) := |x| and g(x) := x. Note that x̂ := 0 is the local minimizer
of this problem, 1 = ∂F g(0), CCQF holds at x̂, and 1 ∈ ∂F f(0). How-
ever, one cannot find any λ > 0 such that 1+λ1 = 0. Thus, the assertion
(a) in Theorem 3.7 is wrong. Also, ∂+

F f(x̂) = ∅ and ∂+
F g(x̂) = {1}, and

hence there is not any λ > 0 satisfying 0 ∈ ∂+
F f(x̂) + λ∂+

F g(x̂).
The following theorems are immediate from Theorem 3.7, and the virtue
of ∂+

F ϕ(x̂) ⊆ ∂+
Lϕ(x̂) for ϕ = f and ϕ = gi, i ∈ I(x̂).
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Theorem 3.10. (KKT Type Necessary Condition for SIP Using ∂+
L )

Let x̂ be an optimal solution of SIP. Furthermore, suppose that CCQF

holds at x̂, and condition A satisfies at x̂. If ∂+
F f(x̂) and ∂+

F gi(x̂), i ∈
I(x̂) are nonempty, then there exist λi > 0, i ∈ I(x̂), where λi 6= 0 for
finitely many i ∈ I(x̂), such that

0 ∈ ∂+
L f(x̂) +

∑
i∈I(x̂)

λi∂
+
L gi(x̂).

We observe that, in the above theorems The Cottle constraint qual-
ification is defined with Fréchet subdifferential. Now, we introduce a
qualification condition which is defined by Mordukhovich subdifferen-
tial.

Definition 3.11. Let x0 ∈M . We say that the SIP satisfies the Basic

Constraint Qualification (BCQL, shortly) at x0 if

NM (x0) ⊆
⋃

λ∈S(λ)

[ ∑
i∈I

λi∂Lgi(x0)
]
,

where S(λ) denotes the set of active constraints multipliers at x0 defined
by

S(λ) :=
{
λ ∈ R(I)

+ | λigi(x0) = 0 for all i ∈ I
}
.

The BCQ, firstly was introduced in [4] in relation to the convex op-
timization problems, and it was extended in [7] to the framework of
convex semi-infinite problems.

Theorem 3.12. (KKT type necessary condition for SIP using ∂L)
Let x̂ be an optimal solution of SIP, and BCQL satisfy at x̂. Then,
there exist nonnegative scalars λi, i ∈ I(x̂), finite number of them not
vanishing, such that

0 ∈ ∂Lf(x̂) +
∑

i∈I(x̂)

λi∂Lgi(x̂).

Proof. Since x̂ is an optimal point of f onM , then the function (f+χM )
attains its minimum at x̂. Employing Theorem 2.1 and estimating (1),
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we conclude that

0 ∈ ∂L(f + χM )(x̂) ⊆ ∂Lf(x̂) + ∂LχM (x̂) = ∂Lf(x̂) +NM (x̂). (11)

Due to BCQL, there is an λ ∈ S(λ), satisfying

0 ∈ ∂Lf(x̂) +
∑
i∈I

λi∂Lgi(x̂).

With regard to the definition of S(λ), the proof is complete. �

The following theorem is immediately follows from Theorems 3.10 &
3.12, and definition of ∂0

L.

Theorem 3.13. (KKT type necessary condition for SIP using ∂0
L)

Let x̂ is an optimal solution of SIP. Furthermore, suppose that one of
the following conditions holds:

• BCQL at x̂.

• CCQF at x̂, condition A at x̂, and nonemptyness of ∂+
F f(x̂) and

∂+
F gi(x̂) for i ∈ I(x̂).

Then, there exist λi > 0, i ∈ I(x̂), where λi 6= 0 for finitely many
i ∈ I(x̂), such that

0 ∈ ∂0
Lf(x̂) +

∑
i∈I(x̂)

λi∂
0
Lgi(x̂).

Remark 3.14. In Theorem 3.12, ∂L cannot be replaced by ∂F , since
the subadditive formula (1) which is used in (11) does not hold for ∂F .
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