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Abstract. A proper ideal I of a ring R is called strongly irreducible
ideal (briefly, SI-ideal) whenever I contains the intersection of two ide-
als of R, I contains at least one of those ideals. It is clear that any
prime ideal is a strongly irreducible ideal. Therefore, these ideals can
be considered as generalizations of the prime ideals. From this point
of view, in this paper we extend some results of prime ideals to SI-
ideals. As an example, we show that the number of minimal SI-ideals
in Noetherian arithmetical rings is finite and in these rings every ideal
contains a finite intersection of SI-ideals. Also we give a similar result
of the prime avoidance lemma for SI-ideals.
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1 Introduction
A proper ideal I of a ring R is called strongly irreducible if for any ideals
J and K of R, the inclusion J ∩ K ⊆ I implies that either J ⊆ I or
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K ⊆ I. Obviously, an ideal I is strongly irreducible if and only if for
each x, y ∈ R, Rx ∩ Ry ⊆ I implies that x ∈ I or y ∈ I. Prime ideals
are strongly irreducible, not necessarily vice versa (note, the zero ideal
in Z8 is strongly but not prime). Every ideal in a valuation domain
is strongly irreducible. Strongly irreducible ideals were first studied by
Fuchs, [6], under the name of primitive ideals. The term “strongly irre-
ducible” was first used by Blair in [2]. The interest and the involvement
of the above well-known mathematicians in the concept of strongly ide-
als definitely shows that these ideals play basic role in algebra. However
we should also bring to the attention of the reader that there seems
to be a noticable hiatus on the study of these ideals in the literature,
however the reader may follow a new finding on these ideals in [7]. We
refer the reader to [1], [9], and [13] for more information about strongly
irreducible ideals. Throughout this paper, all rings are associative with
1 ̸= 0, not necessarily commutative rings. A ring R is called reduced if it
has no non-zero nilpotent elements. If S is a multiplicatively closed set
of the commutative ring R, then for each ideal I of R, the notation Ie is
the ideal generated by f(I) in S−1R, and for each ideal J of S−1R, the
notation Jc is the ideal f−1(J), where f : R → S−1R is the natural ring
homomorphism. Everything needed about rings can be found in any of
the books [10, 12].

2 Strongly Irreducible Ideal

Definition 2.1. A proper ideal I of a ring R is called strongly irreducible
which we abbreviated as SI-ideal, if for any two ideals J and K of R the
inclusion J ∩K ⊆ I implies that J ⊆ I or K ⊆ I.

Clearly that it follows immediately (by induction) from definition an
ideal I of R is strongly irreducible if, whenever I contains the intersection
of a finite list of ideals of R, I contains at least one of the ideals in the
list. Obviously, in valuation rings and more generally in uniserial rings
(a ring is called uniserial or chain ring if the lattice of all its ideals is
linearly ordered by inclusion), any ideal is an SI-ideal. Indeed, a ring R
is uniserial if and only if any proper ideal of R is an SI-ideal.
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In the next proposition some basic properties about SI-ideal in com-
mutative rings are described ([9, lemma 2.2]). we should emphasize
that we have already succeded to extend these results of [9], to duo
rings, see [8] (note, by a duo ring we mean a ring in which every one
sided ideal is two sided). Recall that a ring R is said to be arithmeti-
cal if the lattice of all its ideals is distributive, that is, for any ideals
I, J and K of R: I + (J ∩ K) = (I + J) ∩ (I + K) or equivalently,
I ∩ (J +K) = (I ∩ J) + (I ∩K).

Proposition 2.2. Let I be an ideal in a ring R. Then:

(1) If I is strongly irreducible ideal, then I is irreducible. In particular,
if R is Noetherian, then every strongly irreducible ideal is primary.

(2) If I is a prime ideal, then I is strongly irreducible.

(3) If R is an arithmetical ring, then I is irreducible iff I is strongly
irreducible.

(4) If S ⊆ R is a multiplicatively closed set and if Ie is strongly
irreducible of S−1R, then Iec is strongly irreducible ideal of R.

(5) If I is a strongly irreducible primary ideal and S ⊆ R is a mul-
tiplicatively closed set such that I ∩ S = ∅, then Ie is strongly
irreducible ideal of S−1R.

(6) Let I be a P -primary ideal, S = R−P , and Ie is strongly irreducible
ideal of RP , then I is strongly irreducible.

(7) If I strongly irreducible ideal in R and if H is an ideal contained
in I, then I/H is strongly irreducible ideal in R/H. The converse
holds if R is an arithmetical ring.

(8) A principal primary ideal of a UFD is strongly irreducible.

The next theorem which is in [9], is also extended to duo rings in [8].

Theorem 2.3. Let (R,M) be a local commutative ring and let I be a
strongly irreducible M -primary ideal in R. If I ⊂ (I :R M) then:

(1) (I :R M) is a principal ideal.
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(2) I = (I :R M)M .

(3) For each ideal J in R either J ⊆ I or (I :R M) ⊆ J .

The next proposition characterizes the SI-ideals of the finite product
of rings and the full matrix ring.

Proposition 2.4.

(1) Let R1, R2, · · · , Rn be any rings. Then any SI-ideal in R1 ×R2 ×
· · ·×Rn is of the form R1×· · ·×Ri−1× Ii×Ri+1× ...×Rn where
Ii is an SI-ideal in Ri.

(2) J is an SI-ideal in Mn(R) if and only if there exists an SI-ideal I
in R such that J = Mn(I).

Proof. (1). By induction, it is enough to establish the case n = 2. Let
J = I1 × I2 be an SI-ideal of R1 × R2. We show that either I1 = R1 or
I2 = R2. Assume, for a contradiction, I1 ̸= R1 and I2 ̸= R2. Take the
ideal (R1 × 0) ∩ (0 × R2) ⊆ J . This implies that either (R1 × 0) ⊆ J
or (0×R2) ⊆ J , a contradiction. Clearly that If I1 and I2 are SI-ideals
in R1 and R2, respectively, then I1 × R2 and R1 × I2 are SI-ideals of
R1 ×R2.
(2). By the fact that every ideal of Mn(R) is of the form Mn(I), where
I is an ideal of R, the proof is straightforward. □

Let R and T be two rings, let J be an ideal of T and let f : R → T be
a ring homomorphism. According to [3], the following ring construction
called the amalgamation of R with T along J with respect to f is a
subring of R× T defined by

R ▷◁f J := {(r, f(r) + j) : r ∈ R , j ∈ J} .

This construction generalizes amalgamated duplication of a ring along
an ideal that introduced and studied by D’Anna and Fontana in [4],
which is the subring of R×R given by

R ▷◁ I := {(r, r + i)|r ∈ R , i ∈ I} .

Our next result establish the transfer of some of strongly irreducible
ideals in amalgamation of rings.
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Theorem 2.5. Let R and T be two rings and f : R → T be a ring
homomorphism. For an ideal I of R and an ideal J of T , the ideal
I ▷◁f J is an SI-ideal of R ▷◁f J if and only if I is an SI-ideal of R.

Proof. Assume that I ▷◁f J is an SI-ideal of R ▷◁f J . Let K and
L be two ideals of R satisfy K ∩ L ⊆ I. Thus, (K ▷◁f J) ∩ (L ▷◁f

J) ⊆ I ▷◁f J . By our assumption, we deduce that either (K ▷◁f

J) ⊆ I ▷◁f J or (L ▷◁f J) ⊆ I ▷◁f J and so either K ⊆ I or
L ⊆ I. This means that I is an SI-ideal of R. Conversely, assume
that I is an SI-ideal of R. Let H be an ideal of R ▷◁f J and set
IH = {a ∈ R|(a, f(a) + j) ∈ H for some j ∈ J}. Let H1∩H2 ⊆ I ▷◁f J .
Obviously, IH1 ∩ IH2 ⊆ I. By our assumption, we infer that either
IH1 ⊆ I or IH2 ⊆ I. and hence we conclude that either H1 ⊆ I ▷◁f J or
H2 ⊆ I ▷◁f J , as desired. □

It is easy to see that if {Qλ}i∈Λ be any chain of SI-ideals then∩
λ∈ΛQλ is an SI-ideal. Using Zorn’s Lemma this fact shows that for

every proper ideal, say I, there exists an SI-ideal over I which is minimal
with respect to this property, see [1, Theorem 2.1]. Let us define this
concept precisely.

Definition 2.6. Let I be an ideal of a ring R. A minimal SI-ideal over
I is any SI-ideal of R, say Q, such that I ⊆ Q and Q is minimal with
respect to this property. A minimal SI-ideal over zero ideal is called
minimal SI-ideal.

Remark 2.7. Since any proper ideal of a ring R is contained in a prime
ideal of R and since every prime ideal is an SI-ideal, hence for every
proper ideal there exists a minimal SI-ideal over it.

Example 2.8. In Z24, the generated ideal by 8 is a minimal SI-ideal.
In Zn, the zero ideal is an SI-ideal if and only if n is a power of a prime
number.

Recall that every prime ideal contains a minimal prime ideal. The
next proposition shows that the same result is also holds for SI-ideals.

Proposition 2.9. Any strongly irreducible ideal Q in a ring R contains
a minimal strongly irreducible ideal.
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Proof. Let Σ be the set of those strongly irreducible ideals of R which
are contained in Q. Since Q ∈ Σ and since the intersection of any chain
in Σ lies in Σ, so by Zorn’s Lemma, Σ has minimal element with respect
to inclusion. Clearly that such element is a minimal SI-ideal contained
in Q. □

Clearly that the intersection of all minimal strongly irreducible ideals
contains the intersection of all strongly irreducible ideals, so by Propo-
sition 2.9, the inclusion is actually an equality.

It was shown that if S is a multiplicatively closed set in commutative
ring R and if Ie is strongly irreducible in S−1R ; then Iec is strongly
irreducible in R and if I is a strongly irreducible primary ideal of R,
then Ie is strongly irreducible in S−1R.

In the next lemma, we prove two basic properties concerning minimal
strongly irreducible ideals.

Lemma 2.10. Let I be an ideal in a Noetherian commutative ring R
and S is a multiplicatively closed set in R such that I ∩ S = ∅. Then:

(1) If I is a minimal SI-ideal, then Ie is minimal SI-ideal.

(2) If Ie is a minimal SI-ideal, then Iec is minimal SI-ideal.

Proof. For (1) let J be an SI-ideal of S−1R and J ⊆ Ie. Then Jc ⊆ Iec,
but Iec = I (note, in Noetherian rings, any SI-ideal is primary) and Jc

is strongly irreducible in R (by Proposision 2.2(4)). Therefore Jc = I
and so J = Jce = Ie.
For (2) let J be an SI-ideal of R and J ⊆ Iec. Then Je ⊆ Iece = Ie, and
since Je is an SI-ideal of R, so Je = Ie and hence J = Jec = Iec. □

It has been shown in [9, Proposition 3.5], that if I is an M-primary
SI-ideal in the local Noetherian ring (R,M) with positive heitgh, then I
is a regular ideal (i.e., every nonzero element of I is not a zero divisor).
In [8, Proposition 3.4], a stronger result is proved that under the above
conditions, R must be an integral domain (note, when R is a domain
then manifestly every nonzero element of I is a nonzero divisor, indeed,
a much stronger result than [9, Proposition 3.5]). Although, the proof
of the following result is given for duo rings, however for the sake of the
reader we present a proof for commutative ring.
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Proposition 2.11. Let (R,M) be a local commutative Noetherian ring
and I be an M -primary ideal of R. If I ̸= M and ht(M) > 0, then R is
a domain.

Proof. By Theorem 2.3, (I :R M) = Rx and for each ideal J of R,
J ⊆ I or (I :R M) ⊆ J . Now, assume that Q is a minimal prime ideal of
R. Then Q ⊆ I or (I :R M) ⊆ Q. If (I :R M) ⊆ Q, then ht(I) = 0, and
this contradicts the hypothesis that ht(I) > 0. So we may assume that
Q ⊆ I. Hence we have Q ⊆ I ⊆ (I :R M) = Rx and notice that x /∈ Q,
for (I :R M) ̸⊆ Q. To complete the proof, we show that Q = 0. For
this purpose, assume that y is an arbitrary element of Q. Then there
exists a1 ∈ R such that y = a1x. Since x /∈ Q, hence a1 ∈ Q. Similarly,
for a1 we get an element a2, which must be in Q, such that a1 = a2x.
By continuing this process, we get elements a1, a2, · · · of R such that
y = a1x = a2x

2 = · · · and a1R ⊆ a2R ⊆ · · · . But R is Notherian, so
there exists a positive integer n, such that anR = an+1R. Therefore
an+1 = ant for some t ∈ R. In this case anx

n = an+1x
n+1 = antx

n+1.
Therefore anx

n(1− tx) = ◦ and since 1− tx is an invertible element of
R, we get y = anx

n = ◦. Hence Q = ◦ and this means that R must be
an integral domain. □

Corollary 2.12. Let I be an SI-ideal ideal of a Noetherian ring R. If√
I = P , I ̸= P and ht(P ) > 0, then RP is a domain.

Recall that if Q is an SI-ideal, then it is an irreducible ideal, therefore
in Noetherian ring every SI-ideal is primary. On the other hand if Q is
P -primary, it does not necessarily imply that P is a minimal prime ideal.
Here we raise the question that if Q is a minimal SI-ideal which is P -
primary, then is P a minimal prime ideal? In the next result, we have
given a partial answer to this question. We should also recall that for
any ideal I in a ring R, there exists a prime ideal P which is minimal
over I. However P may not be a minimal prime ideal. In the next
result we suprisingly notice that when I is an SI-ideal then P is indeed
a minimal prime ideal.

Corollary 2.13. Let I be a minimal SI-ideal in a commutative Noethe-
rian ring R and P a minimal prime ideal over I, then P is a minimal
prime ideal.
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Proof. If I = P , the assertion holds. Now let I ̸= P . In this case we
also show that P is a minimal prime. If not, then ht(P ) > 0. Therefore,
by the previous corollary RP must be a domain. Since Ie is a minimal
SI-ideal in RP (Corollary 2.10 (1)), we infer that Ie = ◦, which implies
that ht(P ) = 0, a contradiction. □

The following result is the counterpart of the well-known result that
every prime ideal is essential or minimal prime.

Proposition 2.14. Let Q be an SI-ideal. Then Q is essential or minimal
strongly irreducible.

Proof. Suppose that Q is not essential, so there exists a nonzero ideal
I such that I ∩ Q = 0. Now let Q

′ be an SI-ideal and Q
′ ⊆ Q. Since

I ∩ Q = 0 ⊆ Q
′ and I ⊈ Q

′ , we infer that Q ⊆ Q
′ . Therefore, Q = Q

′

and this completes the proof. □
Definition 2.15. A subset S of a ring R is called an i-system of R if
for any two ideals I and J of R, (I ∩J)∩S ̸= ∅ whenever I ∩S ̸= ∅ and
J ∩ S ̸= ∅.

Clearly, every m-system is an i-system. Also, an ideal Q of a ring R
is an SI-ideal if and only if R−Q is an i-system.

Remark 2.16. Suppose that Q is an ideal of an arithmetical ring R.
If Q is not an SI-ideal, then there are ideals I, J in R such that Q ⊂ I,
Q ⊂ J and I ∩ J ⊆ Q.

Proof. Since Q is not an SI-ideal, hence there are two ideals A,B such
that A ∩ B ⊆ Q but A ⊈ Q and B ⊈ Q. Now, set I = A + Q and
J = B +Q. In this case, it is clear that I and J are the desired ideals.
□
Lemma 2.17. Let R be an arithmetical ring and S an i-system of R. If
Q is an ideal of R which is disjoint from S and is maximal with respect
to this property, then Q is an SI-ideal.

Proof. Assume that Q is not strongly irreducible, then there exist two
ideals I and J in R such that I ∩ J ⊆ Q but I ⊈ Q and J ⊈ Q. By
the maximality of Q, (I +Q) ∩ S ̸= ∅ and (J +Q) ∩ S ̸= ∅. Therefore,
[(I+Q)∩ (J +Q)]∩S ̸= ∅. Since [(I+Q)∩ (J +Q)] = (I ∩J)+Q = Q,
we get Q ∩ S ̸= ∅, a contradiction. □
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Theorem 2.18. Let R be an arithmetical ring. If R has ACC on
two-sided ideals, then each ideal of R contains a finite intersection of
SI-ideals.

Proof. Let Σ be the set of ideals containing no finite intersection of SI-
ideals. If Σ ̸= ∅, then by the hypothesis there exists a maximal element
Q ∈ Σ. Hence there exist ideals I, J in R such that Q ⊂ I, Q ⊂ J
and I ∩ J ⊆ Q. Therefore, by the maximality of Q, there exist SI-ideals
I1, · · · , In, J1, · · · , Jm with I1 ∩ · · · ∩ In ⊆ I and J1 ∩ · · · ∩, Jm ⊆ J . But
in this case, I1 ∩ · · · ∩ In ∩ J1 ∩ · · · ∩, Jm ⊆ Q which contradicts Q ∈ Σ.
Thus Σ = ∅, and this completes the proof. □

Corollary 2.19. If R is the ring as the previous theorem, then there
are only a finite number of minimal SI-ideals, and a finite intersection
of minimal SI-ideals is zero.

Proof. By Theorem 2.18 and Proposition 2.9, the second part holds.
Now, let Q1, · · · , Qn be minimal SI-ideals in R with Q1 ∩ · · · ∩ Qn = ◦
and Q minimal SI-ideal. Then from Q1 ∩ · · · ∩Qn ⊆ Q we deduce that
Qj ⊆ Q for some Qj and by the minimality of Q we infer that Q = Qj .
Therefore, the minimal SI-ideals of R are contained in the finite set
{Q1, · · · , Qn}. □

Definition 2.20. For each ideal I in the ring R, we define the i-radical
of I, denoted by i

√
I, as follows:

i
√
I = {r ∈ R: every i-system containing r meets I }

Theorem 2.21. (Cohen type theorem) For any arithmetical ring R and
any ideal I of R, i

√
I equals the intersection of all strongly irreducible

ideals containing I. Indeed, i
√
I = I.

Proof. Let Σ be the set of all SI-ideals containing I, r ∈ i
√
I and Q be

any SI-ideal with I ⊆ Q. If r /∈ Q, then since R −Q is an i-system and
r ∈ R − Q, by definition of i

√
I, we must have I ∩ (R − Q) ̸= ∅ which

is absord. Hence i
√
I ⊆

∩
Q∈Σ Q. Conversely, let r ∈

∩
Q∈Σ Q and S be

any i-system containing r. If I ∩ S = ∅, then using Zorn’s Lemma there
exists an ideal Q ⊇ I which is maximal with respect to being disjoint
from S. Therefore, r /∈ Q and since by Lemma 2.17, Q is an SI-ideal, we
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have a contradiction with the choice of r. Hence I ∩ S ̸= ∅, i.e., r ∈ i
√
I,

and consequently
∩

Q∈Σ Q ⊆ i
√
I. Thus i

√
I =

∩
Q∈Σ Q and the proof is

complete. The last part is evident in view of [5, Part 3]. □

Definition 2.22. A nonzero element a in a duo ring R is called strongly
zero divisor if ⟨a⟩ ≰e R, i.e., there is a non zero element b ∈ R such that
⟨a⟩∩⟨b⟩ = ◦. A non strongly zero divisor is called quasi regular element.

In general the set of strongly zero divisors is not closed under the
addition in R for example in R = Z6, 2 and 3 are strongly zero divisors
but 3− 2 is not.

Example 2.23. 2 is zero divisor element in Z4, but (2) ≤e Z4. Hence
the set of all zero divisors properly contains the set of all strongly zero
divisor elements.

Remark 2.24. If R is a reduce duo ring, then a ∈ R is a strongly zero
divisor if and only if a is a zero divisor, or equivalently annR(a) ̸= ◦.

Proof. Let a be a zero divisor of R. Then there is a nonzero element b
such that ab = 0. Therefore, ⟨a⟩⟨b⟩ = ◦ and hence ⟨a⟩∩ ⟨b⟩ = ◦, because
R is reduce. □

Definition 2.25. A duo ring R is called Goldie type ring if every essen-
tial ideal of R contains a quasi regular element.

Proposition 2.26. If R is a Goldie type ring then the set consist of all
quasi regular elements is an i-system.

Proof. Let S be the set of all quasi regular elements of R and I, J be
two ideals in R such that I ∩S ̸= ∅ and J ∩S ̸= ∅. In this case, we have
I ≤e R and J ≤e R and so I ∩J ≤e R. Thus by definition I ∩J contains
a quasi regular element and consequently, (I ∩ J) ∩ S ̸= ∅. □

Theorem 2.27. Let D be the set of all strongly zero divisors in a Goldie
type arithmetical ring, then D is a union of strongly irreducible ideals.

Proof. Let S = R − D and Σ be the set of those SI-ideals which
disjoint from S (note, S is an i-system by Proposition 2.26). We claim
that S =

∩
Q∈Σ(R−Q). To this end, it is clear that S ⊆

∩
Q∈Σ(R−Q).
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Now, we show that the reverse inclusion. Suppose that x ∈
∩

Q∈Σ(R−Q)
but x /∈ S. Then we have ⟨x⟩ ∩ S = ∅ and so by Lemma 2.17, we
can enlarge ⟨x⟩ to an SI-ideal, say Q, which is disjoint from S. This
shows that x /∈

∩
Q∈Σ(R −Q), a contradiction. Therefore, the equality

S =
∩

Q∈Σ(R−Q) holds and consequently D =
∪

Q∈Σ Q. □

3 Prime Avoidance Lemma extended to SI-ideals
In dealing with the topic of this section, we should admit that we are
following the methods for dealing with the prime avoidance lemma in
[11]. First, let us, make a definition.

Definition 3.1. If S,Q1, · · · , Qn are subsets of a ring R such that S ⊆∪n
i=1Qi implies that S is contained in the union of a smaller number of

Qi’s, we shall say that S ⊆
∪n

i=1Qi is reducible.

Theorem 3.2. Let I,Q1, Q2, · · · , Qn, n ≥ 2, be ideals of a ring R and
I ⊆

∪n
i=1Qi. If at most two of the Qi’s are not SI-ideal, then I ⊆ Qi

for some Qi.

Proof. For n = 2, the assertion holds, even if Q1 and Q2 are just
subgroups of R, which is a classical result in algebra. Now assume
n ≥ 3. In this case, without loss of generality we may assume that Q1

is an SI-ideal and Qi ⊈ Qj for i ̸= j. Also by induction we may assume
that I ⊈

∪n
i=2Qi. Hence there is x ∈ I such that x /∈

∪n
i=2Qi. We show

that I ⊆ Q1 and we are done. Let us put J =
∩n

i=2Qi and note that for
each y ∈ I ∩ J we have x + y /∈ Qi for all i ≥ 2. Therefore x + y ∈ Q1

which means y ∈ Q1 and so I ∩ J ⊆ Q1. Since Q1 is an SI-ideal and
J ⊈ Q1, we infer that I ⊆ Q1. □

Proposition 3.3. Let I be an ideal and T a subset of a ring R. If
I + T ⊆

∪n
i=1Qi, where each Qi is an ideal of R such that at most one

of the Qi’s are not strongly irreducible, then there exists t ∈ T such that
I ∪ {t} ⊆ Qi for some Qi.

Proof. For n = 1, we note that I ∪ {t} ⊆ Q1 for all t ∈ T , even if Q1 is
not strongly irreducible. Hence, let n ≥ 2 and we may assume that Q1

is strongly irreducible and Qi ⊈ Qj for i ̸= j. Now by induction we may
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assume that I + T ⊈
∪n

i=2Qi. Hence there are x ∈ I and t ∈ T with
x + t ∈ Q1 − (

∪n
i=2Qi). We claim that I ∪ {t} ⊆ Q1 and we are done.

To this end, it suffices to show that I ⊆ Q1. Let us put J =
∩n

i=2Qi

and note that for each y ∈ I ∩ J we have x + t + y /∈ Qi for all i ≥ 2,
hence x + t + y ∈ Q1 which means y ∈ Q1 and therefore I ∩ J ⊆ Q1.
Since Q1 is an SI-ideal and J ⊈ Q1, we infer that I ⊆ Q1. □

Corollary 3.4. Let I be an ideal and T a subset of a ring R. If
I+T ⊆

∪n
i=1Qi, where each Qi is an ideal of R such that at most one of

the Qi’s are not strongly irreducible. If I + T ⊆
∪n

i=1Qi is irreducible,
then I ⊆

∩n
i=1Qi.

Proof. For n=1 there is nothing to prove. Hence let n ≥ 2. By
Proposition 3.3, there exist t1 ∈ T and 1 ≤ i ≤ n such that I∪{t1} ⊆ Qi.
Since I + T ⊆

∪n
i=1Qi is irreducible, there exists t2 ∈ T such that

I+{t2} ⊈ Qi. Since I+{t2} ⊆
∪n

i=1Qi, again by Proposition 3.3, there
exists Qj ̸= Qi such that I ∪{t2} ⊆ Qj . Clearly that I ⊆ Qi ∩Qj and if
n = 2, we are done. So let n ≥ 3. In this case by the hypothesis we have
I+T ⊈ Qi∪Qj . Therefore there exists t3 ∈ T which I+{t3} ⊈ Qi∪Qj .
Now I+{t3} ⊆

∪n
i=1Qi implies that I∪{t3} ⊆ Qk for some Qk ̸= Qi, Qj ,

and consequently I ⊆ Qi ∩Qj ∩Qk. By the repeat this prosses n times,
the proof is complete. □

Let us, before giving our final result, recall an interesting comment
by Karamzadeh concerning the counterpart of the following corollary
which is presented in [11] as an exercise: He invites the reader to give,
if possible, a number theoritical solution to this final exercise in [11],
where a variant of avoidance lemma is invoked for the solution of the
exercise. We offer the same invitation to the reader, if a proof without
using any variant of avoidance lemma, can be given for the next result.

Corollary 3.5. Let p1, p2, · · · , pn+1, be distinct positive integers such
that all pi’s, except possibly pn+1, are prime and (pi, pn+1) = 1 for all
i ≤ n. Then for any positive integers k1, k2, · · · , kn+1, there exists the
largest ideal G of the ring of integer numbers such that for each g ∈ G

and each pi there exists some pj such that pkjj divides g + pkii .

Proof. First we note that if there exists such an ideal G we must
have G + T ⊆

∪n+1
i=1 ⟨p

ki
i ⟩, where T = {pk11 , pk22 , · · · , pkn+1

n+1 }. Since T ⊆
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∪n+1
i=1 ⟨p

ki
i ⟩ is irreducible, we deduce that so is G+T ⊆

∪n+1
i=1 ⟨p

ki
i ⟩. So by

the previous corollary, we get G ⊆
∩n+1

i=1 ⟨p
ki
i ⟩ = ⟨pk11 pk22 · · · pkn+1

n+1 ⟩. Since
the ideal ⟨pk11 pk22 · · · pkn+1

n+1 ⟩ has the property mentioned of the corollary,
therefore G = ⟨pk11 pk22 · · · pkn+1

n+1 ⟩ is the largest ideal with this property.
□
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