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Abstract. This article uses genetic algorithms and geometric prop-
erties of hyperplanes and a constructive way to determine strong and
weak hyperplanes in the collection entitled Efficient Frontier. To this
end, a mapping with domain Rm+s≥0 to the space of real numbers is
defined. This function is introduced in such a way that it’s optimal
points, which are also Multiple, correspond to the normal vectors of the
strong and weak supporting hyperplanes of the Production Possibility
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Set (PPS). The optimal points of this function are determined through
an optimization algorithm, specifically a genetic algorithm. There ex-
ists a one-to-one correspondence between the optimal points of the in-
troduced function and the set of supporting hyperplanes. Using the
proposed method, the production function under PPS conditions is ob-
tained.
It is evident that accurately determining the boundaries of the Produc-
tion Possibility Set provides useful and valuable information, including
returns to scale, benchmarks, and also the stability region.

Keywords: Genetic Algorithm (GA), Data Envelopment Analysis
(DEA), Affine Independence, Efficiency Frontier, Defining Hyperplane,
Farkas’ Lemma.

1 Introduction

Artificial neural networks (ANN) and genetic algorithms (GA) are popu-
lar machine learning technologies. They were both developed in analogy
to the structures and processes that occur in nature. Due to their desired
properties, they are often used to solve various modeling and optimiza-
tion problems [16, 18, 19]. Although these techniques are usually used
separately, together they can extend the range of their possible appli-
cations. They can be applied to problems where it is difficult to find a
clear analytical solution [9, 13].

The genetic algorithm (GA) was first introduced by John Holland
in the 1960s as a method for solving optimization problems using an
evolutionary search process. In his 1975 book Adaptation in Natural
and Artificial Systems [6], Holland laid the foundational principles for
GAs, emphasizing the use of natural selection and genetic principles to
solve complex problems. Later, in the 1970s, David Goldberg, a stu-
dent of Holland, significantly advanced the field by popularizing GAs
and applying them to various practical optimization problems. In his
1989 book [7], Genetic Algorithms in Search, Optimization, and Machine
Learning, Goldberg introduced more advanced concepts and demon-
strated the power of GAs in real-world applications. Furthermore, K.
A. De Jong’s 1975 doctoral dissertation[8], Analysis of the Behavior of
a Class of Genetic Adaptive Systems, provided important insights into
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the performance of genetic algorithms and their potential for adaptive
problem-solving. These seminal works by Holland, Goldberg, and De
Jong laid the foundation for the widespread adoption and continued
development of genetic algorithms in various fields of optimization and
machine learning. Since then, genetic algorithms have become one of the
most powerful tools in computer science, engineering, and even biology.
They quickly found applications in areas such as optimal design, ma-
chine learning, and intelligent systems, and achieving notable successes
in many complex problems. In addition, various forms of evolutionary
programming, as subsets of genetic algorithms, have been proposed and
developed, each with specific applications.

Senior executives of an organization and government institutes tend
to evaluate their Decision Making Units (DMUs) to promote the pro-
ductivity of the system under their management through accurate and
error-free scientific results. In the early 20th century, Data Envelopment
Analysis (DEA) was discussed to evaluate the constituent units of a sys-
tem based on mathematical principles, and some efficient models were
presented in this modern science. Since DMUs’ efficiency determines a
system’s efficiency, their fulfillment as accurately as possible attracted
the attention of researchers in this field within a very short time. In
1957, Farell [10] proposed a non-parametric model for single-input and
single-output units. In 1978, Charnes et al. [5] founded a so-called
“CCR model” to evaluate homogeneous multiinput and multioutput
units, which play a crucial role in evaluating the efficiency of DMUs
today. The model had constant returns to scale; therefore, Banker et
al [3] proposed the BCC model to assess the efficiency of data with
variable returns to scale.

In DEA, the DMU located on the frontier is considered efficient,
while the DMU within the production possibility set is classified as in-
efficient. The obtained frontier is called the “production function” in
microeconomics. The production function is a function that maximizes
outputs by combining inputs.

Estimation of the production function frontier allows the efficiency
of DMUs to be calculated and the performance of units to be studied
scientifically. Defining hyperplanes of the production frontier provides
access to returns to scale and other indices that more accurately attract
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the attention of managers with minimal computational errors.
The determination of efficient hyperplanes is of utmost importance

for the determination of reference units for inefficient DMUs. In radial
or non-radial models, efficient DMUs are introduced as a reference for
inefficient units. Several papers have been published on finding efficient
frontier. In 2005, Jahanshahloo et al [15]. presented a technique for de-
termining defining hyperplanes based on the number of units on a hyper-
plane by solving a binary planning problem. The method had two funda-
mental weaknesses, first, all generated hyperplanes were not “defining”,
and second, the algorithm was not able to specify all the defining hy-
perplanes. In 2007, Jahanshahloo et al [14] developed a method based
on the fact that each defining hyperplane passes through at least m+ s
or m + s − 1 units. In this study, the affine independency of the units
was not considered and the calculations of the presented algorithm were
very complex. Aghayi et al [1], Amirteimoori et al [2], Ghazi et al [11]
and Hosseinzadeh Lotfi et al [17] also discussed about finding defining
hyperplanes. In this research, an attempt was made to determine the
equation of hyperplanes using GA. In practice, the modern method gives
the equation of hyperplanes more accurately in a minimum period.

By using the GA and DEA models, this paper attempts to pro-
pose a method to determine the defining hyperplanes of the Production
Possibility Set (PPS). The paper is organized as follows: Major DEA
discussions and a brief explanation of the GA are presented in the fol-
lowing section. Then the proposed method is fully explained in section
3 and a practical example is explained in section 4. The final section
analyzes and studies the results.

2 Background

This section discusses the main concepts of DEA and GA. DEA provides
senior managers with the estimation and analysis of the DMUs of a
system without personal preferences. Literature provided some methods
for estimating units, which are explained briefly in this chapter. Major
definitions are described first.

Definition 2.1 ([12]). A set of vectors a 1, a 2, . . . , a n is called linear,
in an independent n-dimensional space, if

∑n
j=1 cjaj = 0 implies that
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cj = 0 for j = 1, . . . , n.

Definition 2.2 ([12]). A set of vectors such as A = {a1, . . . , an} is called
affine independent if {aj − a1 : j = 2, . . . , n} is linearly independent.

Definition 2.3 ([12]). If set A = {a1, . . . , an} is affine-independent,
then its affine grade is shown by afrank(A) and it is calculated as
afrank(A)=n-1.

Definition 2.4 ([4]). vector d ∈ P is called a direction or ray if
∀λ > 0; λd ∈ P . Where P is an infinite arbitrary set.

Definition 2.5 ([4]). A direction that cannot be written as a positive
linear combination of other directions is called extreme direction.

Assuming that the input vectorX, generates the output vector Y and
each vector includes at least a positive component, the dual non-negative
(X,Y ) is called an activity. A Production Possibility set (PPS), which is
generated concerning production technology, is a set consisting of all of
the mentioned activities. Assuming that n is the number of all Decision
Making Units (DMUs) in a system. DMUj is the j th activity including
m inputs of Xj = (x1j , . . . , xmj) and s output of Yj = (y1j , . . . , ysj).

That inputs and outputs vectors are non-negative, the PPS of Tc,
which is obtained by the principles of Observation, Constant Returns to
Scale, Feasibility, and Convexity, is as follows:

Tc =
{
(X,Y )|X ≥

n∑
j=1

λjXj , Y ≤
n∑

j=1

λjYj , λj ≥ 0, j = 1, . . . , n
}

This set is the production possibility set of the well-known CCR model
[5]. The Frontier of the set, which is a linear piecewise surface, is con-
sidered as the efficiency frontier. If DMU0 = (X0, Y0) is non-dominated
that is ; ∀j ; j = 1, . . . , n (−Xj , Yj)≤

̸=
(−X0, Y0) , then DMU0 is called

relatively efficient. Efficient DMUs lies on the efficiency frontier; other-
wise, it is detected as an inefficient unit.

Considering the principles of Observation, Feasibility, and Convexity,
the production possibility set is as follows:

Tv =
{
(X,Y )|X ≥

n∑
j=1

λjXj ≤
n∑

j=1

λjYj ,

n∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , n
}
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Banker, Charnes, Cooper presented the following model, known as the
BCC model.[3]

min θ − ε
( m∑
i=1

s−i +
s∑

r=1

s+r

)
s.t.

n∑
j=1

λjXij + s−i = θXi0; i = 1, . . . ,m

n∑
j=1

λjYrj − s+r = Yr0; r = 1, . . . , s

n∑
j=1

λj = 1

λj ≥ 0 , s−i ≥ 0, s+r ≥ 0; j = 1, . . . , n, i = 1, . . . ,m, r = 1, . . . , s.

For each optimal solution of model (1), θ∗ = 1 and all the slacks equals
zero that is

∑m
i=1 s

−∗
i +

∑s
r=1 s

+∗
r = 0 , and the evaluated DMU0 is

called “strongly efficient”. If θ∗ = 1 and
∑m

i=1 s
−∗
i +

∑s
r=1 s

+∗
r ̸= 0, it is

called weakly efficient. Otherwise the evaluated DMU0 is not efficient.

The following model is the dual form of model (1), which is called
the multiple form of the BCC model:

max UTY0 + u0
s.t. V TX0 = 1

UTYj − V TXj + u0 ≤ 0 j = 1, . . . , n
U ≥ 0, V ≥ 0

(1)

The set of hyperplanes that construct the frontier of the Tv in the BCC
model, is as follows:

S = {(U, V, uo)|∀j(j ∈ J ;UYj − V Xj + u0 ≤ 0),

∃ j(j ∈ J ;UYj − V Xj + u0 = 0)}

Where J is the set of strong efficient DMUs.

Some advanced models were then discussed in DEA to make system
analysis more accurate and scientific. Effective algorithms have been
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presented with the advancement of different sciences, especially com-
puter, in recent years. The Genetic Algorithm (GA) was one of the
advanced algorithms utilized in the proposed method of the paper.

This paper applies Genetic Algorithms (GAs) among various meta-
heuristic approaches due to their many advantages, such as their ability
to efficiently explore large search spaces, handle complex optimization
problems, and avoid local optima. Compared to other popular meta-
heuristic algorithms like Simulated Annealing (SA) and Particle Swarm
Optimization (PSO), GAs offer a more flexible and robust framework
for optimization tasks.

While SA can sometimes be prone to getting stuck in local optima,
and PSO can be sensitive to parameter settings, GAs tend to provide
a better balance between exploration and exploitation, making them
particularly well-suited for the problem addressed in this paper.

The GA is used for solving some optimization problems. The method
acts are based on the principle of survival in nature and gene functions.
A set of feasible solutions, called chromosomes, is generated and then
measured under the solutions’ fitness function (optimizer). In the next
step, some are selected based on the ascending or descending order of so-
lutions and using some random methods. A new generation is produced
using gene, crossover, and mutation operators. The trend continues as
long as achieving convergence conditions. The final solution obtained
from the trend is not necessarily optimal, but it is acceptable. Different
finalization conditions, such as a certain number of reproductions, limit
the algorithm. There are various closing conditions for the algorithm
to be finished; such as time, a certain number of reproductions, the
optimum difference between two generations, and the tolerance of the
optimum solutions. A GA flowchart is shown as follows (Figure 1):
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Figure 1: A GA flowchart

Sometimes, the current generation will be improved to determine a
new improved generation or so-called genetic mutation. Below is the
flowchart (Figure 2):

Figure 2: Genetic new generation
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3 The Proposed Method

The determination of the efficiency frontier is crucial in DEA for ac-
curately estimating units, conducting sensitivity analysis, and assessing
returns to scale. This paper discuss a method to determine the defining
hyperplane equations based on the PPS geometry structure. Some the-
orems are stated to understand the structure of the method accurately
and they are proved. Then the proposed algorithm is described.

Theorem 3.1. If FS is defined as the following set,

FS = {(X,Y )|(X,Y ) ≥ 0,∀(U, V, u0) ∈ S; UY − V X + u0 ≤ 0},

then Tv = FS.

Proof. Let (X,Y ) ∈ Tv, hence (X,Y ) is a point in the PPS of the BCC
model and suppose (U, V, u0) ∈ S, then

∃(λ1, . . . , λn) ≥ 0,
n∑

l=1

λl = 1, X ≥
n∑

l=1

λlXl Y ≤
n∑

l=1

λlYl.

Hence, −V X ≤ −
∑n

l=1 λlV Xl , UY ≤
∑n

l=1 λlUYl. Consequently,

UY−V X+u0 ≤
n∑

l=1

λlUYl−
n∑

l=1

λlV Xl +u0 =
n∑

l=1

λl(UYl−V Xl +u0) ≤ 0.

It shows that (X,Y ) ∈ FS . □
The opposite is proven using proof by contradiction. It is assumed that
(X,Y ) ∈ FS ; however, (X,Y ) /∈ Tv. Therefore, the relative efficiency
score of Model (2-3) is θ∗ > 1. Meantime there exist (U, V, u0) in its
dual model (2-4) in which V X = 1 , UY + u0 > 1, and (U, V ) ≥
0 , UYj − V Xj + u0 ≤ 0 j = 1, . . . , n. As a result, UY − V X + u0 > 0.
On the other hand, (U, V, u0) ∈ S, which this leads to a contradiction,
and thus the theorem is proven.

Theorem 3.2. If the set of extreme directions of set S is denoted by
SR and also FSR

= {(X,Y )| ∀(U, V, u0) ∈ SR; UY − V X + u0 ≤ 0} is
assumed, then, FSR

= FS.
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Proof. It is obvious that FS ⊆ FSR
. Now, assume that (X,Y ) ∈

FSR
and, (U, V, u0) ∈ S, then ∃(λ1, . . . , λK) ≥ 0, (Ui, Vi, u0i) ∈ SR;

(U, V, u0) =
∑K

i=1 λi(Ui, Vi, u0i), where K is assumed the cardinal of SR.
Therefore, (X,Y ) ∈ FS . □

Lemma 3.3. If inefficient and weakly efficient units are deleted from the
set of observations and the PPS generated by principles of Observation,
Feasibility, and Convexity, is called Tv0, then Tv = Tv0.

Proof. Let (X0, Y0) is an inefficient or weakly efficient unit, and if
(X1, Y1) = θ∗(X0, Y0) + (−S−, S+) is assumed to be a Pareto efficient
unit, then (X1,−Y1) ≤ (X0,−Y0). Therefore, according to the Feasi-
bility principle, (X0, Y0) is produced by (X1, Y1). On the other hand,
(X1, Y1) is the convex combination of some of the observed strong effi-
cient units. Therefore, Tv = Tv0 , hence SJ = SR, where J is the set of
strong efficient units. □

Theorem 3.4. (U, V, u0) ∈ SR and (U, V ) > 0 if and only if

1. For any observed DMUj = (Xj , Yj) ; j = 1, .., n , it can be assumed
that UYj − V Xj + u0 ≤ 0.

2. A set of Tv with afrank = m+ s− 1, is binding on the hyperplane
defined by (U, V, u0).

Proof. Proof of the forward direction: If condition (A) is met, it will
be clear that (U, V, u0) ∈ S. Condition (B) shows that the set

A1 = {(Xt, Y t) : (Xt, Y t) ∈ Tv, t = 0, 1, 2, 3, . . . ,m+ s}

with afrank (A1) = m + s − 1 is binding on the hyperplane defined by
(U, V ). Therefore, (U, V ) is perpendicular to A = A1 −

{(
X0, Y 0

)}
and

rank(A) = m+s−1. Consequently, only one of its collinear vectors may
have this property, because the kernel of the matrix whose rows are made
up of the elements of A has only one dimension. As a result, (U, V, u0)
is not a non-negative combination of S members; i.e. (U, V, u0) ∈ SR.

Proof of the reverse direction: It is assumed that (U, V, u0) ∈ SR.
Therefore, Condition (A) is met. Farkas’ lemma is used for proving
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Condition (B). If the affine rank of the desired set such as A of Tv, in
which UY −V X+u0 = 0 hyperplane is binding, is lower than m+s−1,
as per definition S, A ̸= ϕ. Therefore, the above equation is a facet with
k < m + s − 1 dimension. Consequently, there is at least a k -member
subset of SR in which

∀ (X,Y ) (X,Y ) ∈ A : UtY − VtX + u0
t = 0 t = 1, . . . , k

∀t t = 1, . . . , k ∃
(
Xt, Y t

)
∈ Tv −A : UtY

t − VtX
t + u0

t = 0

If (X0, Y0) ∈ A, the equation UtY0 − VtX0 + u0
t < 0 will be obtained

for k + 1 ≤ t ≤ p. It is claimed that

k∑
t=1

ct (Ut,−Vt) = (U,−V ) ct ≥ 0 , t = 1, . . . , k.

If the claim is not valid, as per Farkas’ lemma, there is a (X1, Y1) in
which

UtY1 − VtX1 ≤ 0 t = 1, . . . , k
UY1 − V X1 > 0

Now, µ > 0 is selected in a way that

X0 + µX1 ≥ 0
Y0 + µY1 ≥ 0
UtY0 − VtX0 + u0

t + µ (UtY1 − VtX1) ≤ 0 t = k + 1, . . . , l

Therefore, (XD, YD) = (X0 + µX1, Y0 + µY1) ∈ Tv, but UYD −
V XD + u0 > 0. Thus, the claim is true. On the other hand, u0 =∑k

t=1 ctu
t
0 if

∑k
t=1 ct

(
UtY0 − VtX0 + u0

t
)
= 0 and UY0−V X0+u0 = 0.

Therefore, (U, V, u0) is not an extreme direction, and this contradiction
originated form k ̸= m+ s− 1 assumption. □

Theorem 3.5. Let (U, V, u0) ∈ S and k includes the number of zero
components of vector (U, V ), then (U, V, u0) ∈ SR if and only if the
hyperplane defined by (U, V, u0) is binding on a set of strong efficient
units with afrank = m+ s− k − 1.
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Proof. Proof of the forward direction: Let (U, V, u0) ∈ SR is the
normal vector of the defining hyperplane binding on the strong effi-
cient unit (X0, Y0), and k is the number of zero components of (U, V ),
then u0 = V X0 − UY0. Since DMUo is an extreme unit, it should be
binding on m+ s− k − 1 of the following equation:

U(Yj − Y0)− V (Xj −X0) ≤ 0 j ∈ J − {0}
U, V ≥ 0

Therefore, affine rank of this set equals m+ s− k − 1.

Proof of the reverse direction: It is assumed that k = 0. Therefore
it is binding on a set with the affine rank of m+ s− 1, as per Theorem
(3), (U, V, u0) ∈ SR. Otherwise, if k > 0 let P = PU

⋃
PV , in which PU

and PV are the zero components of U and V , respectively, without loss
of generality, it is assumed that PU = {1, 2, . . . , kU} . The hyperplane
passes through the strong efficient units such as A0 = {(Xt, Yt) : t ∈ J}
with m+ s− k − 1 affine rank, i.e. rank of B0 = A0 − (X0, Y0) is equal
to m+ s− k − 1. Therefore, η1 > 0 is available:

(XP1 , YP1) = (X0, Y0)− η1em+1 ∈ Tv

Therefore, the hyperplane H0, passes through (XP1 , YP1). On the other
hand, at least one hyperplane such as H1 with normal vector (U, V ) ̸= 0,
U1 = 1 passes through A0. Therefore,

{(X,Y ) : UY − V X + u0 = 0} ∩ {(X,Y ) : (X,Y ) = (X0, Y0) + tem+1,

t ∈ R} = {(X0, Y0)}.

Consequently, (XP1 , YP1) /∈ Affine{A0} and B1 = B0 ∪ {e1} dimension
is equal m + s − (k − 1) − 1. As a result, the affine rank of A1 = A0 ∪
{(Xp1 , Yp1)} equals B1 dimension. This action continues kU times, and
H0 passes through a set such as Aku = A0 ∪ {(XPi , YPi) : i = 1, . . . , kU}
that afrank(Aku) = m+ s− (k − kU )− 1.

Without loss of generality, it is reassumed that PV = {1, 2, . . . , kV } .
As kU + kV = k, then

(XQ1 , YQ1) = (X0, Y0) + e1 ∈ Tv.
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Therefore, the hyperplane H0 passes through (XQ1 , YQ1). On the other
hand, at least one hyperplane, such as HkU+1 with the normal vector
(U, V ) ̸= 0, V1 = 1, passes through AkU . Therefore,

{(X,Y ) : UY − V X + u0 = 0} ∩ {(X,Y ) : (X,Y ) = (X0, Y0) + te1,

t ∈ R} = {(X0, Y0)}.

Hence, (XQ1 , YQ1) /∈ Affine{AkU } and BkU+1 = BkU

⋃
{e1} dimension

equals m + s − (k − kU − 1) − 1. Therefore, the affine rank AkU+1 =
AkU

⋃
{(Xq1 , Yq1)} equals BkU+1 dimension.

This action continues kU times and H0 passes through a set such
as Ak = Aku

⋃
{(XQi , YQi) : i = 1, . . . , kV } with afrank(Ak) = m+ s−

(k−kU −kV )−1 = m+s−1. Therefore, H0 pass through Ak set, which
enjoys m+s−1 affine rank. As per Theorem 3.1, (U, V, u0) ∈ SR. □

Theorem 3.1 states that the production possibility set of BCC model
( Tv ), is the intersection of all half-spaces corresponding to the support-
ing hyperplanes of Tv. Theorem 3.2 states that to compute FSR

, it is
not necessary to consider all supporting hyperplanes; it is sufficient to
extract the extreme normal vectors from the normal vectors of the sup-
porting hyperplanes. The entire PPS can then be constructed from the
intersection of their half-spaces. Theorem 3.4 and theorem 3.5 state
that a defining hyperpalne, is a hyperplane binding on strong efficient
points with afrank equals to m+ s−k−1. Therefore, based on the four
stated theorems, to determine the efficiency frontier of the production
possibility set Tv, it is sufficient to obtain the extreme normal vectors of
the defining hyperplanes of Tv.

According to what has been stated, the objective is to identify sup-
porting hyperplanes. For this purpose, a function has been designed
whose optimal points correspond to the normal vectors of the support-
ing hyperplanes of the production possibility set. Using the heuristic GA
algorithm, the optimal points of the function are obtained. Since GA or
any other optimization algorithm does not find multiple optimal points,
the function is modified by applying sequential penalties to ensure that
each new optimal point is unique. To achieve this, it is checked that the
set of points lying on the new hyperplane does not belong to the family
whose elements are the sets of points lying on the previously identified
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supporting hyperplanes. This process continues until no further optimal
points exist. Since GA guarantees that it finds an optimal point for any
function, no supporting hyperplane remains undiscovered.

The following algorithm is expressed aiming at finding SR set.

Algorithm 1 The Proposed Algorithm

1: Begin
2: Let i = 1, opt = 0, J = ϕ, P = ϕ, Γ = ϕ, optset = ϕ, ε = 10−5

3: Obtain the strongly efficient DMUs using Model (1) and assign their indices to
set J.

4: Perform steps A, B, and C as long as opt = 0 .
5: Construct the function f as follows:

f(U, V ) : [0, 1]m+s → R , f(U, V ) = β1 + β2

6: To compute β1 and β2 , u0 is first obtained in the form of
u0 = max {UYj − V Xj : j ∈ J}.

7: Then, the set A = { (Xj , Yj) :
|UYj−V Xj−u0|

∥(U,V )∥2
≤ ε : j ∈ J} is computed.

8: Finally, β1 and β2 is obtained from the following rule:
9: if A ∈ Γ, then

10: β2 = M & β1 = M
11: else
12: if afrank(A) = m+ s− k − 1, then
13: β2 = 0 & β1 = 0
14: else
15: β2 = 0 & β1 = M .
16: end if
17: end if
18: Where k is the number of zero components of the vector (U, V ).
19: Let populationsize = (m+ s)200 + 100i & [(Ui, Vi) , opt] = GA(f).
20: If opt = 0, then place:

u0i = max{UiYj − ViXj : j ∈ J}

P = P ∪ {(Ui, Vi, u0i)}, optset = {j ∈ J :
|UiYj − ViXj − u0i|

∥(Ui, Vi)∥2
≤ ε},

Γ = Γ
⋃

{optset}, i = i+ 1.

21: Print the set of vectors P .
22: End.



DETERMINATION OF THE EFFICIENT FRONTIER ... 15

4 Numerical Example

The example mentioned in this section includes 30 DMUs, each with two
inputs and one output (see Table 1). Executing step 3 of the algorithm,
ten units are detected strongly efficient using model (1).

Table 1: Efficiency Score of observed DMUs.

DMU No. I1 I2 O Efficiency

1 25 2 8 1.000
2 10 11 17 0.535
3 14 9 38 1.000
4 10 9 13 0.490
5 9 18 38 1.000
6 10 10 12 0.442
7 5 8 19 1.000
8 9 10 16 0.563
9 9 11 17 0.570
10 1 25 8 1.000
11 8 11 16 0.580
12 7 6 21 1.000
13 8 12 19 0.644
14 7 9 14 0.612
15 6 2 8 1.000
16 8 9 19 0.728
17 2 5 8 1.000
18 4 3 8 1.000
19 1 7 8 1.000
20 8 8 15 0.639
21 9 8 13 0.548
22 6 11 15 0.640
23 5 11 11 0.545
24 10 10 14 0.488
25 7 10 17 0.685
26 9 8 14 0.575
27 11 13 17 0.473
28 7 8 10 0.528
29 9 7 12 0.555
30 8 9 14 0.575
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Using eight strongly efficient units and applying the proposed algo-
rithm, the equations of both weak and strong hyperplanes are derived.
In this case, 16 defining hyperplanes are obtained, and the coefficients
of each shown in Table 2.

Table 2: Coefficients of defining hyperplanes obtained by the proposed
algorithm

hyperplane No. V1 V2 U u0
1 0 0.677734 0 -1.35547
2 0.693633 0 0 -0.69363
3 0.65168 0.641688 0.30395 -2.02895
4 1.808718 0.629447 0.716524 -0.38058
5 0.460859 0.256476 0.195411 -0.64081
6 0.906329 0.925516 0 -6.40186
7 0.603664 0.276575 0.241313 -0.60919
8 0.769659 1.672368 0.567599 -3.4219
9 0.774714 0.382786 0.361728 -0.06304
10 0.641618 0.355105 0.328283 0.308317
11 0.488245 0.977283 0 -4.88403
12 0.31464 0.151618 0 -1.37597
13 0.00004 0 0.849259 32.2439
14 0.411073 1.072416 0.359943 -1.72894
15 0 1.045754 0.244703 -0.11307
16 0.845976 0 0.225641 0.960589

Figure 3 shows the hyperplanes obtained by the algorithm. For ex-
ample −0.677V2 − 1.355 = 0 is one of the weak defining hyperplane of
PPS or is 0.303U − 0.651V1 − 0.641V2 − 2.028 = 0 a strong defining
hyperplane.

The above algorithm identifies the efficient hyperplanes of Tv set.
Concerning the advantages of the GA, this method can be implemented
for discrete and continuous variables. Moreover, the technique can exe-
cute efficiently with a large number of variables.
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Figure 3: The hyperplanes obtained by the algorithm

5 Conclusion

The proposed method determines the defining frontier of the BCC model
including weak and strong hyperplanes, without the necessity of solving
linear programming models. Additionally, the optimization function is
defined in such a way that it ensures the results are obtained with min-
imal computational error. As the proposed algorithm uses the GA, it
has its specific advantages and it is capable of identifying all PPS hyper-
planes for systems with a large number of DMUs, multiple inputs, and
outputs, while maintaining low computational complexity. The equa-
tions of the defining hyperplanes in data envelopment analysis are cru-
cial, as understanding the efficiency frontier allows for the easy evalua-
tion of returns to scale, identification of reference points, and sensitivity
analysis. Additionally, meta-heuristic algorithms, such as PSO, could
be utilized to enhance the execution of the algorithm. Furthermore,
alternative DEA models may be explored as potential replacements to
improve the analysis.
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