Journal of Mathematical Extension Vol. 18, No. 9, (2024) (2)1-21 URL: https://doi.org/10.30495/JME.2024.3114 ISSN: 1735-8299 Original Research Paper

Another Approach to Generate Fuzzy Normed Spaces and Fuzzy Normed Algebras by Normed Spaces and Normed Algebras Respectively

R. Tourani

Shahrood University of Technology

A. R. Khoddami^{*} Shahrood University of Technology

Abstract. In this paper, we introduce a new approach to generate a fuzzy norm using a classic norm and a continuous Archimedean t-norm (CATN). Our method involves two steps. First, we utilize a CATN to create a continuous additive generator (CAG). Then, we employ the corresponding additive generator (AG) and a classic norm to generate a fuzzy norm.

AMS Subject Classification: 46S40; 46B99 **Keywords and Phrases:** Fuzzy normed space, Fuzzy normed algebra, Pseudo-inverse, Continuous Archimedean t-norm, Additive generator, Multiplicative generator

1 Introduction

It is well-established that the fuzzy concepts hold significant importance in multiple disciplines such as engineering, medicine, management, and

Received: July 2024; Accepted: January 2025

^{*}Corresponding Author

mathematics. Two topics from fuzzy theory that can be very relevant are t-norm and fuzzy norm. In this paper, we will present specific information to one of the fuzzy definitions called fuzzy norm, that is a basic notion in fuzzy functional analysis.

In 1965, Zadeh [11] introduced fuzzy sets to the world of science through a scientific paper. The fuzzy sets serve as a uncertain mathematical model in the field of analysis. First time, A .K. Katsaras, defined a concept called fuzzy norm in [4]. Also, some analytical and topological definitions using fuzzy norm are stated in [10]. In later years, T. Bag and S. K. Samanta in [1], gave a newer definition of fuzzy norm, working with that definition facilitated the procedure of proving theorems. R. Saadati and J. H. Park in [7] by using t-norms and continuous t-conorms, have reached to intuitionistic fuzzy normed spaces. O. Grigorenko, J. Minana, and O. Valero [3], introduced a method for making a fuzzy metric. T. Binzar, F. Pater, and S. Nadaban [2] investigated the relationship between fuzzy normed algebras.

The main motivation of this paper is to identify new fuzzy norms and new algebra fuzzy norms. In this paper, we state that a new CATN can be obtained from additive and multiplicative generators of a previous CATN. This method shows that countless of unknown CATN can be obtained.

The rest of the paper is organized as follows : In Section 2, we mention the definitions of t-norm, additive generator, multiplicative generator, pseudo-inverse, fuzzy norm, and etc. Some new results are stated in section 3.

2 Definitions

Definition 2.1. [3] A triangular norm (briefly, t-norm) is a function $\star : [0,1]^2 \longrightarrow [0,1]$ that for each $(\alpha,\beta,\gamma) \in [0,1]^3$ we have :

- 1) $\alpha \star \beta = \beta \star \alpha$,
- 2) $\alpha \star (\beta \star \gamma) = (\alpha \star \beta) \star \gamma$,
- 3) $\alpha \star \beta \ge \alpha \star \gamma$, for $\beta \ge \gamma$,
- 4) $\alpha \star 1 = \alpha$.

Definition 2.2. [5] A t-norm $\star : [0,1]^2 \longrightarrow [0,1]$ is called Archimedean t-norm if for each $(\alpha, \beta) \in (0,1) \times (0,1)$ there is $k \in \mathbb{N}$ such that $\alpha^{(k)} < \beta$ where

$$\alpha^{(k)} = \overbrace{\alpha \star \alpha \star \cdots \star \alpha}^{k-times}.$$

Also, a continuous t-norm is Archimedean iff $\alpha \star \alpha < \alpha$ for all $0 < \alpha < 1$ [5].

Example 2.3. If $\star_L : [0,1]^2 \longrightarrow [0,1]$ and $\star_p : [0,1]^2 \longrightarrow [0,1]$ are defined by $\alpha \star_L \beta = \max \{ \alpha + \beta - 1, 0 \}$ and $\alpha \star_p \beta = \alpha \beta$, then \star_L and \star_p are Archimedean t-norm.

Definition 2.4. [5] Let $\Psi : [0,1] \longrightarrow [0,\infty]$ be a decreasing function. Then $\Psi^{(-1)} : [0,\infty] \longrightarrow [0,1]$ is pseudo-inverse of Ψ that is defined by

$$\Psi^{(-1)}(\gamma) = \sup\{\zeta \in [0,1] : \Psi(\zeta) > \gamma\}$$

where we assume that $\sup \emptyset = 0$. Also if Ψ is continuous and strictly decreasing, then we have :

$$\Psi^{(-1)}(\gamma) = \begin{cases} 1, & 0 \le \gamma < \Psi(1) \\ \Psi^{-1}(\gamma), & \Psi(1) \le \gamma < \Psi(0) \\ 0, & \Psi(0) \le \gamma \le \infty \end{cases}$$

In particular, if Ψ is continuous, strictly decreasing, and $\Psi(1) = 0$, then

$$\Psi^{(-1)}(\gamma) = \begin{cases} \Psi^{-1}(\gamma), & 0 \le \gamma < \Psi(0) \\ 0, & \Psi(0) \le \gamma \le \infty \end{cases}$$

.

Definition 2.5. [5] Let $\Psi : [0,1] \longrightarrow [0,1]$ be an increasing function. Then $\Psi^{(-1)} : [0,1] \longrightarrow [0,1]$ is pseudo-inverse of Ψ that is defined by

$$\Psi^{(-1)}\left(\gamma\right) = \sup\{\zeta \in [0,1] : \Psi\left(\zeta\right) < \gamma\}$$

where we assume that $\sup \emptyset = 0$. Also if Ψ is continuous and strictly increasing, then we have :

$$\Psi^{(-1)}(\gamma) = \begin{cases} 0, & 0 \le \gamma < \Psi(0) \\ \Psi^{-1}(\gamma), & \Psi(0) \le \gamma < \Psi(1) \\ 1, & \Psi(1) \le \gamma \le 1 \end{cases}$$

In particular, if Ψ is continuous, strictly increasing, and $\Psi(1) = 1$, then

$$\Psi^{(-1)}(\gamma) = \begin{cases} 0, & 0 \le \gamma < \Psi(0) \\ \Psi^{-1}(\gamma), & \Psi(0) \le \gamma \le 1 \end{cases}.$$

Definition 2.6. [5] A multiplicative generator (MG) of a t-norm \star is a strictly increasing function $\varrho : [0,1] \longrightarrow [0,1]$ which is right-continuous at $\zeta = 0$ and $\varrho(1) = 1$ such that for each $(\zeta, \gamma) \in [0,1] \times [0,1]$,

$$\varrho(\zeta) \varrho(\gamma) \in \operatorname{Ran}(\varrho) \cup [0, \varrho(0)]$$

and

$$\zeta \star \gamma = \varrho^{(-1)} \left(\varrho \left(\zeta \right) \varrho \left(\gamma \right) \right).$$

Corollary 2.7. [5] Let ϱ : $[0,1] \longrightarrow [0,1]$ be a strictly increasing function which is right-continuous at $\zeta = 0$, $\varrho(1) = 1$ and for each $(\zeta, \gamma) \in [0,1] \times [0,1]$,

$$\varrho\left(\zeta\right)\varrho\left(\gamma\right)\in\operatorname{Ran}\left(\varrho\right)\cup\left[0,\varrho\left(0\right)\right].$$

If $\star : [0,1]^2 \longrightarrow [0,1]$ is defined by

$$\zeta \star \gamma = \varrho^{(-1)} \left(\varrho \left(\zeta \right) \varrho \left(\gamma \right) \right),$$

then \star is a t-norm.

Corollary 2.8. [5] Let $\star : [0,1]^2 \longrightarrow [0,1]$ be a t-norm. Then \star is a CATN iff there exists a continuous multiplicative generator (CMG) of \star .

Definition 2.9. [3] An additive generator (AG) of a t-norm \star is a strictly decreasing function $\xi_{\star} : [0,1] \longrightarrow [0,\infty]$ which is also right-continuous at $\zeta = 0$ and $\xi_{\star}(1) = 0$. Also for all $(\zeta,\gamma) \in [0,1] \times [0,1]$, The following are valid :

$$\xi_{\star}\left(\zeta\right) + \xi_{\star}\left(\gamma\right) \in \operatorname{Ran}\left(\xi_{\star}\right) \cup \left[\xi_{\star}\left(0\right),\infty\right]$$

and

$$\zeta \star \gamma = \xi_{\star}^{(-1)} \left(\xi_{\star} \left(\zeta \right) + \xi_{\star} \left(\gamma \right) \right).$$

Proposition 2.10. [3] Let $\xi : [0,1] \longrightarrow [0,\infty]$ be a strictly decreasing function with $\xi(1) = 0$ and

$$\xi(\zeta) + \xi(\gamma) \in \operatorname{Ran}(\xi) \cup [\xi(0), \infty]$$

for all $(\zeta, \gamma) \in [0, 1] \times [0, 1]$. Then $\star : [0, 1]^2 \longrightarrow [0, 1]$ defined by

$$\zeta \star \gamma = \xi^{(-1)} \left(\xi \left(\zeta \right) + \xi \left(\gamma \right) \right)$$

is a t-norm.

Theorem 2.11. [3] A t-norm \star is a CATN iff there exists a CAG such as ξ_{\star} such that for each $(\zeta, \gamma) \in [0, 1] \times [0, 1]$,

$$\zeta \star \gamma = \xi_{\star}^{(-1)} \left(\xi_{\star} \left(\zeta \right) + \xi_{\star} \left(\gamma \right) \right).$$

In the following, we will state that by using a CAG and a CMG of CATN \star , a new CAG and consequently a new t-norm can be obtained.

Corollary 2.12. Let \star be a CATN and ξ_{\star} and ϱ_{\star} be CAG and CMG of \star respectively. If $\xi_{\star}(0) = \infty$, then $h : [0,1] \longrightarrow [0,\infty]$ where $h(\zeta) = \xi_{\star}(\zeta) - \varrho_{\star}(\zeta) + 1$ is a CAG of \star' where

$$\zeta \star' \gamma = h^{(-1)} \left(h\left(\zeta\right) + h\left(\gamma\right) \right)$$

for all $(\zeta, \gamma) \in [0, 1] \times [0, 1]$.

Proof. Since ξ_{\star} and ϱ_{\star} are continuous, h is continuous. As ξ_{\star} is strictly decreasing and ϱ_{\star} is strictly increasing, h is strictly decreasing. Also h(1) = 0 and $h(0) = \infty$. Hence the continuity of h implies that $\operatorname{Ran}(h) = [0, \infty]$. Therefore $h(\zeta) + h(\gamma) \in \operatorname{Ran}(h)$ for all $\zeta, \gamma \in [0, 1]$. Applying Proposition 2.10, we can conclude that h is a CAG of \star' . \Box

Definition 2.13. [9] Let Z be a linear space and \star be a t-norm. A function $\aleph : Z \times \mathbb{R} \longrightarrow [0,1]$ is named a fuzzy norm on Z if for all $\zeta, \gamma \in Z$ and all $s, t \in \mathbb{R}$, we have :

- 1) $\aleph(\zeta, t) = 0$ for all $t \leq 0$.
- 2) $\aleph(\zeta, t) = 1$ for all t > 0 iff $\zeta = 0$.

- 3) $\aleph(\mu\zeta, t) = \aleph\left(\zeta, \frac{t}{|\mu|}\right)$ for all $\mu \neq 0$ and $t \in \mathbb{R}$.
- 4) $\aleph(\zeta + \gamma, s + t) \ge \aleph(\zeta, s) \star \aleph(\gamma, t)$ for all $s, t \in \mathbb{R}$.
- 5) $\aleph(\zeta, .)$ is increasing on \mathbb{R} and $\lim_{t\to\infty} \aleph(\zeta, t) = 1$.

Considering the above definition, (Z, \aleph, \star) is called a fuzzy normed space.

3 Main Results

In this section, let \star be a CATN and ξ_{\star} be the corresponding CAG of \star . Also let $\xi_{\star}^{(-1)}$ be the *pseudo-inverse* of ξ_{\star} .

Theorem 3.1. Let $(Z, \|\cdot\|)$ be a normed space, \star be a CATN and ξ_{\star} be a CAG of \star . Then $(Z, \aleph_{\star}, \star)$ is a fuzzy normed space which for each $\zeta \in Z$ and each $t \in \mathbb{R}$ is defined as follows :

$$\aleph_{\star}\left(\zeta,t\right) = \begin{cases} \xi_{\star}^{\left(-1\right)}\left(\frac{\|\zeta\|}{t}\right), & t > 0\\ 0, & t \leq 0 \end{cases}$$

Proof. If $\xi_{\star}(0) = \infty$, then by Definition 2.4 we have

$$\aleph_{\star}\left(\zeta,t\right) = \begin{cases} \xi_{\star}^{-1}\left(\frac{\|\zeta\|}{t}\right), & \frac{\|\zeta\|}{t} \ge 0\\ 0, & t \le 0 \end{cases}.$$

In this case, we only prove part 4 of Definition 2.13. Let $\zeta, \gamma \in Z$ and $s, t \in \mathbb{R}$. If $s \leq 0$ or $t \leq 0$, then $\aleph_{\star}(\zeta, s) = 0$ or $\aleph_{\star}(\gamma, t) = 0$. Hence

$$\aleph_{\star}\left(\zeta+\gamma,s+t\right)\geq\aleph_{\star}\left(\zeta,s\right)\star\aleph_{\star}\left(\gamma,t\right)=0.$$

If s > 0 and t > 0, then

$$\frac{\|\zeta+\gamma\|}{s+t} \leq \frac{\|\zeta\|+\|\gamma\|}{s+t} \leq \frac{\|\zeta\|}{s} + \frac{\|\gamma\|}{t}.$$

Hence

$$\begin{split} \aleph_{\star}\left(\zeta+\gamma,s+t\right) &= \xi_{\star}^{-1}\left(\frac{\|\zeta+\gamma\|}{s+t}\right) \\ &\geq \xi_{\star}^{-1}\left(\frac{\|\zeta\|}{s} + \frac{\|\gamma\|}{t}\right) \\ &= \xi_{\star}^{-1}\left(\xi_{\star}\left(\xi_{\star}^{-1}\left(\frac{\|\zeta\|}{s}\right)\right) + \xi_{\star}\left(\xi_{\star}^{-1}\left(\frac{\|\gamma\|}{t}\right)\right)\right) \\ &= \xi_{\star}^{(-1)}\left(\xi_{\star}\left(\xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{s}\right)\right) + \xi_{\star}\left(\xi_{\star}^{(-1)}\left(\frac{\|\gamma\|}{t}\right)\right)\right) \\ &= \xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{s}\right) \star \xi_{\star}^{(-1)}\left(\frac{\|\gamma\|}{t}\right) \\ &= \aleph_{\star}\left(\zeta,s\right) \star \aleph_{\star}\left(\gamma,t\right). \end{split}$$

Now, we prove the theorem for $\xi_{\star}(0) < \infty$. In this case

$$\begin{split} \aleph_{\star}\left(\zeta,t\right) &= \begin{cases} \xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{t}\right), & t > 0\\ 0, & t \leq 0 \end{cases} \\ &= \begin{cases} \xi_{\star}^{-1}\left(\frac{\|\zeta\|}{t}\right), & 0 \leq \frac{\|\zeta\|}{t} < \xi_{\star}\left(0\right), t > 0\\ 0, & \xi_{\star}\left(0\right) \leq \frac{\|\zeta\|}{t}, t > 0\\ 0, & t \leq 0 \end{cases} \end{split}$$

For each $t \leq 0$, clearly $\aleph_{\star}(\zeta, t) = 0$. To prove the second property, if for each t > 0, $\aleph_{\star}(\zeta, t) = 1$. Then $\xi_{\star}^{-1}\left(\frac{\|\zeta\|}{t}\right) = 1$. Hence $\frac{\|\zeta\|}{t} = \xi_{\star}(1) = 0$ for all t > 0. Then $\zeta = 0$. Conversely, if $\zeta = 0$, then for each t > 0,

$$\aleph_{\star}(0,t) = \xi_{\star}^{-1}(0) = 1.$$

To prove the third part, let $\zeta \in \mathbb{Z}$, $t \in \mathbb{R}$ and $\alpha \neq 0$. We have :

$$\begin{split} \aleph_{\star} \left(\alpha \zeta, t \right) &= \begin{cases} \xi_{\star}^{-1} \left(\frac{\|\alpha \zeta\|}{t} \right), & 0 \leq \frac{\|\alpha \zeta\|}{t} < \xi_{\star} \left(0 \right), t > 0 \\ 0, & \xi_{\star} \left(0 \right) \leq \frac{\|\alpha \zeta\|}{t}, t > 0 \\ 0, & t \leq 0 \end{cases} \\ &= \begin{cases} \xi_{\star}^{-1} \left(\frac{\|\zeta\|}{t} \right), & 0 \leq \frac{\|\zeta\|}{t} < \xi_{\star} \left(0 \right), t > 0 \\ 0, & \xi_{\star} \left(0 \right) \leq \frac{\|\zeta\|}{t}, t > 0 \\ 0, & t \leq 0 \end{cases} \\ &= \begin{cases} \xi_{\star}^{-1} \left(\frac{\|\zeta\|}{t} \right), & 0 \leq \frac{\|\zeta\|}{t} < \xi_{\star} \left(0 \right), \frac{t}{|\alpha|} > 0 \\ 0, & t \leq 0 \end{cases} \\ &= \begin{cases} \xi_{\star}^{-1} \left(\frac{\|\zeta\|}{t} \right), & 0 \leq \frac{\|\zeta\|}{t} < \xi_{\star} \left(0 \right), \frac{t}{|\alpha|} > 0 \\ 0, & \xi_{\star} \left(0 \right) \leq \frac{\|\zeta\|}{t}, \frac{t}{|\alpha|} > 0 \\ 0, & \frac{t}{|\alpha|} \leq 0 \end{cases} \\ &= \aleph_{\star} \left(\zeta, \frac{t}{|\alpha|} \right). \end{split}$$

To prove the fourth part, let $\zeta, \gamma \in Z$ and $s, t \in \mathbb{R}$. If $s \leq 0$ or $t \leq 0$, then $\aleph_{\star}(\zeta, s) = 0$ or $\aleph_{\star}(\gamma, t) = 0$. Since $a \star 0 = 0 \star b = 0$ for all $a, b \in [0, 1]$,

$$\aleph_{\star}\left(\zeta+\gamma,s+t\right)\geq\aleph_{\star}\left(\zeta,s\right)\star\aleph_{\star}\left(\gamma,t\right)=0.$$

Now we suppose that $s, t \in (0, \infty)$. If $\xi_{\star}(0) \leq \frac{\|\zeta\|}{s}$ or $\xi_{\star}(0) \leq \frac{\|\gamma\|}{t}$, then $\aleph_{\star}(\zeta, s) = 0$ or $\aleph_{\star}(\gamma, t) = 0$. Hence

$$\aleph_{\star}\left(\zeta+\gamma,s+t\right)\geq\aleph_{\star}\left(\zeta,s\right)\star\aleph_{\star}\left(\gamma,t\right)=0.$$

If
$$0 \leq \frac{\|\zeta\|}{s} < \xi_{\star}(0)$$
 and $0 \leq \frac{\|\gamma\|}{t} < \xi_{\star}(0)$, then

$$\aleph_{\star}(\zeta, s) = \xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{s}\right) = \xi_{\star}^{-1}\left(\frac{\|\zeta\|}{s}\right)$$

and

$$\aleph_{\star}(\gamma, t) = \xi_{\star}^{(-1)}\left(\frac{\|\gamma\|}{t}\right) = \xi_{\star}^{-1}\left(\frac{\|\gamma\|}{t}\right).$$

Since $\xi_{\star}^{(-1)}$ is decreasing on $[0,\infty]$ and $\frac{\|\zeta+\gamma\|}{s+t} \leq \frac{\|\zeta\|}{s} + \frac{\|\gamma\|}{t}$,

$$\begin{split} \aleph_{\star}\left(\zeta+\gamma,s+t\right) &= \xi_{\star}^{\left(-1\right)}\left(\frac{\|\zeta+\gamma\|}{s+t}\right) \\ &\geq \xi_{\star}^{\left(-1\right)}\left(\frac{\|\zeta\|}{s} + \frac{\|\gamma\|}{t}\right) \\ &= \xi_{\star}^{\left(-1\right)}\left(\xi_{\star}\left(\xi_{\star}^{-1}\left(\frac{\|\zeta\|}{s}\right)\right) + \xi_{\star}\left(\xi_{\star}^{-1}\left(\frac{\|\gamma\|}{t}\right)\right)\right) \\ &= \xi_{\star}^{\left(-1\right)}\left(\xi_{\star}\left(\xi_{\star}^{\left(-1\right)}\left(\frac{\|\zeta\|}{s}\right)\right) + \xi_{\star}\left(\xi_{\star}^{\left(-1\right)}\left(\frac{\|\gamma\|}{t}\right)\right)\right) \\ &= \xi_{\star}^{\left(-1\right)}\left(\xi_{\star}\left(\xi_{\star}^{\left(-1\right)}\left(\frac{\|\gamma\|}{s}\right) + \xi_{\star}\left(\xi_{\star}^{\left(-1\right)}\left(\frac{\|\gamma\|}{t}\right)\right)\right) \\ &= \xi_{\star}^{\left(-1\right)}\left(\frac{\|\zeta\|}{s}\right) \star \xi_{\star}^{\left(-1\right)}\left(\frac{\|\gamma\|}{t}\right) \\ &= \aleph_{\star}\left(\zeta,s\right) \star \aleph_{\star}\left(\gamma,t\right). \end{split}$$

This shows that for each $\zeta, \gamma \in Z$ and $s, t \in \mathbb{R}$,

$$\aleph_{\star}\left(\zeta+\gamma,s+t\right)\geq\aleph_{\star}\left(\zeta,s\right)\star\aleph_{\star}\left(\gamma,t\right).$$

To prove the fifth part, suppose that $\zeta \in Z$, $t_1, t_2 \in \mathbb{R}$ and $t_1 < t_2$. If $t_1 \leq 0$, then

$$0 = \aleph_{\star} \left(\zeta, t_1 \right) \le \aleph_{\star} \left(\zeta, t_2 \right).$$

If $t_1 > 0$, then

$$\frac{\|\zeta\|}{t_2} \le \frac{\|\zeta\|}{t_1}.$$

In this case, if $0 \leq \frac{\|\zeta\|}{t_1} < \xi_{\star}(0)$, then $0 \leq \frac{\|\zeta\|}{t_2} < \xi_{\star}(0)$ and as a result

$$\xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{t_{2}}\right) = \xi_{\star}^{-1}\left(\frac{\|\zeta\|}{t_{2}}\right) \ge \xi_{\star}^{-1}\left(\frac{\|\zeta\|}{t_{1}}\right) = \xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{t_{1}}\right).$$

If $\xi_{\star}(0) \leq \frac{\|\zeta\|}{t_1}$, then

$$\xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{t_2}\right) \ge 0 = \xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{t_1}\right)$$

This means that $\aleph_{\star}(\zeta, t_2) \geq \aleph_{\star}(\zeta, t_1)$. Therefore, \aleph_{\star} is increasing with respect to t. Now since $\lim_{t \to \infty} \frac{\|\zeta\|}{t} = 0$, there exists an M > 0 such that for each $t \geq M$, $\frac{\|\zeta\|}{t} < \xi_{\star}(0)$. Hence,

$$\xi_{\star}^{(-1)}\left(\frac{\|\zeta\|}{t}\right) = \xi_{\star}^{-1}\left(\frac{\|\zeta\|}{t}\right).$$

 So

$$\lim_{t \to \infty} \aleph_{\star} \left(\zeta, t \right) = \lim_{t \to \infty} \xi_{\star}^{(-1)} \left(\frac{\|\zeta\|}{t} \right)$$
$$= \lim_{t \to \infty} \xi_{\star}^{-1} \left(\frac{\|\zeta\|}{t} \right)$$
$$= \xi_{\star}^{-1} \left(\lim_{t \to \infty} \frac{\|\zeta\|}{t} \right)$$
$$= \xi_{\star}^{-1} \left(0 \right)$$
$$= 1.$$

Г		

Example 3.2. Let $(Z, \|\cdot\|)$ be a normed space, $\alpha \star_p \beta = \alpha \beta$, $\xi_{\star_p}(\alpha) = -\operatorname{Ln}(\alpha)$ for all $\alpha, \beta \in [0, 1]$, where $\operatorname{Ln}(0) = -\infty$. If $\aleph_{\star_p} : Z \times \mathbb{R} \longrightarrow [0, 1]$ is defined by

$$\aleph_{\star_p}\left(\zeta,t\right) = \begin{cases} e^{-\frac{\left\|\zeta\right\|}{t}}, & t > 0\\ 0, & t \le 0 \end{cases}$$

for all $\zeta \in \mathbb{Z}$ and $t \in \mathbb{R}$, then $(\mathbb{Z}, \aleph_{\star_p}, \star_p)$ is a fuzzy normed space.

Example 3.3. Let Z be a topological space and $C^{b}(Z)$ be the set of all complex valued, bounded and continuous functions on Z equipped with the norm

$$\left\|f\right\|_{\infty}=\sup\left\{\left|f\left(\zeta\right)\right|,\ \zeta\in Z\right\}$$

for all $f \in C^{b}(Z)$. If

$$\alpha \star_E \beta = \frac{\alpha\beta}{1 + (1 - \alpha)(1 - \beta)}$$

and $\xi_{\star_E}(\alpha) = \ln \frac{2-\alpha}{\alpha}$ for each $(\alpha, \beta) \in [0, 1] \times [0, 1]$ such that $\xi_{\star_E}(0) = \infty$, then for each $t \in \mathbb{R}$ and $g \in C^b(Z)$,

$$\aleph_{\star_E}\left(g,t\right) = \begin{cases} \frac{2}{\left(\frac{\left\|g\right\|_{\infty}}{t}\right)}, & t > 0\\ e^{\left(\frac{\left\|g\right\|_{\infty}}{t}\right)} + 1 & \\ 0, & t \leq 0 \end{cases}$$

is a fuzzy norm on functional space $C^{b}(Z)$.

Theorem 3.4. [6] Let Z be a linear space and suppose that (Z, \aleph_1, \star_1) and (Z, \aleph_2, \star_2) are fuzzy normed spaces. If there exist $c_1, c_2 > 0$ such that

$$\aleph_2\left(c_1\zeta,t\right) \le \aleph_1\left(\zeta,t\right) \le \aleph_2\left(c_2\zeta,t\right)$$

for each $\zeta \in Z$ and $t \in \mathbb{R}$, then \aleph_1 and \aleph_2 are equivalent fuzzy norms on Z.

Proposition 3.5. Let Z be a linear space and $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on Z such that $c_1 \|\cdot\|_2 \leq \|\cdot\|_1 \leq c_2 \|\cdot\|_2$. Also let $\star : [0,1]^2 \longrightarrow$ [0,1] be a CATN. Define $\aleph^{(1)}_{\star}$ and $\aleph^{(2)}_{\star}$ by

$$\aleph_{\star}^{(1)}(\zeta, t) = \begin{cases} \xi_{\star}^{(-1)}\left(\frac{\|\zeta\|_{1}}{t}\right), & t > 0\\ 0, & t \le 0 \end{cases}$$

and

$$\aleph_{\star}^{(2)}(\zeta, t) = \begin{cases} \xi_{\star}^{(-1)} \left(\frac{\|\zeta\|_{2}}{t} \right), & t > 0\\ 0, & t \le 0 \end{cases}$$

Then, $\aleph^{(1)}_{\star}$ and $\aleph^{(2)}_{\star}$ are equivalent fuzzy norms.

Proof. We show that

$$\aleph^{(2)}_{\star}(c_2\zeta, t) \le \aleph^{(1)}_{\star}(\zeta, t) \le \aleph^{(2)}_{\star}(c_1\zeta, t) \tag{1}$$

for all $\zeta \in Z$ and $t \in \mathbb{R}$. Clearly

$$\aleph_{\star}^{(2)}(c_{1}\zeta,t) = \begin{cases} \xi_{\star}^{(-1)} \left(\frac{c_{1} \|\zeta\|_{2}}{t}\right), & t > 0\\ 0, & t \le 0 \end{cases}$$

and

$$\aleph_{\star}^{(2)}(c_{2}\zeta,t) = \begin{cases} \xi_{\star}^{(-1)}\left(\frac{c_{2} \|\zeta\|_{2}}{t}\right), & t > 0\\ 0, & t \le 0 \end{cases}$$

for all $\zeta \in Z$ and $t \in \mathbb{R}$. Since for each $\zeta \in Z$, $c_1 \|\zeta\|_2 \le \|\zeta\|_1$, $\frac{c_1 \|\zeta\|_2}{t} \le \frac{\|\zeta\|_1}{t}$ for all t > 0. By decreasing property of $\xi_{\star}^{(-1)}$ we have

$$\xi_{\star}^{(-1)}\left(\frac{c_1 \, \|\zeta\|_2}{t}\right) \ge \xi_{\star}^{(-1)}\left(\frac{\|\zeta\|_1}{t}\right), \ t > 0.$$

Therefore,

$$\aleph_{\star}^{(2)}\left(c_{1}\zeta,t\right) \geq \aleph_{\star}^{(1)}\left(\zeta,t\right)$$

for all t > 0. Similarly, it can be shown that

$$\aleph^{(1)}_{\star}\left(\zeta,t\right) \ge \aleph^{(2)}_{\star}\left(c_{2}\zeta,t\right)$$

for all t > 0. Hence inequality (1) hold for all $\zeta \in Z$ and $t \in \mathbb{R}$. \Box

Definition 3.6. [9] Let (Z, \aleph, \star) be a fuzzy normed space. A sequence $\{\zeta_n\}_{n\geq 1}$ in Z is said to be fuzzy convergent, if there exists $\zeta \in Z$ such that for each $0 < \alpha < 1$ and t > 0, there exists $K \in \mathbb{N}$ such that for all $n \geq K$,

$$\aleph\left(\zeta_n - \zeta, t\right) > 1 - \alpha.$$

Definition 3.7. [9] Let (Z, \aleph, \star) be a fuzzy normed space. A sequence $\{\zeta_n\}_{n\geq 1}$ in Z is said to be a fuzzy Cauchy sequence if for each $0 < \alpha < 1$ and t > 0, there exists $K \in \mathbb{N}$ such that for all $n > m \geq K$,

$$\aleph\left(\zeta_n - \zeta_m, t\right) > 1 - \alpha.$$

Definition 3.8. [8] A fuzzy normed space (Z, \aleph, \star) is said to be a fuzzy Banach space, if every fuzzy Cauchy sequence, is fuzzy convergent in Z.

Proposition 3.9. Let $(Z, \|\cdot\|)$ be a Banach space and \star be a CATN. Then $(Z, \aleph_{\star}, \star)$ is a fuzzy Banach space.

Proof. Suppose that $\{\zeta_n\}_{n\geq 1}$ is a fuzzy Cauchy sequence in Z. We show that $\{\zeta_n\}_{n\geq 1}$ is a Cauchy sequence with respect to the norm $\|\cdot\|$. Let $\epsilon > 0$ be given. Since $\xi_{\star} : [0,1] \longrightarrow [0,\infty]$ is continuous at $\alpha_0 = 1$ and $\xi_{\star}(1) = 0$, there exists $0 < \alpha_1 < 1$ such that $\xi_{\star}(1 - \alpha_1) < \epsilon$. By Definition 3.7, for α_1 and t = 1, there exists $K \in \mathbb{N}$ such that for all $n > m \geq K$

$$\aleph_{\star}(\zeta_{n}-\zeta_{m},1) = \xi_{\star}^{(-1)}\left(\frac{\|\zeta_{n}-\zeta_{m}\|}{1}\right) > 1-\alpha_{1} > 0.$$

So $\xi_{\star}^{(-1)}(\|\zeta_n - \zeta_m\|) = \xi_{\star}^{-1}(\|\zeta_n - \zeta_m\|)$ and consequently

$$\xi_{\star}^{-1}(\|\zeta_n - \zeta_m\|) > 1 - \alpha_1.$$

Because ξ_{\star} is strictly decreasing, we obtain

$$\|\zeta_n - \zeta_m\| < \xi_\star (1 - \alpha_1) < \epsilon$$

for all $n > m \ge K$. This shows that $\{\zeta_n\}_{n\ge 1}$ is a Cauchy sequence. The completeness of Z implies that there exists $\zeta \in Z$ such that $\zeta_n \xrightarrow{\|\cdot\|} \zeta$.

For t > 0, since $\lim_{n \to \infty} \frac{\|\zeta_n - \zeta\|}{t} = 0$, there exists $n_0 \in \mathbb{N}$ such that $\frac{\|\zeta_n - \zeta\|}{t} < \xi_\star(0)$ for all $n \ge n_0$. Hence

$$\lim_{n \to \infty} \aleph_{\star} \left(\zeta_n - \zeta, t \right) = \lim_{n \to \infty} \xi_{\star}^{(-1)} \left(\frac{\|\zeta_n - \zeta\|}{t} \right)$$
$$= \lim_{n \to \infty} \xi_{\star}^{-1} \left(\frac{\|\zeta_n - \zeta\|}{t} \right)$$
$$= \xi_{\star}^{-1} \left(\lim_{n \to \infty} \frac{\|\zeta_n - \zeta\|}{t} \right)$$
$$= \xi_{\star}^{-1} \left(0 \right)$$
$$= 1.$$

So $\{\zeta_n\}_{n\geq 1}$ is fuzzy convergent to ζ . This shows that Z is a fuzzy Banach space. \Box

Definition 3.10. [2] Let Z be an algebra, \star_1, \star_2 be t-norms and (Z, \aleph, \star_1) be a fuzzy normed space. If

$$\aleph\left(\zeta\gamma, st\right) \ge \aleph\left(\zeta, s\right) \star_2 \aleph\left(\gamma, t\right) \tag{2}$$

for all $\zeta, \gamma \in Z$ and $s, t \in \mathbb{R}$, then $(Z, \aleph, \star_1, \star_2)$ is called a FNA (Fuzzy normed algebra).

Corollary 3.11. Let $(Z, \|\cdot\|)$ be a normed algebra and \star_H and \star_p be defined as follows :

$$\alpha \star_H \beta = \begin{cases} 0, & \alpha = \beta = 0\\ \frac{\alpha\beta}{\alpha + \beta - \alpha\beta}, & o.w. \end{cases}$$

and $\alpha \star_p \beta = \alpha \beta$ for all $(\alpha, \beta) \in [0, 1] \times [0, 1]$. Then $(Z, \aleph_{\star_H}, \star_H, \star_p)$ is a FNA.

Proof. To prove, we only check inequality (2) for \aleph_{\star_H} . Since $\xi_{\star_H}(\alpha) = \frac{1-\alpha}{\alpha}$ which $\xi_{\star_H}(0) = \infty$ and $\xi_{\star_H}^{(-1)}(\alpha) = \xi_{\star_H}^{-1}(\alpha) = \frac{1}{1+\alpha}$, by Theorem

3.1 we have

$$\aleph_{\star_H}\left(\zeta,t\right) = \begin{cases} \frac{t}{t+\|\zeta\|}, & t>0\\ 0, & t\leq 0 \end{cases}.$$

If $s \leq 0$ or $t \leq 0$, then inequality

$$\aleph_{\star_{H}}\left(\zeta\gamma,st\right) \geq \aleph_{\star_{H}}\left(\zeta,s\right)\star_{P}\aleph_{\star_{H}}\left(\gamma,t\right)$$

is obvious. If s > 0 and t > 0, we show that

$$\frac{st}{st + \|\zeta\gamma\|} \ge \left(\frac{s}{s + \|\zeta\|}\right) \left(\frac{t}{t + \|\gamma\|}\right). \tag{3}$$

But

$$\begin{aligned} \|\zeta\gamma\| &\leq \|\zeta\| \, \|\gamma\| \\ &\leq \|\zeta\| \, \|\gamma\| + s \, \|\gamma\| + t \, \|\zeta\| \, . \end{aligned}$$

 So

$$st + \|\zeta\gamma\| \le st + \|\zeta\| \|\gamma\| + s \|\gamma\| + t \|\zeta\|$$

= $(s + \|\zeta\|) (t + \|\gamma\|)$

and consequently

$$\frac{st}{st + \|\zeta\gamma\|} \ge \frac{s}{s + \|\zeta\|} \cdot \frac{t}{t + \|\gamma\|}.$$

Therefore inequality (3) holds. \Box

Proposition 3.12. Let Z be a normed algebra, \star be a CATN and ξ_{\star} be a CAG of \star such that $\xi_{\star}(0) \leq 1$. Then $(Z, \aleph_{\star}, \star, \star)$ is a FNA.

Proof. We only prove inequality (2) for \aleph_{\star} . Let $\zeta, \gamma \in Z$ and s, t > 0. If $\xi_{\star}(0) \leq \frac{\|\zeta\|}{s}$ or $\xi_{\star}(0) \leq \frac{\|\gamma\|}{t}$, then $\aleph_{\star}(\zeta, s) = 0$ or $\aleph_{\star}(\gamma, t) = 0$. Hence $\aleph_{\star}(\zeta\gamma, st) \geq \aleph_{\star}(\zeta, s) \star \aleph_{\star}(\gamma, t) = 0$.

If
$$0 \leq \frac{\|\zeta\|}{s} < \xi_{\star}(0) \leq 1$$
 and $0 \leq \frac{\|\gamma\|}{t} < \xi_{\star}(0) \leq 1$, then
$$\frac{\|\zeta\gamma\|}{st} \leq \frac{\|\zeta\|}{s} \frac{\|\gamma\|}{t} \leq \frac{\|\zeta\|}{s} + \frac{\|\gamma\|}{t}.$$

Hence,

$$\begin{split} \aleph_{\star}\left(\zeta\gamma,st\right) &= \xi_{\star}^{\left(-1\right)}\left(\frac{\left\|\zeta\gamma\right\|}{st}\right) \\ &\geq \xi_{\star}^{\left(-1\right)}\left(\frac{\left\|\zeta\right\|}{s} + \frac{\left\|\gamma\right\|}{t}\right) \\ &= \xi_{\star}^{\left(-1\right)}\left(\xi_{\star}\left(\xi_{\star}^{-1}\left(\frac{\left\|\zeta\right\|}{s}\right)\right) + \xi_{\star}\left(\xi_{\star}^{-1}\left(\frac{\left\|\gamma\right\|}{t}\right)\right)\right) \\ &= \xi_{\star}^{\left(-1\right)}\left(\frac{\left\|\zeta\right\|}{s}\right) \star \xi_{\star}^{-1}\left(\frac{\left\|\gamma\right\|}{t}\right) \\ &= \xi_{\star}^{\left(-1\right)}\left(\frac{\left\|\zeta\right\|}{s}\right) \star \xi_{\star}^{\left(-1\right)}\left(\frac{\left\|\gamma\right\|}{t}\right) \\ &= \aleph_{\star}\left(\zeta,s\right) \star \aleph_{\star}\left(\gamma,t\right). \end{split}$$

We will show further that for a CAG of \star where $\xi_{\star}(0) > 1$, it is possible to reach an algebra fuzzy norm.

Lemma 3.13. Suppose that \star is a CATN and ξ_{\star} is a CAG of \star . Then

1)
$$(k\xi_{\star})^{(-1)}(\lambda) = \xi_{\star}^{(-1)}\left(\frac{\lambda}{k}\right), \quad 0 < k < \infty.$$

2) $\alpha \star \beta = \xi_{\star}^{(-1)}\left(\xi_{\star}(\alpha) + \xi_{\star}(\beta)\right) = (k\xi_{\star})^{(-1)}\left(k\xi_{\star}(\alpha) + k\xi_{\star}(\beta)\right)$

for each $0 \le \alpha \le 1, 0 \le \beta \le 1$ and $0 < k < \infty$.

Proof. 1) Suppose that $\lambda \in [0, \infty]$ and $0 < k < \infty$. Therefore

$$(k\xi_{\star})^{(-1)}(\lambda) = \sup \left\{ 0 \le \alpha \le 1, \ k\xi_{\star}(\alpha) > \lambda \right\}$$
$$= \sup \left\{ 0 \le \alpha \le 1, \ \xi_{\star}(\alpha) > \frac{\lambda}{k} \right\}$$
$$= \xi_{\star}^{(-1)}\left(\frac{\lambda}{k}\right).$$

2) Let $(\alpha, \beta) \in [0, 1] \times [0, 1]$ and $0 < k < \infty$. Therefore by part 1 we have,

$$(k\xi_{\star})^{(-1)} (k\xi_{\star} (\alpha) + k\xi_{\star} (\beta)) = \xi_{\star}^{(-1)} \left(\frac{k\xi_{\star} (\alpha) + k\xi_{\star} (\beta)}{k} \right)$$
$$= (\xi_{\star})^{(-1)} (\xi_{\star} (\alpha) + \xi_{\star} (\beta))$$
$$= \alpha \star \beta.$$

Lemma (3.13) states that t-norms produced by ξ_{\star} and $k\xi_{\star}$ are the same.

Remark 3.14. Let \star be a CATN and $0 < k < \infty$. Then the fuzzy norm \aleph_{\star} generated by $k\xi_{\star}$ as a CAG on a norm space $(Z, \|\cdot\|)$ is as follows :

$$\aleph_{\star}(\zeta, t) = \begin{cases}
(k\xi_{\star})^{(-1)} \left(\frac{\|\zeta\|}{t}\right), & t > 0 \\
0, & t \le 0
\end{cases}$$

$$= \begin{cases}
(k\xi_{\star})^{-1} \left(\frac{\|\zeta\|}{t}\right), & 0 \le \frac{\|\zeta\|}{t} < k\xi_{\star}(0), t > 0 \\
0, & k\xi_{\star}(0) \le \frac{\|\zeta\|}{t}, t > 0 \\
0, & t \le 0
\end{cases}$$

for all $\zeta \in Z$ and $t \in \mathbb{R}$.

Proposition 3.15. Let $(Z, \|\cdot\|)$ be a normed algebra, \star be a CATN and ξ_{\star} be a CAG of \star such that $1 < \xi_{\star}(0) < \infty$. If \aleph_{\star} is the fuzzy norm generated by $k\xi_{\star}$ where $k = \frac{1}{\xi_{\star}(0)}$, then $(Z, \aleph_{\star}, \star, \star)$ is a FNA.

Proof. By Lemma 3.13, $k\xi_{\star}$ is a CAG of \star . Since $k\xi_{\star}(0) = 1$, by applying Proposition 3.12 the proof is trivial. \Box

Proposition 3.16. Let \star be a CATN and ξ_{\star} be a CAG of \star such that $\xi_{\star}(0) = \infty$. If $h : [0,1] \longrightarrow [0,\infty]$ is defined by $h(a) = \xi_{\star}(e^{(a-1)})$ for each $0 \le a \le 1$, then

$$h^{(-1)}(b) = \begin{cases} h^{-1}(b), & 0 \le b < \xi_{\star}\left(\frac{1}{e}\right) \\ 0, & b \ge \xi_{\star}\left(\frac{1}{e}\right) \end{cases}$$

where $h^{-1}(b) = \operatorname{Ln}\left(\xi_{\star}^{-1}(b)\right) + 1$ for all $b \in \left[0, \xi_{\star}\left(\frac{1}{e}\right)\right]$. Moreover $\star' : [0,1]^2 \longrightarrow [0,1]$ defined by

$$\alpha \star' \beta = h^{(-1)} \left(h\left(\alpha\right) + h\left(\beta\right) \right)$$

is a CATN.

Proof. Since h is a CAG of \star' , by Theorem 2.11, \star' is a CATN.

Proposition 3.17. Let $(Z, \|\cdot\|)$ be a normed algebra, \star be a CATN and ξ_{\star} be a CAG of \star such that $\xi_{\star}(0) = \infty$. If $h(a) = \xi_{\star}(e^{(a-1)})$ for all $0 \leq a \leq 1, \ \alpha \star' \beta = h^{(-1)}(h(\alpha) + h(\beta))$ for all $(\alpha, \beta) \in [0, 1] \times [0, 1]$ and $\aleph_{\star'}$ is the fuzzy norm generated by kh where $k = \frac{1}{\xi_{\star}\left(\frac{1}{e}\right)}$, then

 $(Z, \aleph_{\star'}, \star', \star')$ is a FNA.

Proof. Since kh(0) = 1, by Proposition 3.12, the proof is obvious. \Box

By Propositions 3.12, 3.15 and 3.17 and using a CATN \star , a FNA can be produced. Within the next proposition, we are going appear that with each CATN, a new CATN can be made.

Proposition 3.18. Let \star be a CATN and ξ_{\star} and ϱ_{\star} be the corresponding CAG and CMG of \star respectively. If $h : [0, 1] \longrightarrow [0, \infty]$ is defined by

$$h(a) = \left(\xi_{\star} \circ \varrho_{\star}\right)(a)$$

for all $0 \le a \le 1$, then h is a CAG of \star' where

$$\alpha \star' \beta = h^{(-1)} \left(h\left(\alpha\right) + h\left(\beta\right) \right)$$

for all $(\alpha, \beta) \in [0, 1] \times [0, 1]$.

Proof. Since h is a CAG of \star' , by Theorem 2.11, \star' is a CATN.

Corollary 3.19. Let \star be a CATN and $\xi_{\star}^{(1)}, \xi_{\star}^{(2)}$ be two CAGs of \star . If $\aleph_{\star}^{(1)}$ and $\aleph_{\star}^{(2)}$ are fuzzy norms generated by $\xi_{\star}^{(1)}$ and $\xi_{\star}^{(2)}$ on a normed space $(Z, \|\cdot\|)$ respectively, then there exists $\alpha \in (0, \infty)$ such that

$$\aleph_{\star}^{(2)}\left(\zeta,t\right) = \aleph_{\star}^{(1)}\left(\zeta,\alpha t\right)$$

for all $\zeta \in Z$ and $t \in \mathbb{R}$. In particular if $\alpha \leq 1$, then

$$\aleph_{\star}^{(2)}\left(\zeta,t\right) \leq \aleph_{\star}^{(1)}\left(\zeta,t\right)$$

for all $\zeta \in Z$ and $t \in \mathbb{R}$. If $\alpha > 1$, then

$$\aleph_{\star}^{(2)}\left(\zeta,t\right) \geq \aleph_{\star}^{(1)}\left(\zeta,t\right)$$

for all $\zeta \in Z$ and $t \in \mathbb{R}$.

Proof. Since for each CATN \star , a CAG of \star is uniquely determined up to a positive multiplicative constant [5], then we assume that

$$\xi_{\star}^{(2)} = \alpha \xi_{\star}^{(1)}$$

for some $\alpha \in (0, \infty)$. Hence

$$\begin{split} \aleph_{\star}^{(2)}(\zeta, t) &= \begin{cases} \left(\xi_{\star}^{(2)}\right)^{(-1)} \left(\frac{\|\zeta\|}{t}\right), & t > 0\\ 0, & t \le 0 \end{cases} \\ &= \begin{cases} \left(\alpha \xi_{\star}^{(1)}\right)^{(-1)} \left(\frac{\|\zeta\|}{t}\right), & t > 0\\ 0, & t \le 0 \end{cases} \\ &= \begin{cases} \left(\xi_{\star}^{(1)}\right)^{(-1)} \left(\frac{\|\zeta\|}{\alpha t}\right), & t > 0\\ 0, & t \le 0 \end{cases} \\ &= \begin{cases} \left(\xi_{\star}^{(1)}\right)^{(-1)} \left(\frac{\|\zeta\|}{\alpha t}\right), & \alpha t > 0\\ 0, & \alpha t \le 0 \end{cases} \\ &= \aleph_{\star}^{(1)}(\zeta, \alpha t) \end{split}$$

for all $\zeta \in Z$ and $t \in \mathbb{R}$. Since $\aleph_{\star}(\zeta, \cdot)$ is increasing on \mathbb{R} , the remain of the proof is obvious. \Box

Conclusion

In this paper, we conclude that it is possible to reach a fuzzy norm and an algebra fuzzy norm on a normed space $(Z, \|\cdot\|)$ by applying a CATN \star using the mentioned methods.

References

- T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (3) (2003) 687–705.
- [2] T. Binzar, F. Pater, and S. Nadaban, On fuzzy normed algebras, J. Nonlinear Sci. Appl., 9 (2016) 5488–5496.
- [3] O. Grigorenko, J. Minana, and O. Valero, Two new methods to construct fuzzy metrics from metrics, *Fuzzy Sets and Syst.*, 467 (2023) 108483, 1-18.
- [4] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Syst., 12 (2) (1984) 143–154.
- [5] E. P. Klement, R. Mesiar, and E. Pap, *Triangular Norms*, First edition, Published by Springer Dordrecht, 31 July 2000.
- [6] G. Rhie and I. Hwang, Some properties of equivalent fuzzy norms, Int. J. Fuzzy Log. Intell. Syst., 5 (2) (2005) 175–178.
- [7] R. Saadati and J. H. Park, Intuitionistic fuzzy euclidean normed spaces, Commun. Math. Anal., 1 (2) (2006) 85–90.
- [8] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. Comput., 17 (1) (2005) 475-484.
- [9] I. Sadeqi and F. Solaty Kia, Fuzzy normed linear space and its topological structure, *Chaos Solit. Fractals*, 40 (2009) 2576-2589.
- [10] Y. Yilmaz, Schauder bases and approximation property in fuzzy normed spaces, *Comput. Math. Appl.*, 59 (2010) 1957–1964.
- [11] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965) 338-353.

Rasoul Tourani

Faculty of Mathematical Sciences Shahrood University of Technology Shahrood, Iran P. O. Box 3619995161-316 E-mail: rasoultourani@shahroodut.ac.ir

Ali Reza Khoddami Assistant Professor of Mathematics Faculty of Mathematical Sciences Shahrood University of Technology Shahrood, Iran P. O. Box 3619995161-316 E-mail: khoddami.alireza@shahroodut.ac.ir