Some New Approaches for Computation of Domination Polynomial of Specific Graphs

S. Alikhani ${ }^{*}$
Yazd University
E. Mahmoudi
Yazd University
M. R. Oboudi
University of Isfahan

Abstract

Let $G=(V, E)$ be a simple graph. The domination polynomial of G is the polynomial $D(G, x)=\sum_{i=0}^{n} d(G, i) x^{i}$, where $d(G, i)$ is the number of dominating sets of G of size i. In this paper, we present some new approaches for computation of domination polynomial of specific graphs.

AMS Subject Classification: 05C69; 11B83
Keywords and Phrases: Domination polynomial, graph with a handle, path

1. Introduction

Let $G=(V, E)$ be a simple graph. Graph polynomials are a well-developed area useful for analyzing properties of graphs. Domination polynomial is a new graph polynomial which introduced by the first author for the first time as a PhD thesis (see [3]) in the literature.

[^0]Let $G=(V, E)$ be a graph of order $|V|=n$. For any vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighborhood of S is $N(S)=\bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S]=N(S) \cup S$. A set $S \subseteq V$ is a dominating set if $N[S]=V$, or equivalently, every vertex in $V \backslash S$ is adjacent to at least one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G. For a detailed treatment of this parameter, the reader is referred to [10]. Let $\mathcal{D}(G, i)$ be the family of dominating sets of a graph G with cardinality i and let $d(G, i)=|\mathcal{D}(G, i)|$. The domination polynomial $D(G, x)$ of G is defined as $D(G, x)=\sum_{i=0}^{|V(G)|} d(G, i) x^{i}$. The path P_{4} on 4 vertices, for example, has one dominating set of cardinality 4 , four dominating sets of cardinality 3 , and four dominating sets of cardinality 2 ; its domination polynomial is then $D\left(P_{4}, x\right)=x^{4}+4 x^{3}+$ $4 x^{2}$. For more information of this polynomial see $[1,2,3,6,7,8]$.

The corona of two graphs G_{1} and G_{2}, as defined by Frucht and Harary in [9], is the graph $G=G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where the ith vertex of G_{1} is adjacent to every vertex in the ith copy of G_{2}. The corona $G \circ K_{1}$, in particular, is the graph constructed from a copy of G, where for each vertex $v \in V(G)$, a new vertex v^{\prime} and a pendant edge $v v^{\prime}$ are added.

In the next section, we present some new approaches for computation of domination polynomial of specific graphs. In Section 3, we consider the domination polynomial of a graph with a handle. In the last section we give a new approach for computing the domination polynomial of graphs of the form $H \circ K_{1}$.

2. New Approaches for Computation of Domination Polynomial of Specific Graphs

In [8] the structures of dominating sets of paths has studied. Using that structures there is the following recurrence relation for domination polynomial of paths.

Theorem 2.1. ([8]) $D\left(P_{n}, x\right)=x\left[D\left(P_{n-1}, x\right)+D\left(P_{n-2}, x\right)+D\left(P_{n-3}, x\right)\right]$, with the initial values $D\left(P_{0}, x\right)=1, D\left(P_{1}, x\right)=x, D\left(P_{2}, x\right)=2 x+x^{2}$.

We shall give a simple proof for this recurrence relation. First we state a formula for the domination polynomial of a graph in terms of the domination polynomials of several other graphs which have fewer vertices or edges $([4,5,11])$.

The vertex contraction G / v of a graph G by a vertex v is the operation under which all vertices in $N(v)$ are joined to each other and then v is deleted (see [12]).

Theorem 2.2. ([4, 5, 11]) For any vertex v in a graph G we have
$D(G, x)=x D(G / v, x)+D(G-v, x)+x D(G-N[v], x)-(x+1) p_{v}(G, x)$
where $p_{v}(G, x)$ is the polynomial counting those dominating sets for $G-$ $N[v]$ which additionally dominate the vertices of $N(v)$ in G.
The following theorems are special cases which have a simpler recurrence relations. These results also appeared in [11] but as mentioned in page 4 of [11], were proved independently.

Theorem 2.3. ([4, 11]) If $u, v \in V(G), u v \in E(G)$ and $N[v] \subseteq N[u]$, then

$$
D(G, x)=x D(G / u, x)+D(G-u, x)+x D(G-N[u], x) .
$$

Proof. Since $N[v] \subseteq N[u]$, there are no edges from v to $G-N[u]$ and hence no dominating set for $G-N[u]$ can dominate $v \in N(u)$. Therefore $P_{u}(G, x)=0$ and the result follows from Theorem 2.2.

Theorem 2.4. ([4, 11]) If $u, w \in V(G)$ and $N(w)=N(u)$ then

$$
D(G, x)=x D(G / u, x)+D(G-u, x)-x D(G-N[u]-w, x) .
$$

Proof. In this case w is of degree 0 in $G-N[u]$ and hence w must exist in any dominating set for $G-N[u]$. Since $N(w)=N(u)$ we know that $N(u)$ is dominated by every dominating set for $G-N[u]$. Thus we have $p_{u}(G, x)=D(G-N[u], x)$ and the result follows from Theorem 2.3.

Corollary 2.5. Let $G=(V, E)$ be a graph, v be a vertex of degree 1 in G and let u be its neighbor. Then

$$
D(G, x)=x(D(G / u, x)+D(G-u-v, x)+D(G-N[u], x))
$$

Proof. We have $N[v]=\{u, v\} \subseteq N[u]$ and so, by Theorem 2.3:

$$
\begin{aligned}
D(G, x) & =x D(G / u, x)+D(G-u, x)+x D(G-N[u], x) \\
& =x D(G / u, x)+x D(G-u-v, x)+x D(G-N[u], x) \\
& =x(D(G / u, x)+D(G-u-v, x)+D(G-N[u], x))
\end{aligned}
$$

Theorem 2.6. ([8]) $D\left(P_{n}, x\right)=x\left[D\left(P_{n-1}, x\right)+D\left(P_{n-2}, x\right)+D\left(P_{n-3}, x\right)\right]$.
Proof. Suppose that the vertex v of the path graph P_{n} has degree 1 and u be its neighbor. Since $P_{n} / v=P_{n-1}, P_{n}-u-v=P_{n-2}$ and $P_{n}-N[u]=P_{n-3}$, we have the result by Corollary 2.5.

As another corollary of Theorems 2.2 and 2.3 we consider graphs which contain vertices of degree $|V(G)|-2$ (see [11]).

Corollary 2.7. Let $G=(V, E)$ be a graph. Let u be a vertex of degree $|V(G)|-2$ (i.e. the vertex u is adjacent to all vertices except w). If there exists a vertex $v \in N(u)$ such that $\{v, w\} \notin E(G)$ then

$$
D(G, x)=D(G / u, x)+D(G-u, x)+x^{2}
$$

Otherwise,

$$
D(G, x)=x(1+x)\left((1+x)^{|V(G)|-2}-1\right)+D(G-u, x)
$$

Proof. If there exists a vertex $v \in N(u)$ such that $\{v, w\} \in E(G)$ then $N[v] \subseteq N[u]$ and by Theorem 2.3 we have:

$$
\begin{aligned}
D(G, x) & =x D(G / u, x)+D(G-u, x)+x D(G-N[u], x) \\
& =x D(G / u, x)+D(G-u, x)+x^{2}
\end{aligned}
$$

Another case is $N(w)=N(u)$ and hence by Theorem 2.3

$$
\begin{aligned}
D(G, x) & =x D(G / u, x)+D(G-u, x)-D(G-N[u], x) \\
& =x D(G / u, x)+D(G-u, x)-x \\
& =x\left((1+x)^{|V(G)|-1}-1\right)+D(G-u, x)-x \\
& =x(1+x)\left((1+x)^{|V(G)|-2}-1\right)+D(G-u, x) .
\end{aligned}
$$

3. Domination Polynomial of a Graph with a Handle

Let P_{m+1} be a path with vertices labeled by $y_{0}, y_{1}, \ldots, y_{m}$, for $m \geqslant 0$ and let v_{0} be a specific vertex of a graph G. Denote by $G_{v_{0}}(m)$ a graph obtained from G by identifying the vertex v_{0} of G with an end vertex y_{0} of P_{m+1}. It is clear that if the path is glued to a different vertex v_{1} of G, then the two graphs $G_{v_{1}}(m)$ and $G_{v_{0}}(m)$ may not be isomorphic. Throughout our discussion, this vertex is fixed, then we shall simply use the notation $G(m)$ (if there is no likelihood of confusion).
We have the following result for domination polynomial of $G(m)$.
Theorem 3.1.([7]) For every $m \geqslant 3$,
$D(G(m), x)=x[D(G(m-1), x)+D(G(m-2), x)+D(G(m-3), x)]$
This recursive formula is for $m \geqslant 3$ and we need to know $D(G(1), x)$, $D(G(2), x)$ and $D(G(3), x)$. Here we illustrate about $D(G(1), x)$.
Let G be a graph and v a vertex in G. Let $G(1)$ be G with an edge $v w$ attached to v (a handle of length 1). This is $G(1)$ from the above definition. Let $A(x)$ be the generating polynomial of the dominating sets of G containing v; let $C(x)$ be the generating polynomial of the subsets of G dominating every vertex of G except v. We have the following theorem:

Theorem 3.2. $D(G(1), x)=x D(G, x)+A(x)+x C(x)$.
Proof. We explain the right-hand side: the first term counts the dominating subsets of G with w adjoined; the dominating subsets of G that
contain v are dominating subsets also for $G(1)$; the 3rd term counts the subsets counted by $C(x)$ with w adjoined.

The equation in Theorem 3.2 is useful only for a graph G that we are able to find $A(x)$ and $C(x)$.
Let us see what happens if G is the cycle $C_{n}(n \geqslant 1)$. Note that C_{1} is a vertex and C_{2} is the path P_{2}. We show the polynomial $A(x)$ and $C(x)$ for the cycle C_{n}, by $A_{n}(x)$ and $C_{n}(x)$, respectively. The first $A_{n}(x)$ polynomials are (by straightforward counting):

$$
\begin{aligned}
& A_{1}(x)=x \\
& A_{2}(x)=x+x^{2} ; \\
& A_{3}(x)=x+2 x^{2}+x^{3} ; \\
& A_{4}(x)=3 x^{2}+3 x^{3}+x^{4} ; \\
& A_{5}(x)=2 x^{2}+6 x^{3}+4 x^{4}+x^{5} ; \\
& A_{6}(x)=x^{2}+7 x^{3}+10 x^{4}+5 x^{5}+x^{6} .
\end{aligned}
$$

The first $C_{n}(x)$ polynomials are:

$$
\begin{aligned}
& C_{1}(x)=1 \\
& C_{2}(x)=0 \\
& C_{3}(x)=0 \\
& C_{4}(x)=x \\
& C_{5}(x)=x^{2} \\
& C_{6}(x)=x^{2}+x^{3} .
\end{aligned}
$$

Looking at these expressions, we have

$$
\begin{aligned}
& A_{n}(x)=x\left(A_{n-1}(x)+A_{n-2}(x)+A_{n-3}(x)\right) ; \\
& C_{n}(x)=x\left(C_{n-1}(x)+C_{n-2}(x)+C_{n-3}(x)\right) .
\end{aligned}
$$

So, the domination polynomials of the cycles with a handle follow easily.

4. A New Approach for Domination Polynomialof $H \circ K_{1}$

In [2] the domination polynomial of graphs of the form $H \circ K_{1}$ and $H \circ K_{2}$ has obtained. Here we give another approach to compute the domination polynomial of corona of an arbitrary graphs with K_{1}.

Theorem 4.1. Let G be a graph, $u, v \in V(G)$ and $\operatorname{deg}(u)=\operatorname{deg}(v)=1$.
If $u w, v w^{\prime} \in E(G)$ and $w w^{\prime} \notin E(G)$, then $D(G, x)=D\left(G+w w^{\prime}, x\right)$.
Proof. Clearly, every dominating set for G is a dominating set for $G+$ $w w^{\prime}$. Now, let $S \subseteq V(G)$ be a dominating set for $G+w w^{\prime}$. If both $w, w^{\prime} \in S$ or both $w, w^{\prime} \notin S$, then obviously S is also a dominating set for G. So suppose that $w \in S$ and $w^{\prime} \notin S$ (or $w \notin S$ and $w^{\prime} \in S$). Since S is a dominating set for $G+w w^{\prime}$, we have $v \in S$. This implies that S is a dominating set for G. Therefore we conclude that $D(G, x)=$ $D\left(G+w w^{\prime}, x\right)$ and the proof is complete.

The following result is an immediate consequence of the above theorem. We recall that a quasipendant vertex is a vertex adjacent to a pendant vertex.

Theorem 4.2. Let H and K be two simple graphs and the vertex b (the vertex c) be a quasipendant vertex of graph H (graph K). Let G be the a graph obtained by joining H and K with the edge bc. Then $D(G, x)=D(H, x) D(K, x)$.

We need the following theorem to obtain further results:
Theorem 4.3. ([6]) If a graph G has m components G_{1}, \ldots, G_{m}, then $D(G, x)=D\left(G_{1}, x\right) \cdots D\left(G_{m}, x\right)$.

Theorem 4.4. For any graph G of order $n, D\left(G \circ K_{1}, x\right)=x^{n}(x+2)^{n}$.
Proof. By Theorems 4.2 and 4.3 we can delete from $G \circ K_{1}$ all the edges of G (they all connect two quasipendant vertices) and the domination polynomial will not change. So we have

$$
D\left(G \circ K_{1}, x\right)=\prod_{i=1}^{n} D\left(K_{2}, x\right)
$$

Since $D\left(K_{2}, x\right)=x^{2}+2 x$, we have the result.
Let H be an arbitrary graph with $V(H)=\left\{v_{1}, \ldots, v_{n}\right\}$. By Theorems 4.2 and 4.3, for any graph G of the form $H \circ K_{1}, D(G, x)=D\left(\bigcup_{i=1}^{n} K_{2}, x\right)$. By similar arguments we have the following theorem:

Theorem 4.5. Let $H_{i}, 1 \leqslant i \leqslant n$, be a graph containing a vertex v_{i} of degree $\left|V\left(H_{i}\right)\right|-1$, $\left|V\left(H_{i}\right)\right| \geqslant 2$, and H be a graph with vertex set $V(H)=\left\{u_{1}, \ldots, u_{n}\right\}$. If G is a graph formed by identifying the vertex v_{i} with u_{i} for every $1 \leqslant i \leqslant n$, then

$$
D(G, x)=\prod_{i=1}^{n} D\left(H_{i}, x\right)
$$

In other words, the domination polynomial of G does not depend on the geometrical structure of H.

References

[1] S. Akbari, S. Alikhani, M. R. Oboudi, and Y. H. Peng, On the zeros of domination polynomial of a graph, Contemporary Mathematics, American Mathematical Society, 531 (2010), 109-115.
[2] S. Akbari, S. Alikhani, and Y. H. Peng, Characterization of graphs using domination polynomials, European J. of Combinatorics, 31 (2010), 17141724.
[3] S. Alikhani, Dominating Sets and Domination Polynomials of Graphs, Ph.D. thesis, Universiti Putra Malaysia, March 2009.
[4] S. Alikhani, Dominating Sets and Domination Polynomials of Graphs: Domination Polynomial: A New Graph Polynomial, LAMBERT Academic Publishing, ISBN: 9783847344827, (2012).
[5] S. Alikhani, On the domination polynomials of non P_{4}-free graphs, Iran. J. Math. Sci. Informatics, 8 (2) (2013), 49-55.
[6] S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, Ars Combinatoria, 114 (2014), 257-266.
[7] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of certain graphs, II, Opuscula Mathematica, 30 (1) (2010), 37-51.
[8] S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of paths, International Journal of Mathematics and Mathematical Science, Vol. 2009, Article ID 542040.
[9] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math., 4 (1970), 322-324.
[10] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NewYork, 1998.
[11] T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, Elec. J. Combin, 19 (3) (2012), 1-27.
[12] M. Walsh, The hub number of a graph, Int. J. Math. Comput. Sci., 1 (2006) 117-124.

Saeid Alikhani

Department of Mathematics
Associate Professor of Mathematics
Yazd University
P. O. Box: 89195-741

Yazd, Iran
E-mail: alikhani@yazduni.ac.ir
Eisa Mahmoudi
Department of statistics
Associate Professor of statistics
Yazd University
P. O. BOX: 89195-741

Yazd, Iran
E-mail: emahmoudi@yazd.ac.ir
Mohammad Reza Oboudi
Department of Mathematics
Assistant Professor of Mathematics
University of Isfahan
P. O. BOX: 81746-73441

Isfahan, Iran
E-mail: mr.oboudi@sci.ui.ac.ir

[^0]: Received: June 2013; Accepted: January 2014

 * Corresponding author

