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Abstract. In this paper, we show that for a nonempty finite set U
and a power mapping T : U −→ P∗(U), where P∗(U) is set of all non-
empty subsets of U , there exists a nonempty subset F of U such that
T ′(F ) = F and for any K ⊆ U , T ′(K) =

⋃
x∈K T (x). Also for a power

mapping T : U −→ P(U), we get an equivalent condition for having a
nonempty fixed points set. Finally, we present a method to obtain all
of fixed points of T .
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1 Introduction

In mathematics, a fixed-point theorem is a result saying that a function F will have
at least one fixed point (a point x for which F (x) = x), under some conditions on F
that can be stated in general terms. In the other words, a fixed point, also known as
an invariant point, is a value that does not change under a given transformation. Any
set of fixed points of a transformation is also an invariant set. There exist various
types of fixed point theorems, such as Brouwer fixed point theorem, Atiyah-Bott fixed
point theorem, Banach fixed point theorem, etc [3, 2, 11, 9, 10].
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A power mapping is a mathematical function that maps elements from one set,
the domain of the function, to subsets of another set. Power mappings are used in
a variety of mathematical fields, including optimization, control theory and game
theory [1, 8, 14, 15].

Let U is a nonempty finite set and T : U −→ P∗(U) is a power mapping,
then there exists a nonempty subset F of U such that T ′(F ) = F . Also for a power
mapping T : U −→ P(U), we get a necessary and sufficient condition for having a
nonempty fixed point. We know that it is very hard to calculate fixed points by direct
method, for example if |U | = 100, then to determine all the fixed points necessary
to check the number of |P∗(U)| = 2100 − 1 ≈ 1.26765 × 1030 subsets of U . In this
paper, we present a new method to obtain all fixed points of the power mapping
T : U −→ P(U), where U is a finite set. In addition, we state and investigate the
three main fixed point theorems on the power mappings.

2 Basic Concepts

In this paper, we introduce a new concept of a power mapping. Let U and W be
sets and T : U −→ P(W ) be a mapping, then we call T a power mapping, where
P(W ) is set of all subsets of W . We denote the set of all power mapping from U in to
P(W ) by ⟨U,W ⟩0 = Map(U,P(W )). Also, we set ⟨U,W ⟩ = Map(U,P∗(W )), where
P∗(W ) is set of all non-empty subsets of W . We write for simplicity ⟨U,U⟩0 = ⟨U⟩0
and ⟨U,U⟩ = ⟨U⟩. This type of mappings, appear in many mathematical theories,
such as algebraic hyperstructures theory, T-rough sets theory numbers theory and
graph theory [6, 5, 12, 13, 7, 4, 5].

In this section, we present several examples about fixed points of finite algebraic
hyperstructures.

Example 2.1. 1. LetG be a graph and g is a vertex ofG, then T : G −→ P(G) is
a power mapping, where T (g) = Vg and Vg = {x : gandxare adjacent vertices}.

2. Let N = {1, 2, 3, · · · } be the set of natural numbers. Then the mapping T :
N −→ P∗(N), where T (n) = {d ∈ N : d|n} is a power mapping.

3. The mapping Φ : N −→ P∗(N), where Φ(n) = {m ∈ N : m ⩽ n and(m,n) = 1}
is a power mapping.

4. Let (A, ·) be a finite algebraic structure. For any u ∈ A define Tu(a) = {x ∈
A : a · x = u}. Then T is a power mapping.

5. Let (H, ⋆) be a finite hyperstructure and h ∈ H. Then Th : H −→ P∗(H) is a
power mapping, where Th(a) = a ⋆ h.

6. Let (X, τ) be a topological space and u ∈ X. Suppose that for any x ∈ X,
Tu(x) is an open subset, such as Ox ∈ τ , such that x ∈ Ox and y /∈ Ox. Then
Tu is a power mapping.

Now, we show, if U is a nonempty finite set and T : U −→ P∗(U), where P∗(U)
is set of all non-empty subsets of U is a power mapping, then there exists a nonempty
subset F of U such that T ′(F ) = F .
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Definition 2.2. Let U and W be sets, and T : U −→ P(W ) be a power mapping.
We define T ′ : P(U) −→ P(W ), such that T ′(K) =

⋃
x∈K T (x).

It is clear that T ′(∅) = ∅, and T1 = T2 if and only if T ′
1 = T ′

2.

Definition 2.3. Let U be a set, T ∈ ⟨U⟩0 and K be a subset of U .

1. A subset F of U is called a fixed point of T , if and only if T ′(F ) = F .

2. fixK(T ) = {K0 ⊆ K |K0 ̸= ∅ and T ′(K0) = K0}.

3. FixK(T ) = {K0 ⊆ K | T ′(K0) = K0}.

4. fix(T ) = fixU (T ).

5. Fix(T ) = FixU (T ).

6. If F ⊆ U is a fixed point of T and for any x ∈ F , T (x) ̸= ∅, then F is called a
normal fixed point of T .

7. If F is not a normal fixed point of T , then F is called an abnormal fixed point.

Example 2.4. Let U = {x, y, z, u, v, w, t} and

T :



x → {y},
y → {x,w},
z → {u,w},
u → {z},
v → {w},
w → {y},
t → {z}.

Then T ′({x, y, w}) = {x, y, w}, so {x, y, w} is a fixed point of T.

Definition 2.5. Let T ∈ ⟨U⟩ and F be a fixed point of T .

F is called a minimal fixed point, if F ̸= ∅ and if F ′ is a nonempty fixed point of T
and F ′ ⊆ F , then F ′ = F . F is called a maximal fixed point of T if there is not a
fixed point such as F ′ such that F ⊂ F ′.

Definition 2.6. Let T : U −→ P(U) be a power mapping and K ⊆ U . Then

(1) (T ′)0(K) = K.

(2) (T ′)1(K) = T ′(K).

(3) (T ′)n+1(K) = T ′((T ′)n(K)) for n ∈ N0. We write for simplicity (T ′)n by T ′n

and T ′n({x1, x2, · · · , xn}) by T ′n(x1, x2, · · · , xn) for any x1, x2, · · · , xn ∈ U .
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3 Fixed Point Theorem

In this section, we will prove the main theorem 1 on a power mapping.

Lemma 3.1. Let T ∈ ⟨U⟩0.
(1) If K ⊆ K′ and n ∈ N0, then T ′n(K) ⊆ T ′n(K′).

(2) If for any α ∈ I, Kα ⊆ U and n ∈ N0, then T ′n(
⋃

α∈I Kα) =
⋃

α∈I T
′n(Kα).

Proof. It is straitforward. □

Lemma 3.2. Let T ∈ ⟨U⟩0 and K ⊆ U . Then the FixK(T ) is closed under operation⋃
.

Proof. It follows from Lemma 3.1. □

Example 3.3. Suppose that U = {x, y, z, t} and T ∈ ⟨U⟩, such that

T (u) =


{x, y} u = x,

{z} u = y,

{z} u = z,

{y, t} u = t.

(1)

Then {x, y, z} and {y, z, t} are fixed points, so U = {x, y, z}
⋃
{y, z, t} is a fixed point

by Lemma 3.2, but {y, z} = {z, y, z}
⋂
{y, z, t} is not a fixed point.

Lemma 3.4. Let U be a nonempty set and T ∈ ⟨U⟩. If there exists a nonempty finite
subset K of U such that K ⊇ T ′(K), then there exists a nonempty subset K0 of K
such that T ′(K0) = K0.

Proof. Since T ′(K) ⊆ K, therefore

K ⊇ T ′(K) ⊇ (T ′)2(K) ⊇ · · · (T ′)n(K) ⊇ · · · ⊃ ∅, (2)

by Lemma 3.1. Since K is finite, so in (2), there exists a n ∈ N0 such that (T ′)n(K) =
(T ′)n+1(K). Set K0 = (T ′)n(K), then K0 is a nonempty subset of K such that
T ′(K0) = K0. □

Lemma 3.5. Let U be a nonempty finite set and T ∈ ⟨U⟩0. If there exists a nonempty
subset K ⊆ U such that K ⊆ T ′(K), then there exists a subset K1 of U such that
K1 ⊇ K and T ′(K1) = K1.

Proof. We have
K ⊆ T ′(K) ⊆ (T ′)2(K) ⊆ · · · ⊆ U, (3)

by Lemma 3.1. Since U is a finite set, hence the chain (3) has a finite length, hence
there exists a n ∈ N0, such that (T ′)n(K) = (T ′)n+1(K). Set K1 = (T ′)n(K), then
T ′(K1) = K1. □
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Theorem 3.6 (Main Theorem 1: Fixed Point Theorem). If U is a nonempty finite
set and T ∈ ⟨U⟩, then there exists a nonempty subset F of U such that T ′(F ) = F .

Proof. Since T ′(U) ⊆ U , hence the claim follows from Lemma 3.4. □
If the conditions of Fixed Point Theorem are not established, then it is not

necessary that the assertion to be established. See the following examples.

Example 3.7. (1) Suppose that U = {x, y}, T (x) = {y} and T (y) = ∅. Then T
does not have any nonempty fixed point.

(2) Let N be the set of natural numbers, and T : N −→ P∗(N) be a power mapping,
where T (n) = {n+ 1}. Then T does not have any nonempty fixed point.

Example 3.8. Suppose that (H, ⋆) is a finite algebraic hyperstructure. for any h ∈ H
define Th(x) = h ⋆ x. Then for any h ∈ H, there exists a nonempty subset Fh of H,
such that T ′

h(Fh) = Fh, by Fixed Point Theorem.

4 Obtaining the Fixed Points

Suppose that T : U −→ P∗(U) is a power mapping, therefore T ′ : P∗(U) −→ P∗(U)
is a mapping. If we want to obtain all of fixed points, directly, then it means that we
have to test 2|U| − 1 members of P∗(U), this is a very difficult task.

Definition 4.1. Let T ∈ ⟨U⟩0 and K be a subset of U . K is called a T-small subset
(or a small subset of U), if K ⊆ T ′(K). K is called a T-big subset (or a big subset
of U), if K ⊇ T ′(K). The subset K of U is called a T-normal subset (or a normal
subset of U) if K is a T-small subset or a T-big subset of U .

Example 4.2. Suppose that U = {x, y, z, u, v, w, t} and

T =



x −→ {y},
y −→ {y, z},
z −→ {z},
u −→ {u, v},
v −→ {u},
w −→ {u},
t −→ ∅.

We have T ′({x, y, z}) = {y, z}, hence {x, y, z} is a big subset of U . Since T ′({u}) =
{u, v}, hence {u} is a small subset of U . Therefore the sets {x, y, z} and {u} are
normal subsets of U . Also {z} is a normal subset of U . The sets {v}, {w}, {v, w},
and {v, w, t} are not a normal subset of U .

According to Lemma 3.4, Lemma 3.5, and Definition 4.1, we have:

Corollary 4.3. Let T ∈ ⟨U⟩, then
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(1) any nonempty finite big subset of U , contains a nonempty fixed point;

(2) if U is a finite set, then any nonempty small subset is contained in a nonempty
fixed point.

Definition 4.4. Let T ∈ ⟨U⟩0 and K be a normal subset of U . If n is the smallest
number such that (T ′)n(K) = (T ′)n+1(K), then we write oT (K) = n.

Lemma 4.5. Let U be a finite set, T ∈ ⟨U⟩0 and K be a subset of U , then

(1) if K is a big subset of U , then oT (K) ⩽ |K|;
(2) if K is a small subset of U , then oT (K) ⩽ |Kc|.

Proof. It is obvious. □

Lemma 4.6. Let U be a nonempty finite set and K be a normal subset of U .

(1) If T ∈ ⟨U⟩, then T oT (K)(K) is a nonempty fixed point.

(2) If T ∈ ⟨U⟩0, then T oT (K)(K) is a fixed point.

Proof. It is obvious. □

Example 4.7. Let U = {x, y, z, u, v, w}. Define

T :



x → {y},
y → {x},
z → {z, u},
u → {z},
v → {v},
w → {u}.

Λ :



x → {x, y, z},
y → ∅,
z → {x},
u → {v},
v → ∅,
w → {v, w}.

Then {z} is a T−small subset. So {z} ⊂ {z, u} = T ′(z) = (T ′)2(z). Therefore
oT ({z}) = 1 and {z, u} is a fixed point by Lemma 4.6. Also {z.u.w} is a T−big
subset and oT ({z, u, w}) = 1.

The subset {x, y} is a Λ−small subset, and oΛ({x, y}) = 1. Thus Λ′{x, y} =
{x, y, z} is a nonempty fixed point, by Lemma 4.6. Also {u, v, w} is a Λ−big subset
and oΛ({u, v, w}) = 1. We have Λ′{u.v, w} = {v, w}.

Definition 4.8. Let T ∈ ⟨U⟩0, S is a small subset and B is a big subset of U . We
define (T ′)∞(S) =

⋃
n⩾0(T

′)n(S) and (T ′)∞(B) =
⋂

n⩾0(T
′)n(B).

Corollary 4.9. Let T ∈ ⟨U⟩0.
(1) If S is a small subset of U and oT (S) < ∞, then (T ′)∞(S) = (T ′)oT (S)(S).

(2) If B is a big subset of U and oT (B) < ∞, then (T ′)∞(B) = (T ′)oT (B)(B).

Corollary 4.10. Let U be a finite set and K be a normal subset of U .

(1) If T ∈ ⟨U⟩, then (T ′)∞(K) is a nonempty fixed point.
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(2) If T ∈ ⟨U⟩0, then (T ′)∞(K) is a fixed point.

Lemma 4.11. Let U be a finite set and T ∈ ⟨U⟩0.

(1) If K is a small subset of U , then T ′∞(K) is the smallest fixed point, such that
contains K.

(2) If K is a big subset of U , then T ′∞(K) is the biggest fixed point, such that is
contained in K.

Proof.

(1) If T ′(K) = K, then it is clear. Suppose that K ⊂ T ′(K) and F is a fixed
point, such that K ⊂ F ⊂ T ′∞(K). Then

T ′∞(K) ⊆ T ′∞(F ) = F ⊂ T ′∞(K).

It is a contradiction.

(2) It is similar to (1).

□

Definition 4.12. Let T ∈ ⟨U⟩0 andK be a subset of U . We define
−→
K =

⋃
n⩾0(T

′)n(K),

and [K] = (T ′)∞(
−→
K). For any x1, x2, · · · , xn ∈ U , we show [{x1, x2, · · · , xn}] by

[x1, x2, · · · , xn].

Theorem 4.13. Let U be a nonempty finite set and K be a nonempty subset of U .
Then

(1)
−→
K is a big subset of U .

(2) If T ∈ ⟨U⟩, then [K] is a nonempty fixed point.

(3) If T ∈ ⟨U⟩0, then [K] is a fixed point of T .

Proof. By Lemma 3.1, we have

T ′(K ∪ T ′(K) ∪ T ′2(K) ∪ · · · ) = T ′(K) ∪ T ′2(K) ∪ T ′3(K) · · ·

⊆ K ∪ T ′(K) ∪ T ′2(K) ∪ T ′3(K) · · · .

Therefore
⋃

n⩾0(T
′)n(K) is a big subset of U . Now the proof follows from Corollary

4.10. □

Example 4.14. In Example 4.7, we have

−−→
{x} =

⋃
n⩾0

(T ′)n(x) = {x} ∪ {y} = {x, y}.

Hence {x, y} is a big subset of U by Theorem 4.13. Since T ′∞({x, y}) = {x, y},
therefore {x, y} is a fixed point of T by Theorem 4.13.
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Example 4.15. Assume that U = N and T : N −→ P∗(N) is a power mapping,
where

T (n) =


{2} n = 1,

{3} n = 2, 3,

{1, n+ 1} n = 4, 5, 6, · · · .

Let K = {1, 2, 3, 4}, then
−→
K = N and [K] = {1, 2, 3}. It is obvious that [K] is not a

fixed point and [[K]] = {3} is a fixed point of T .

Lemma 4.16. If T ∈ ⟨U⟩0 and K1 ⊆ K2, then
−→
K1 ⊆

−→
K2 and [K1] ⊆ [K2].

Proof. It follows from Lemma 3.1. □

Lemma 4.17. Let U be a nonempty finite set, T ∈ ⟨U⟩0 and F ⊆ U . Then F is a

fixed point of T if and only if
−→
F = [F ] = F .

Proof. It is obvious. □

Lemma 4.18. Let U be a nonempty finite set, T ∈ ⟨U⟩0 and K ⊆ U . Then
−→−→
K =

−→
K

and [
−→
K ] =

−→
[K] = [[K]] = [K].

Proof. It follows from Theorem 4.13 and Lemma 4.17. □

Corollary 4.19. Let U be a nonempty finite set, T ∈ ⟨U⟩0 and K1,K2 ⊆ U . If
−→
K1 =

−→
K2, then [K1] = [K2].

Proof. We have [K1] = [
−→
K1] = [

−→
K2] = [K2], by Lemma 4.18. □

Lemma 4.20. Let U be a nonempty finite set and T ∈ ⟨U⟩0. If K is a subset of U ,
then there exists a number n ⩾ 0 such that

−→
K = K ∪ T ′(K) ∪ · · · (T ′)n(K).

Proof. Assume that

K ⊂ K ∪ T ′(K) ⊂ K ∪ T ′(K) ∪ T ′2(K) ⊂ · · · ⊂ U.

This chain can not be strict, forever. Therefore there exists the smallest number
n ⩾ 0, such that

K ⊂ K ∪ T ′(K) ⊂ · · · ⊂ K ∪ T ′(K) ∪ · · · (T ′)n(K)

= K ∪ T ′(K) ∪ · · · ∪ (T ′)n(K) ∪ (T ′)n+1(K).

Then for any m ⩾ n,

i=m⩾n⋃
i=0

(T ′)i(K) = K ∪ T ′(K) ∪ · · · ∪ (T ′)n(K).

□
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Definition 4.21. Let U be a nonempty finite set, T ∈ ⟨U⟩0 and K be a subset of U .
We write OT (K) = n, if n is the smallest number, such that

K ∪ T ′(K) ∪ · · · ∪ T ′n(K) = K ∪ T ′(K) ∪ · · · ∪ T ′n(K) ∪ T ′n+1(K).

Example 4.22. Let U be a nonempty finite set and T ∈ ⟨U⟩0. Then
(1) OT (∅) = OT (U) = 0.

(2) If K is a normal subset of U , then OT (K) ⩽ oT (K).

Lemma 4.23. Let U be a nonempty finite set, T ∈ ⟨U⟩0 and K1,K2 ⊆ U , then

(1)
−−−−−→
K1 ∪K2 =

−→
K1 ∪

−→
K2.

(2) [K1 ∪K2] = [K1] ∪ [K2].

Proof.

(1) It follows from Lemma 3.1 and Lemma 4.20.

(2) It follows from (1) and Lemma 3.1.

□

Lemma 4.24. Let U be a nonempty finite set, T ∈ ⟨U⟩0 and K be a subset of U .
Then the following statements are equivalent.

(1)
−→
K ⊆ [K],

(2)
−→
K = [K],

(3)
−→
K ∈ Fix(T ).

Proof.

• (1 ⇒ 2) If K ⊆ [K], then
−→
K ⊆

−→
[K] = [K] by Lemma 4.16 and Lemma 4.17.

• (2 ⇒ 3) It is obvious.

• (3 ⇒ 4) It follows from Theorem 4.13.

• (4 ⇒ 1) It is clear that K ⊆
−→
K . Since

−→
K is a fixed point of T , hence [

−→
K ] =

−→
K .

Therefore K ⊆
−→
K = [

−→
K ] = [K] by Lemma 4.18.

□

Lemma 4.25. Let U be a nonempty finite set, T ∈ ⟨U⟩0, K ⊆ U and F be a fixed

point of T . If F ⊆
−→
K then F ⊆ [K].

Proof. It follows from Lemma 4.16 and Lemma 4.18. □

Lemma 4.26. Let U be a nonempty finite set, T ∈ ⟨U⟩ and F be a minimal fixed

point of T . If K is a nonempty subset of F , then [K] =
−→
K = F .

Proof. It follows from Lemma 4.16 and Theorem 4.13. □



10 S. M. MUSAVI A. AND S. M. ANVARIYEH

Corollary 4.27. Let U be a nonempty finite set and T ∈ ⟨U⟩. If F is a minimal
fixed point and x ∈ F , then F = [x].

Definition 4.28. Let T ∈ ⟨U⟩0 and F be a fixed point. F is called a principal fixed
point of T if and only if there exists x ∈ U such that F = [x].

By Corollary 4.27, any minimal fixed point is a principal fixed point. But it is
not necessary that a principal fixed point is a minimal fixed point. For example:

Example 4.29. Let U = {x, y, z, t, v, w} and

T (u) =



{x, y} u = x,

{y, z} u = y,

{z} u = z,

{x, z} u = t,

{z} u = v,

{x, y} u = w.

We have [x] = {x, y, z}, [y] = {y, z} and [z] = {z}. Therefore

∅ ⊂ [z] ⊂ [y] ⊂ [x] = [U ].

Lemma 4.30. Let U be a nonempty finite set and T ∈ ⟨U⟩0. Then ∅ and [U ] are
minimum and maximum fixed point, respectively.

Proof. It is obvious. □

Lemma 4.31. Let U be a nonempty finite set and T ∈ ⟨U⟩0. If F is a fixed point,
then there exist x1, x2, · · ·xn ∈ [U ] such that F = [x1] ∪ [x2] ∪ · · · ∪ [xn].

Proof. There exist x1, x2, · · ·xn ∈ [U ], such that F = {x1, x2, · · · , xn} by Lemma
4.16 and Lemma 4.17. Hence F =

⋃
x∈F {x}. Therefore F = [F ] = [

⋃
x∈F {x}] =⋃

x∈F [x] by Lemma 4.17 and Lemma 4.23. □

Theorem 4.32 (Main Theorem 2). Let U be a nonempty finite set and T ∈ ⟨U⟩0.
Set PF (T ) = {[x] | x ∈ [U ]}, then Fix(T ) = {

⋃
[x]∈Σ[x] | Σ ⊆ PF (T )}.

Proof. Let Ω = {
⋃

[x]∈Σ[x] | Σ ⊆ PF (T )}. Then Ω ⊆ Fix(T ) by Theorem 4.13 and

Lemma 3.2. And we have Fix(T ) ⊆ Ω by lemma 4.31. Therefore Ω = Fix(T ). □

Assume that [U ] = {x, x′, x′′, y, y′, z, u}, [x] = [x′] = [x′′] and [y] = [y′]. Then
PF (T ) = {[x], [y], [z], [u]} = {[x′], [y], [z], [u]} = {[x′], [y′], [z], [u]} = · · · .

Proposition 4.33. Let U be a nonempty finite set and T ∈ ⟨U⟩0. Then |Fix(T )| ⩽
2|PF (T )|.

Proof. It is obvious. □
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Example 4.34. Suppose that U = {x, y, z, u, v, w, r, t} and

T :



x → {y},
y → {z},
z → {u},
u → {z},
v → {v, u},
w → {u},
r → {r, t},
t → {r}.

Then [U ] = {z, u, v, r, t}, [z] = [u] = {u, z}, [v] = {u, v, z} and [r] = [t] = {r, t}. Hence
PF (T ) = {[z], [v], [r]}. And Fix(T ) = {∅, [z], [v], [r], [z]∪ [r], [v]∪ [r], [z]∪ [v]∪ [r]} by
Theorem 4.32. Therefore

Fix(T ) = {∅, {u, z}, {r, t}, {u, v, z}, {u, z, r, t}, {u, v, z, r, t}}

and |Fix(T )| = 6. Also we have

(1) x /∈ [x].

(2) [v] is not a minimal fixed point.

(3) u ∈ [u].

(4) [x] ⊂ [v].

(5) [z] ∪ [v] = [v].

Example 4.35. Assume that U = Z24, where (Z24,+) is the group of integers modulo
24. Let T : Z24 −→ P∗(Z24) be a power mapping, such that T (n) = 2·n+1. Since Z24

is a big subset, hence [Z24] = T ′∞(Z24) = {7, 15, 23}. We have [7] = [15] = {7, 15}
and [23] = {23}. By Theorem 4.32, we have PF (T ) = {[7], [23]} and therefore
Fix(T ) = {∅, [7], [23], [7]

⋃
[23]} = {∅, {7, 15}, {23}, {7, 15, 23}}.

Example 4.36. Let (H, ⋆) be an algebraic hyperstructure, where H = {a, b, c, d}
and: 

a ⋆ a = {b}, a ⋆ b = {a, b}, a ⋆ c = {b, c},
b ⋆ a = {a}, b ⋆ b = {b}, b ⋆ c = {a},
c ⋆ a = {a, b, c}, c ⋆ b = {b}, c ⋆ c = {c},
x ⋆ y = {a} if x = d or y = d.

For any h ∈ H define Th(x) = h ⋆ x. Since H is a nonempty finite set and Th ∈ ⟨H⟩,
therefore there exists a nonempty subset Fh of H, such that T ′

h(Fh) = Fh, by Fixed
Point Theorem. For example:

Ta =


a −→ a ⋆ a = {b},
b −→ a ⋆ b = {a, b},
c −→ a ⋆ c = {b, c}
d −→ a ⋆ d = {a}.
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Use Theorem 4.32. We have [H] = {a, b, c}. [a] = [b] = {a, b} and [c] = {a, b, c}.
Hence PF (Ta) = {{a, b}, {a, b, c}}. Therefore Fix(Ta) = {∅, {a, b}, {a, b, c}}. The set
{a, b} is a minimal fixed point.

Theorem 4.37 (Main Theorem 3). Let U be a nonempty finite set and T : U −→
P(U) be a power mapping. Then T has a nonempty fixed point, if and only if [U ] ̸= ∅.

Proof. (⇐) It follows from Theorem 4.13.
(⇒) Assume that F is a nonempty fixed point. Hence ∅ ̸= F = [F ] ⊆ [U ] by Lemma
4.16 and Lemma 4.17. □

Example 4.38. Suppose that U = {x, y, z, t} and T : U −→ P(U) is a power
mapping, where

T (u) =


{y, z} u = x,

{z} u = y,

{t} u = z,

∅ u = t.

Since [U ] = ∅, therefore T does not have a nonempty fixed point by Theorem 4.37.

Example 4.39. In Example 4.36, define T (x) = c ⋆ x− x ⋆ c. Hence:

T =


a −→ {a},
b −→ {b},
c −→ ∅,
d −→ ∅.

Since [H] = {a, b} ̸= ∅, hence T has a nonempty fixed point, by Theorem 4.37.
By Theorem 4.32, we have PF (T ) = {[a], [b]}, where [a] = {a} and [b] = {b}. There-
fore Fix(T ) = {∅, {a}, {b}, {a, b}}.

Assume that Σ is a nonempty set, |Σ| = n, A = {f : Σ −→ Σ | f is a mapping},
B = {f ∈ A | ∃x ∈ Σ : f(x) = x} and C = A − B. Then |A| = nn, |B| =

nn − (n − 1)n and |C| = (n − 1)n. Therefore lim
|Σ|→∞

(
A

C
) = e, lim

|Σ|→∞

A

B
=

e

e− 1
and

lim
|Σ|→∞

B

C
= e− 1, where e is the Napier’s number.

5 Conclusion

In this paper, we introduced a new concept called of a power mapping. We showed
that if U is a nonempty finite set and T : U −→ P∗(U) is a power mapping, then there
exists a nonempty subset F of U such that T ′(F ) = F and F is called a fixed point.
We proved if U is a nonempty finite set, then the power mapping T : U −→ P(U) has a
nonempty fixed point, if and only if [U ] ̸= ∅. We showed that if PF (T ) = {[x]|x ∈ [U ]}
then Fix(T ) = {

⋃
[x]∈Σ[x] | Σ ⊆ PF (T )}.
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