Journal of Mathematical Extension Vol. 18, No. 5, (2024) (3)1-9 URL: https://doi.org/10.30495/JME.2024.3095 ISSN: 1735-8299 Original Research Paper

On θ -centralizing θ -generalized Derivations on Convolution Algebras

M. Eisaei

Payame Noor University (PNU)

M. J. Mehdipour^{*}

Shiraz University of Technology

Gh. R. Moghimi

Payame Noor University (PNU)

Abstract. Let θ be an isomorphism on $L_0^{\infty}(w)^*$. In this paper, we investigate θ -generalized derivations on $L_0^{\infty}(w)^*$. We show that every θ -centralizing θ -generalized derivation on $L_0^{\infty}(w)^*$ is a θ -right centralizer. We also prove that this result is true for θ -skew centralizing θ -generalized derivations.

AMS Subject Classification: 43A15; 16W25; 47B47 **Keywords and Phrases:** θ -generalized derivations, θ -centralizing, isomorphisms

1 Introduction

Let $w : [0, \infty) \to [1, \infty)$ be a continuous function such that w(0) = 1and for every $x, y \ge 0$

$$w(x+y) \le w(x)w(y).$$

Received: July 2024; Accepted: October 2024

^{*}Corresponding Author

 $\mathbf{2}$

Let $L^1(w)$ be the Banach algebra of all Lebesgue measurable functions on $[0, \infty)$. Let also M(w) be the Banach algebra of all complex regular Borel measure on $[0, \infty)$; for study of these Banach algebras see [5, 13]. We denote by $L_0^{\infty}(w)$ the Banach space of all Lebesgue measurable functions f on $[0, \infty)$ such that

ess sup{
$$f(y)\chi_{(x,\infty)}(y)/w(y): y \ge 0$$
} $\rightarrow 0$

as $x \to +\infty$, where $\chi_{(x,\infty)}$ is the characteristic function on (x,∞) . It is proved that the dual of $L_0^{\infty}(w)$, represented by $L_0^{\infty}(w)^*$, is a Banach algebra with the first Arens product defined by

$$mn(f) = m(nf),$$

where the functional nf is defined by $nf(\varphi) = n(f\varphi)$, in which

$$f\varphi(x) = \int_0^\infty f(x+y)\varphi(y)dy$$

for all $m, n \in L_0^{\infty}(w)^*$, $f \in L_0^{\infty}(w)$, $\varphi \in L^1(w)$ and $x \ge 0$; for more details see [8, 9]. By the usual way, $L^1(w)$ may be regarded as a subspace of $L_0^{\infty}(w)^*$. In this case, $L^1(w)$ is a closed ideal of $L_0^{\infty}(w)^*$. Note that the sequence

 $\{i\chi_{(0,1/i)}\}_{i\in\mathbb{N}}$

is a bounded approximate identity for $L^1(w)$. The set of all weak^{*}cluster points of an approximate identity of $L^1(w)$ bounded by one is denoted by $\Lambda(L_0^{\infty}(w)^*)$. It is easy to see that $u \in \Lambda(L_0^{\infty}(w)^*)$ if and only if u is a right identity for $L_0^{\infty}(w)^*$.

Let θ be a homomorphism on $L_0^{\infty}(w)^*$ and T be a linear map on $L_0^{\infty}(w)^*$. Then T is called a θ -right centralizer if for every $m, n \in L_0^{\infty}(w)^*$

$$T(mn) = \theta(m)T(n).$$

A linear map d on $L_0^{\infty}(w)^*$ is called a θ -derivation if

$$d(mn) = d(m)\theta(n) + \theta(m)d(n)$$

for all $m, n \in L_0^{\infty}(w)^*$. Also, a linear map D on $L_0^{\infty}(w)^*$ is called a θ -generalized derivation with associated to derivation d, if

$$D(mn) = \theta(m)D(n) + d(m)\theta(n)$$

for all $m, n \in L_0^{\infty}(w)^*$. We denote this concept with (D, d). Note that if D = d, then D is a θ -derivation. In the case where d = 0, then for every $m, n \in L_0^{\infty}(w)^*$

$$D(mn) = \theta(m)D(n).$$

This type of θ -generalized derivation is called a θ -right centralizer. A linear map T on $L_0^{\infty}(w)^*$ is called θ -commuting if for every $m \in L_0^{\infty}(w)^*$

$$T(m)\theta(m) = \theta(m)T(m),$$

and T is called θ -centralizing if

$$[T(m), \theta(m)] := T(m)\theta(m) - \theta(m)T(m) \in Z(L_0^{\infty}(w)^*)$$

for all $m \in L_0^{\infty}(w)^*$, where $Z(L_0^{\infty}(w)^*)$ is the center of $L_0^{\infty}(w)^*$.

Some authors studied the Banach algebra $L_0^{\infty}(w)^*$ [1, 2, 10, 11, 12]. For example, Ahmadi Gandomani and the second author [1] studied generalized derivations on $L_0^{\infty}(w)^*$. They showed that every centralizing generalized derivation on $L_0^{\infty}(w)^*$ is a right centralizer. They proved that this result holds for skew centralizing generalized derivations; see also [3, 6, 7]. In this paper, we investigate these facts for θ -generalized derivations on $L_0^{\infty}(w)^*$.

2 Main Results

In the following, let $\operatorname{ran}(L_0^{\infty}(w)^*)$ be the right annihilator of $L_0^{\infty}(w)^*$, that is, the set of all $r \in L_0^{\infty}(w)^*$ such that mr = 0 for all $m \in L_0^{\infty}(w)^*$.

Theorem 2.1. Let θ be a homomorphism on $L_0^{\infty}(w)^*$ and (D,d) be a θ -generalized derivation on $L_0^{\infty}(w)^*$. Then the following statements hold.

(i) D maps ran $(L_0^{\infty}(w)^*)$ into ran $(L_0^{\infty}(w)^*)$.

(ii) D is θ -centralizing if and only if D is θ -commuting.

(iii) If θ is an isomorphism and D is θ -centralizing, then D is a θ -right centralizer.

Proof. (i) Let $k \in L_0^{\infty}(w)^*$, $u \in \Lambda(L_0^{\infty}(w)^*)$ and $r \in \operatorname{ran}(L_0^{\infty}(w)^*)$. Then

$$kD(r) = k\theta(u)D(r) = k[D(ur) - d(u)\theta(r)] = 0,$$

where $u \in \Lambda(L_0^{\infty}(w)^*)$. Hence $D(r) \in \operatorname{ran}(L_0^{\infty}(w)^*)$. (ii) Let $m \in L_0^{\infty}(w)^*$ and

$$[D(m), \theta(m)] \in Z(L_0^{\infty}(w)^*).$$

So if $u \in \Lambda(L_0^{\infty}(w)^*)$, then

4

$$\begin{aligned} [D(m), \theta(m)] &= [D(m), \theta(m)]u \\ &= u[D(m), \theta(m)] \\ &= u(D(m)\theta(m) - \theta(m)D(m)) \\ &= uD(m)\theta(m) - uD(m)\theta(m) \\ &= 0. \end{aligned}$$

It follows that D is θ -commuting.

(iii) Let θ be an isomorphism and D be θ -centralizing. Then for every $m \in L_0^\infty(w)^*$

$$D(m)\theta(m) = \theta(m)D(m).$$

Choose $u \in \Lambda(L_0^{\infty}(w)^*)$. Then

$$D(u) = D(u)\theta(u) = \theta(u)D(u).$$
(1)

On the other hand,

$$D(u) = D(uu) = \theta(u)D(u) + d(u)\theta(u) = \theta(u)D(u) + d(u).$$
(2)

From this and (1), we have d(u) = 0. Note that if $r \in \operatorname{ran}(L_0^{\infty}(w)^*)$, then

$$(r+u)^2 = r+u$$

and $\theta(u+r)$ is a right identity for $L_0^\infty(w)^*.$ So

$$D(u+r) = D(u+r)\theta(u+r)$$

= $D((u+r)^2) - d(u+r)\theta(u+r)$
= $D(u+r) - d(r).$

Hence d(r) = 0. This shows that for every $m \in L_0^{\infty}(w)^*$,

$$d(m) = d(um)$$

= $d(u)\theta(m) + \theta(u)d(m)$
= $\theta(u)d(m)$
= $0,$

because d maps $L_0^{\infty}(w)^*$ into ran $(L_0^{\infty}(w)^*)$; see [12]. Therefore,

$$D(m) = D(mu)$$

= $\theta(m)D(u) + d(m)\theta(u)$
= $\theta(m)D(u)$

for all $m \in L_0^{\infty}(w)^*$. That is, D is a θ -right centralizer. \Box Let θ be a homomorphism on $L_0^{\infty}(w)^*$. Then a map

$$T: L_0^\infty(w)^* \to L_0^\infty(w)^*$$

is called θ -skew commuting if for every $m \in L_0^\infty(w)^*$

$$\langle T(m), \theta(m) \rangle := T(m)\theta(m) + \theta(m)T(m) = 0,$$

if for every $m \in L_0^\infty(w)^*$,

$$\langle T(m), \theta(m) \rangle \in Z(L_0^\infty(w)^*),$$

then T is called θ -skew centralizing.

Theorem 2.2. Let θ be an isomorphism on $L_0^{\infty}(w)^*$ and (D,d) be a θ -generalized derivation on $L_0^{\infty}(w)^*$. Then the following statements hold.

(i) If D is θ -skew centralizing, then there exists $n \in Z(L_0^{\infty}(w)^*)$ such that D(m) = mn for all $m \in L_0^{\infty}(w)^*$.

(ii) If D is θ -skew commuting, then D = 0 on $L_0^{\infty}(w)^*$.

Proof. (i). Let $m \in L_0^{\infty}(w)^*$ and

$$\langle D(m), \theta(m) \rangle \in Z(L_0^\infty(w)^*).$$

Then

$$0 = [\langle D(m), \theta(m) \rangle, \theta(m)] = [D(m), \theta(m)^2].$$

It follows that

$$D(u) = D(u)\theta(u)^2 = \theta(u)^2 D(u) = \theta(u)D(u).$$

On the other hand,

$$D(u) = D(uu) = \theta(u)D(u) + d(u).$$

Hence d(u) = 0. An argument similar to the proof of Theorem 1, shows that $D(m) = \theta(m)D(u)$ for all $m \in L_0^{\infty}(w)^*$. But,

$$\begin{aligned} \langle D(u), \theta(u) \rangle &= D(u)\theta(u) + \theta(u)D(u) \\ &= \theta(u)D(u)\theta(u) + \theta(u)D(u) \\ &= 2\theta(u)D(u) \end{aligned}$$

is an elemnt of $Z(L_0^{\infty}(w)^*)$. Since

$$D(m) = \theta(m)D(u) = \theta(m)\theta(u)D(u),$$

the statement (i) holds.

(ii) Let D be θ -skew commuting. Then there exists $n \in Z(L_0^{\infty}(w)^*)$ such that

$$D(m) = mn$$

for all $m \in L_0^{\infty}(w)^*$. So, if $u \in \Lambda(L_0^{\infty}(w)^*)$, then

$$0 = D(u)\theta(u) + \theta(u)D(u)$$

= $un\theta(u) + \theta(u)un$
= $u\theta(u)n + \theta(u)n$
= $n\theta(u) + n\theta(u)$
= $2n\theta(u)$
= $2n$.

Hence n = 0 and therefore, D = 0. \Box

Theorem 2.3. Let θ be a homomorphism on $L_0^{\infty}(w)^*$ and (D,d) be a θ -generalized derivation on $L_0^{\infty}(w)^*$. Then D is a θ -derivation if and only if D = d.

Proof. Let D be a θ -derivation. Then for every $m \in L_0^{\infty}(w)^*$, we have

$$D(m) = D(m.u) = D(m)\theta(u) + \theta(m)D(u)$$
$$= D(m) + \theta(m)D(u)$$

and

$$D(m) = \theta(m)D(u) + d(m)\theta(u) = \theta(m)D(u) + d(m).$$

Hence d = D. \Box

We denote by $\operatorname{rad}(L_0^\infty(w)^*)$ the radical of $L_0^\infty(w)^*$. Before, we give the next result, let us recall that a map $T: L_0^\infty(w)^* \to L_0^\infty(w)^*$ is called *spectrally infinitesimal* if

$$r(T(m)) = 0$$

for all $m \in L_0^{\infty}(w)^*$, where r(.) is the spectral radius.

Corollary 2.4. Let θ be a homomorphism on $L_0^{\infty}(w)^*$ and (D, d) be a θ -generalized derivation on $L_0^{\infty}(w)^*$. If D maps $L_0^{\infty}(w)^*$ into $\operatorname{rad}(L_0^{\infty}(w)^*)$ or D is spectrally infinitesimal, then D is a θ -derivation.

Proof. First, note that if D maps $L_0^{\infty}(w)^*$ into

$$\operatorname{rad}(L_0^\infty(w)^*) = \operatorname{ran}(L_0^\infty(w)^*),$$

then D is spectrally infinitesimal. Hence r(D(m)) = 0 for all $m \in L_0^{\infty}(w)^*$. One can prove that

$$\frac{L_0^\infty(w)^*}{\operatorname{ran}(L_0^\infty(w)^*)}$$

is isomorphic to the commutative Banach algebra M(w); see [9]. In view of [14], there exists c > 0 such that

$$r(mD(u)) \le c r(m) r(D(u)) = 0$$

for all $m \in L_0^\infty(w)^*$ and $u \in \Lambda(L_0^\infty(w)^*)$. It follows from Proposition 25.1 (ii) of [4] and that

$$D(u) \in \operatorname{rad}(L_0^\infty(w)^*) = \operatorname{ran}(L_0^\infty(w)^*).$$

Therefore,

$$D(m) = \theta(m)D(u) + d(m) = d(m)$$

for all $m \in L_0^\infty(w)^*$. \square

Acknowledgements

The authors would like to thank the referee of the paper for invaluable comments.

References

- M. H. Ahmadi Gandomani and M. J. Mehdipour, Generalized derivations on some convolution algebras, *Aequationes Math.*, 92 (2) (2018), 223–241.
- [2] M. H. Ahmadi Gandomani and M. J. Mehdipour, Symmetric biderivations and their generalizations on group algebras, *Filomat*, 35 (4) (2021), 1233–1240.
- [3] E. Albas and N. Argac, Generalized derivations of prime rings, Algebra Colloq., 11 (3) (2004), 399–410.
- [4] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
- [5] H. G. Dales and A. T. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc., 177 (836) (2005), 1–191.
- [6] V. De Filippis, Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc., 45 (4) (2008), 621–629.
- [7] B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (4) (1998), 1147–1166.
- [8] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc., 41 (3) (1990), 445–460.
- [9] S. Maghsoudi, R. Nasr-Isfahani and A. Rejali, Strong Arens irregularity of Beurling algebras with a locally convex topology, Arch. Math. (Basel), 86 (5) (2006), 437–448.

- [10] M. J. Mehdipour and R. Nasr-Isfahani, Completely continuous elements of Banach algebras related to locally compact groups., *Bull. Austral. Math. Soc.*, 76 (1) (2007), 49–54.
- [11] M. J. Mehdipour and R. Nasr-Isfahani, Weakly compact multipliers on Banach algebras related to a locally compact group, *Acta Math. Hungar.*, 127 (3) (2010), 195–206.
- [12] M. J. Mehdipour and Z. Saeedi, Derivations on convolution algebras, Bull. Korean Math. Soc., 52 (4) (2015), 1123–1132.
- [13] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Second edition, London Mathematical Society Monographs, New Series, 22, The Clarendon Press, Oxford University Press, New York, 2000.
- [14] J. Zemanek, Spectral radius characterizations of commutativity in Banach algebras, *Studia Math.*, 61 (3) (1977), 257-268.

Mojdeh Eisaei

Ph.D student Department of Mathematics Payame Noor University (PNU), Tehran, Iran E-mail: mojdehessaei59@student.pnu.ac.ir

Mohammad Javad Mehdipour

Associate Professor of Mathematics Department of Mathematics Shiraz University of Technology Shiraz, Iran E-mail: mehdipour@sutech.ac.ir

Gholam Reza Moghimi

Assistant Professor of Mathematics Department of Mathematics Payame Noor University (PNU), Tehran, Iran E-mail: moghimimath@pnu.ac.ir