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1 Introduction

In this article, we denote by ⊤ an associative ring whose center is Z⊤.
An ideal ℑ of ⊤ is called prime if ℑ is different from ⊤, and whenever
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w⊤s is contained in ℑ, for each elements w and s in ⊤, then either w
or s belongs to ℑ. A ring ⊤ is prime if and only if the only prime ideal
is (0). We say that ⊤ is a 2-torsion free ring if 2w = 0, for w in ⊤,
implies that w is 0. For any w and s in ⊤, we use [w, s] to represent
ws− sw, and w ◦ s to mean ws+ sw. A map ⨿ : ⊤ → ⊤ is a derivation
of ring ⊤ if it satisfies ⨿(ws) = ⨿(w)s + w⨿(s) for each w and s in ⊤.
An additive map ∗ : ⊤ → ⊤ is involution if ∗ is an antiautomorphism
of order two, that is, (w∗)∗ = w for all w in ⊤. An element w in an
involution ring (⊤, ∗) is hermitian if w∗ = w, and skew hermitian if
w∗ = −w. We denote by H⊤ and S⊤ the sets of hermitian and skew
hermitian elements in ⊤, respectively. ”An involution ∗ is of the B-
second kind if S⊤ ∩ Z⊤ ̸⊆ B for some B ⊂ ⊤, otherwise it is said to be
of the B-first kind. In particular, if B = {0}, the involution is said to
be of the second kind if S⊤ ∩Z⊤ ̸= {0}, otherwise it is said to be of the
first kind.” [16, Definition 1.1].

Various authors have recently proven the commutativity of semiprime
and prime rings by using suitably constrained additive mappings like
derivations, automorphisms, generalized derivations, and skew deriva-
tions operating on specific subsets of the rings. To start, we recollect
that for a subset S of ⊤, a function ⨿ : S → ⊤ is centralizing if [⨿(w), w]
in Z⊤ for each w in B. If [⨿(w), w] = 0 for each w in B, ⨿ is termed
commuting on S. Posner demonstrated in [14] that if a prime ring ⊤ has
a non-zero derivation ⨿ such that [⨿(w), w] in Z⊤ for each w in ⊤, then
⊤ becomes commutative. This insight has been refined and extended by
numerous authors over the years, as discussed in [1, 9, 8, 11], along with
further references. Long ago, Herstein proved that if a prime ring ⊤
with a characteristic distinct from 2 possesses a derivation ⨿ satisfying
⨿(w)⨿(s) = ⨿(s)⨿(w) for each w and s in ⊤, then ⊤ is commutative.
This idea was revisited by Bell and Daif [4], achieving the same result by
focusing on the identity ⨿[w, s] = 0 for each w and s in a non-zero ideal
of ⊤. In [3], Bell and Daif explored the commutativity of rings with
a derivation that preserves strong commutativity on a non-zero right
ideal. Ali and Huang [2] revealed that if ⊤ is a 2-torsion free semiprime
ring and ⨿ is a derivation satisfying [⨿(w),⨿(s)] + [w, s] = 0 for each
w and s in a non-zero ideal I of ⊤, then ⊤ contains a non-zero central
ideal. Building on this, introduced the concepts of ∗-SCP and ∗-Skew
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SCP, providing commutativity criteria for prime rings with involution.
Similar generalizations can be found in the literature, as in [5, 11]. In
[6], Daif and Bell demonstrated the commutativity of semiprime rings
where the derivation ⨿([w, s]) equals the commutator[w, s] for every w
and s in a non-zero ideal of the ring ⊤. In 1997, Hongan [7] proved
that a semiprime ring ⊤, which is 2-torsion free, is necessarily commu-
tative if a derivation ⨿ fulfills either ⨿([w, s]) + [w, s] in the center Z⊤
or ⨿([w, s]) − [w, s] in the center Z⊤ for every w and s in an ideal I of
⊤. Oukhtite and et al. in [12] expanded these results for ∗-prime rings
⊤ that satisfy various conditions involving ⨿[w, s] = 0, ⨿([w, s])− [w, s]
in Z⊤, ⨿([w, s]) + [w, s] in Z⊤, ⨿(w◦s) = 0, ⨿(w◦s) − w◦s in Z⊤, and
⨿(w◦s)+w◦s in Z⊤ for every w and s in J , where J is a non-zero Jordan
ideal of ⊤.

In 2023, Oukhtite et al. [13] proved the following results: ”Let ⊤
be a ring, I a nonzero ideal, ℑ a prime ideal such that ℑ ⫋ I and ⊤/ℑ
is 2-torsion free. Let ⨿, ⨿1, and ⨿2 be derivations on ⊤. Then ⊤/ℑ
is a commutative integral domain if and only if one of the following
conditions is satisfied: (i) ⨿([w, s]) ± [w, s] ∈ Z⊤/ℑ for each w, s ∈
I, (ii) [⨿1(w), s] + [w,⨿2(s)] − [w, s] ∈ Z⊤/ℑ for each w, s ∈ I, (iii)

⨿1(w) ◦ s + w ◦ ⨿2(s) − w ◦ s ∈ Z⊤/ℑ for each w, s ∈ I.” For further
details on these topics, see [17, 15, 18].

This research delves into the intricate relationship between algebraic
identities involving derivations with involutions and the commutativity
of prime quotient rings. Our work is motivated by a significant gap in
the existing literature concerning the generalization of classical results
on prime rings to a broader context of arbitrary rings equipped with
involutions. While seminal works, such as those of Posner, Daif, and
Bell, have laid the foundation for understanding commutativity in prime
rings, their findings are often limited to specific types of rings and ideals.
For instance, Posner’s theorem, a cornerstone in this field, primarily
deals with prime rings.

This paper extends these classical frameworks by examining the com-
mutativity of quotient rings ⊤/ℑ under a more general lens, where ⊤ can
be any ring and ℑ is a prime ideal with a second-kind involution. More-
over, we establish a connection between the structure of ⊤/ℑ and the
behavior of derivations of ⊤ satisfying certain identities that involve the
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prime ideal ℑ. This generalization is theoretically significant because it
broadens the applicability of these classical results and provides a deeper
understanding of the interplay between derivations, involutions, and the
structure of quotient rings.

The potential applications of these findings are far-reaching, extend-
ing into various domains of algebra and related fields. In ring theory,
our results can contribute to a deeper understanding of the structure of
noncommutative rings and their quotient structures. The results have
implications for module theory. Furthermore, the study of rings with
involutions is closely related to the study of ∗-algebras, which play a
crucial role in functional analysis and operator theory. Our findings
could therefore provide insights into the properties of certain operator
algebras. In the realm of coding theory, where algebraic structures are
used to design and analyze error-correcting codes, our results might of-
fer new tools for constructing codes with specific properties. Moreover,
from a computational perspective, our research could potentially inform
symbolic computation methods in noncommutative polynomial rings,
particularly in identifying and testing for commutativity conditions.

2 Conditions Involving Lie Products

This section introduces the fundamental concepts of Lie products and
investigates their role in determining the commutativity of rings with
involutions. We focus on the interplay between Lie products, deriva-
tions, and prime ideals, particularly within the context of second-kind
involutions.

Lemma 2.1. Let ⊤ be a ring, ℑ a prime ideal, and w, s ∈ ⊤. If ws ∈
Z⊤/ℑ and s ∈ Z⊤/ℑ, then s = 0 or w ∈ Z⊤/ℑ.

Proof. Let w, s ∈ ⊤ and assume that ws ∈ Z⊤/ℑ and s ∈ Z⊤/ℑ. That
is, [ws, r] = 0 and [s, r] = 0 for each r ∈ ⊤. It follows that [w, r]s = 0
for each r ∈ ⊤. Hence, [w, r]⊤/ℑs = 0 for each r ∈ ⊤. By primeness of
ℑ, we get s = 0 or [w, r] = 0 for each r ∈ ⊤. In the last case, we obtain
w ∈ Z⊤/ℑ. □
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Lemma 2.2. Let ⊤ be a ring, ℑ a prime ideal with ℑ-second kind in-
volution ∗, and ⊤/ℑ 2-torsion free. If [w,w∗] ∈ Z⊤/ℑ

(
w ◦ w∗ ∈ Z⊤/ℑ

)
for each w ∈ ⊤, then ⊤/ℑ is a commutative integral domain.

Proof. Assume that

[w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤. (1)

By linearizing (1), we have

[w, s∗] + [s, w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤. (2)

We have a ℑ-second kind involution ∗. Thus, S⊤ ∩ Z⊤ ̸⊆ ℑ, then S⊤ ∩
Z⊤ ̸= (0), so there exists 0 ̸= k ∈ S⊤ ∩ Z⊤ and since S⊤ ∩ Z⊤ ̸⊆ ℑ,
there exists k ̸∈ ℑ. Suppose that 0 ̸= k ∈ S⊤ ∩Z⊤\ℑ. Replacing w with
kw in (2), we get k([w, s∗]− [s, w∗]) ∈ Z⊤/ℑ for each w, s ∈ ⊤. Using

Lemma 2.1, we find that [w, s∗] − [s, w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤.

Comparing the last relation and (2), we see that 2[w, s∗] ∈ Z⊤/ℑ for

each w, s ∈ ⊤. That is, 2[w, s] ∈ Z⊤/ℑ for each w, s ∈ ⊤. Since ⊤/ℑ
is 2-torsion free, we arrive at [w, s] ∈ Z⊤/ℑ for each w, s ∈ ⊤. Now,
using the similar arguments as used in the proof of [10, Lemma 2.5], we
conclude that ⊤/ℑ is a commutative integral domain. in case w ◦ w∗ ∈
Z⊤/ℑ for each w ∈ ⊤, using a similar approach as the above. □

Proposition 2.3. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind
involution ∗, and ⊤/ℑ 2-torsion free. If ⨿ is a derivation of ⊤, then
[⨿(w), w∗] ∈ Z⊤/ℑ for each w ∈ ⊤ if and only if ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a
commutative integral domain.

Proof. Assume that

[⨿(w), w∗] ∈ Z⊤/ℑ for each w ∈ ⊤. (3)

By linearizing (3), we have

[⨿(w), s∗] + [⨿(s), w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤. (4)

As in the proof of Lemma 2.2, there exists k ̸∈ ℑ, and by the primeness
of ℑ, we see that 0 ̸= k2 ̸∈ ℑ, but 0 ̸= k2 ∈ H⊤ ∩ Z⊤\ℑ. Thus, we can
suppose that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. Replacing w by wh in (4), we get

h([⨿(w), s∗]+[⨿(s), w∗])+[w, s∗]⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (5)
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Multiplying (4) by h and then using it in (5), we find that [w, s∗]⨿(h) ∈
Z⊤/ℑ for each w, s ∈ ⊤. That is, [w, s]⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. By

using Lemma 2.1, we get [w, s] ∈ Z⊤/ℑ for each w, s ∈ ⊤ or ⨿(h) = 0.

If [w, s] ∈ Z⊤/ℑ for each w, s ∈ ⊤, then by Lemma 2.2(i), we get ⊤/ℑ
is a commutative integral domain. In case ⨿(h) = 0. It follows that
⨿(k) = 0. That is,

⨿(z) = 0 for each z ∈ Z⊤. (6)

Replacing w by wk in (4), where k ∈ S⊤ ∩ Z⊤\ℑ and using (6), we get

k([⨿(w), s∗]− [⨿(s), w∗]) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (7)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (4) by k

and then using it in (7), we have k[⨿(w), s∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤,

and since k ̸= 0, we find that [⨿(w), s∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤, that

is, [⨿(w), s] ∈ Z⊤/ℑ for each w, s ∈ ⊤. In particular, [⨿(w), w] ∈ Z⊤/ℑ
for each w ∈ ⊤, by [13, Lemma 2.2], we get ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a
commutative integral domain. □

Theorem 2.4. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind in-
volution ∗, and ⊤/ℑ 2-torsion free. If ⨿ is a derivation of ⊤, then
⨿[w,w∗]− [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤ if and only if ⊤/ℑ is a com-

mutative integral domain. Moreover, if ⨿[w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤,
then ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a commutative integral domain.

Proof. Assume that

⨿[w,w∗]− [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤. (8)

By linearizing (8), we have

⨿[w, s∗] +⨿[s, w∗]− [w, s∗]− [s, w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤. (9)

As we see above, we can assume that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. For each
w, s ∈ ⊤, replacing w by wh in (9), we get

h(⨿[w, s∗] +⨿[s, w∗]− [w, s∗]− [s, w∗]) + ([w, s∗] + [s, w∗])⨿(h) ∈ Z⊤/ℑ.
(10)
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Multiplying (9) by h and then using it in (10), we find that

([w, s∗] + [s, w∗])⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (11)

Using Lemma 2.1, we get [w, s∗] + [s, w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤ or

⨿(h) = 0. In case [w, s∗] + [s, w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤. Replacing
w by wk in the last relation, where k ∈ S⊤ ∩ Z⊤\ℑ and using it, we
get 2k[w, s∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤. That is, [w, s] ∈ Z⊤/ℑ for each
w, s ∈ ⊤ and by using Lemma 2.2(i), we get ⊤/ℑ is a commutative
integral domain. In case ⨿(h) = 0. It follows that ⨿(k) = 0. That is,

⨿(z) = 0 for each z ∈ Z⊤. (12)

Replacing w by wk in (9), where k ∈ S⊤ ∩Z⊤\ℑ and using (12), we get

k(⨿[w, s∗]−⨿[s, w∗]−[w, s∗]+[s, w∗]) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (13)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (9) by k

and then using it in (13), we have k(⨿[w, s∗]− [w, s∗]) ∈ Z⊤/ℑ for each

w, s ∈ ⊤, and since k ̸= 0, we find that ⨿[w, s∗] − [w, s∗] ∈ Z⊤/ℑ for

each w, s ∈ ⊤, that is, ⨿[w, s]− [w, s] ∈ Z⊤/ℑ for each w, s ∈ ⊤, and by
using [13, Theorem 2.3], we get ⊤/ℑ is a commutative integral domain.

Now, assume that

⨿[w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤. (14)

By linearizing (14), we have

⨿[w, s∗] +⨿[s, w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤. (15)

Assume that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. Replacing w by wh in (15), we get

h(⨿[w, s∗]+⨿[s, w∗])+([w, s∗]+[s, w∗])⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤.
(16)

Multiplying (15) by h and then using it in (16), we find that ([w, s∗] +
[s, w∗])⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. Now the same as in (11), we get
⊤/ℑ is a commutative integral domain or

⨿(z) = 0 for each z ∈ Z⊤. (17)
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Replacing w by wk in (15), where k ∈ S⊤ ∩ Z⊤\ℑ and using (17), we
get

k(⨿[w, s∗]−⨿[s, w∗]) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (18)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (15) by k

and then using it in (18), we have k⨿[w, s∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤,

and since k ̸= 0, we find that ⨿[w, s∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤, that

is, ⨿[w, s] ∈ Z⊤/ℑ for each w, s ∈ ⊤, and by using [13, Theorem 2.3], we
get ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a commutative integral domain. □

Theorem 2.5. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind in-
volution ∗, and ⊤/ℑ 2-torsion free. If ⨿ is a derivation of ⊤, then
⨿[w,w∗] + [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤ if and only if ⊤/ℑ is a
commutative integral domain.

Proof. Using the same technics as in the preceding proof, it is obvious
to see that ⨿[w,w∗] + [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤ implies that ⊤/ℑ
is a commutative integral domain. □

Theorem 2.6. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind in-
volution ∗, and ⊤/ℑ 2-torsion free. If ⨿1 and ⨿2 are derivation of
⊤, then [⨿1(w), w∗] + [w,⨿2(w∗)] − [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤
if and only if ⊤/ℑ is a commutative integral domain. Moreover, if
[⨿1(w), w∗]+[w,⨿2(w∗)] ∈ Z⊤/ℑ for each w ∈ ⊤, then (⨿1(⊤),⨿2(⊤)) ⊆
(ℑ,ℑ) or ⊤/ℑ is a commutative integral domain.

Proof. Assume that

[⨿1(w), w∗] + [w,⨿2(w∗)]− [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤. (19)

By linearizing (19), we have

[⨿1(w), s∗] + [⨿1(s), w∗] + [w,⨿2(s∗)] (20)

+[s,⨿2(w∗)]− [w, s∗]− [s, w∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤.

Assume that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. Replacing w by wh in (20), we get

h([⨿1(w), s∗] + [⨿1(s), w∗] + [w,⨿2(s∗)] + [s,⨿2(w∗)]− [w, s∗]− [s, w∗])

(21)

+[w, s∗]⨿1(h) + [s, w∗]⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤.



COMMUTATIVITY AND PRIME IDEALS IN RINGS WITH... 9

Multiplying (20) by h and then using it in (21), we find that

[w, s∗]⨿1(h) + [s, w∗]⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (22)

Putting s = w, we get [w,w∗](⨿1(h) + ⨿2(h)) ∈ Z⊤/ℑ for each w ∈ ⊤.

Using Lemma 2.1, we have [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤ or ⨿1(h) +

⨿2(h) = 0. In case [w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤ and by Lemma 2.2(i),

we get⊤/ℑ is a commutative integral domain. In case⨿1(h)+⨿2(h) = 0,
we obtain

⨿2(h) = −⨿1(h). (23)

Using (23) in (22), we get [w, s∗]⨿1(h) − [s, w∗]⨿1(h) ∈ Z⊤/ℑ for each

w, s ∈ ⊤. that is, ([w, s∗] − [s, w∗])⨿1(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤.
Now, application of similar arguments as used after (11), we get ⊤/ℑ is
a commutative integral domain or ⨿1(z) = 0 for each z ∈ Z⊤. Using the
last relation in (23), we get ⨿2(z) = 0 for each z ∈ Z⊤. Thus,

⨿1(z) = 0 = ⨿2(z) for each z ∈ Z⊤. (24)

Replacing w by wk in (20), where k ∈ S⊤ ∩ Z⊤\ℑ and using (24), we
get

k([⨿1(w), s∗]− [⨿1(s), w∗] + [w,⨿2(s∗)] (25)

−[s,⨿2(w∗)]− [w, s∗] + [s, w∗]) ∈ Z⊤/ℑ for each w, s ∈ ⊤.

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (20) by k and

then using it in (25), we have k([⨿1(w), s∗]+[w,⨿2(s∗)]−[w, s∗]) ∈ Z⊤/ℑ
for each w, s ∈ ⊤, and since k ̸= 0, we find that [⨿1(w), s∗]+[w,⨿2(s∗)]−
[w, s∗] ∈ Z⊤/ℑ for each w, s ∈ ⊤, that is, [⨿1(w), s]+[w,⨿2(s)]− [w, s] ∈
Z⊤/ℑ for each w, s ∈ ⊤, and by using [13, Theorem 2.6], we get ⊤/ℑ is
a commutative integral domain.

Now, assume that

[⨿1(w), w∗] + [w,⨿2(w∗)] ∈ Z⊤/ℑ for each w ∈ ⊤. (26)

By linearizing (26), we have

[⨿1(w), s∗] + [⨿1(s), w∗] + [w,⨿2(s∗)] + [s,⨿2(w∗)] ∈ Z⊤/ℑ, (27)
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for each w, s ∈ ⊤. Assume that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. Replacing w by
wh in (27), we get

h([⨿1(w), s∗] + [⨿1(s), w∗] + [w,⨿2(s∗)] + [s,⨿2(w∗)]) (28)

+[w, s∗]⨿1(h) + [s, w∗]⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤.

Multiplying (27) by h and then using it in (28), we find that [w, s∗]⨿1(h)+
[s, w∗]⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. Now the same as in (22), we get
⊤/ℑ is a commutative integral domain or

⨿1(z) = 0 = ⨿2(z) for each z ∈ Z⊤. (29)

For each w, s ∈ ⊤, replacing w by wk in (27), where k ∈ S⊤∩Z⊤\ℑ and
using (29), we get

k([⨿1(w), s∗]− [⨿1(s), w∗] + [w,⨿2(s∗)]− [s,⨿2(w∗)]) ∈ Z⊤/ℑ. (30)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (27) by k and

then using it in (30), we have 2k([⨿1(w), s∗] + [w,⨿2(s∗)]) ∈ Z⊤/ℑ for

each w, s ∈ ⊤, and since k ̸= 0, we find that [⨿1(w), s∗] + [w,⨿2(s∗)] ∈
Z⊤/ℑ for each w, s ∈ ⊤, that is, [⨿1(w), s] + [w,⨿2(s)] ∈ Z⊤/ℑ for each
w, s ∈ ⊤, and by using [13, Theorem 2.6], we get (⨿1(⊤),⨿2(⊤)) ⊆
(ℑ,ℑ) or ⊤/ℑ is a commutative integral domain. □

3 Conditions Involving Jordan Products

Building on the analysis of Lie products in the previous section, we now
shift our focus to Jordan products and their role in shaping the com-
mutativity of rings with involutions. This section provides a compre-
hensive investigation of how Jordan products interact with derivations
and second-kind involutions, offering a complementary perspective on
the conditions that govern the commutativity of the quotient ring ⊤/ℑ.

Lemma 3.1. Let ⊤ be a ring, ℑ a semiprime ideal, I a non-zero ideal
such that ℑ ⫋ I. If ⨿ is a derivation of ⊤, and ⨿(w) ◦ w ∈ Z⊤/ℑ for
each w ∈ I, then [⨿(w), w] ∈ ℑ for each w ∈ I.



COMMUTATIVITY AND PRIME IDEALS IN RINGS WITH... 11

Proof. Assume that

⨿(w) ◦ w ∈ Z⊤/ℑ for each w ∈ I. (31)

By linearizing (31), we have

⨿(w) ◦ s+⨿(s) ◦ w ∈ Z⊤/ℑ for each w, s ∈ I. (32)

For each w, s ∈ I, replacing s by sw in (32), we get

(⨿(w) ◦ s+⨿(s) ◦ w)w−s[⨿(w), w]+(s ◦ w)⨿(w)+s[⨿(w), w] ∈ Z⊤/ℑ.

That is,

(⨿(w) ◦ s+⨿(s) ◦ w)w + (s ◦ w)⨿(w) ∈ Z⊤/ℑ for each w, s ∈ I.

Using (32) in the last relation, we obtain [(s ◦ w)⨿(w), w] = 0. Hence,
[(s ◦ w)⨿(w), w] ∈ ℑ, and so [sw⨿(w) + ws⨿(w), w] ∈ ℑ it implies that
sw⨿(w)w+ws⨿(w)w−wsw⨿(w)−w2s⨿(w) ∈ ℑ. Replacing s by rs in
the last relation, and then left multiplying it by r, and then subtracting
them, where r ∈ ⊤, we get [w, r]s[⨿(w), w] + [r, w2]s⨿(w) ∈ ℑ. Putting
r = ⨿(w), we have

[⨿(w), w]s[⨿(w), w]− [⨿(w), w2]s⨿(w) ∈ ℑ for each w, s ∈ I. (33)

From (31), we get [⨿(w) ◦ w,w] = 0. That is, [⨿(w) ◦ w,w] ∈ ℑ.
Hence, [⨿(w)w + w⨿(w), w] ∈ ℑ. Thus, [⨿(w), w]w + w[⨿(w), w] ∈ ℑ.
That is, [⨿(w), w2] ∈ ℑ. Using the last relation in (33), we see that
[⨿(w), w]s[⨿(w), w] ∈ ℑ for each w, s ∈ I. By the semiprimeness of ⊤,
we find that [⨿(w), w] ∈ ℑ for each w ∈ I. □

Lemma 3.2. Let ⊤ be a ring, ℑ a prime ideal, I a non-zero ideal such
that ℑ ⫋ I, and ⊤/ℑ 2-torsion free. If ⨿ is a derivation of ⊤, then
⨿(w) ◦ w ∈ Z⊤/ℑ for each w ∈ I, if and only if ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a
commutative integral domain.

Proposition 3.3. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind
involution ∗, and ⊤/ℑ 2-torsion free. If ⨿ is a derivation of ⊤, then
⨿(w) ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤ if and only if ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a
commutative integral domain.



12 H. ALNOGHASHI et al.

Proof. Assume that

⨿(w) ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤. (34)

By linearizing (34), we have

⨿(w) ◦ s∗ +⨿(s) ◦ w∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤. (35)

Assume that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. Replacing w by wh in (35), we get

h(⨿(w) ◦ s∗+⨿(s) ◦ w∗)+w ◦ s∗⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (36)

Multiplying (35) by h and then using it in (36), we find that w ◦ s∗⨿(h) ∈
Z⊤/ℑ for each w, s ∈ ⊤. That is, w ◦ s⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. By

using Lemma 2.1, we get w ◦ s ∈ Z⊤/ℑ for each w, s ∈ ⊤ or ⨿(h) = 0.
If w ◦ s ∈ Z⊤/ℑ for each w, s ∈ ⊤, then by Lemma 2.2(i), we get ⊤/ℑ
is a commutative integral domain. In case ⨿(h) = 0. It follows that
⨿(k) = 0. That is,

⨿(z) = 0 for each z ∈ Z⊤. (37)

Replacing w by wk in (35), where k ∈ S⊤ ∩ Z⊤\ℑ and using (37), we
get

k(⨿(w) ◦ s∗ −⨿(s) ◦ w∗) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (38)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (35) by k and

then using it in (38), we have k⨿(w) ◦ s∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤, and

since k ̸= 0, we find that ⨿(w) ◦ s∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤, that is,

⨿(w) ◦ s ∈ Z⊤/ℑ for each w, s ∈ ⊤. In particular, ⨿(w) ◦ w ∈ Z⊤/ℑ for
each w ∈ ⊤, by Lemma 3.2, we get ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a commutative
integral domain. □

Theorem 3.4. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind invo-
lution ∗, ⊤/ℑ 2-torsion free, and ⨿ a derivation of ⊤. If ⨿(w ◦ w∗) −
w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤ if and only if ⊤/ℑ is a commutative

integral domain. Moreover, if ⨿(w ◦ w∗) ∈ Z⊤/ℑ for each w ∈ ⊤, then
⨿(⊤) ⊆ ℑ or ⊤/ℑ is a commutative integral domain.
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Proof. Assume that

⨿(w ◦ w∗)− w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤. (39)

By linearizing (39), we have

⨿(w ◦ s∗)+⨿(s ◦ w∗)−w ◦ s∗−s ◦ w∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤. (40)

Assume that 0 ̸= h ∈ H⊤∩Z⊤\ℑ. For each w, s ∈ ⊤, replacing w by wh
in (40), we get

h(⨿(w ◦ s∗)+⨿(s ◦ w∗)−w ◦ s∗−s ◦ w∗)+(w ◦ s∗+s ◦ w∗)⨿(h) ∈ Z⊤/ℑ.
(41)

Multiplying (40) by h and then using it in (41), we find that

(w ◦ s∗ + s ◦ w∗)⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (42)

Using Lemma 2.1, we get w ◦ s∗ + s ◦ w∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤ or

⨿(h) = 0. In case w ◦ s∗ + s ◦ w∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤. Replacing
w by wk in the last relation, where k ∈ S⊤ ∩ Z⊤\ℑ and using it, we
get 2kw ◦ s∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤. That is, w ◦ s ∈ Z⊤/ℑ for each
w, s ∈ ⊤ and by using Lemma 2.2(i), we get ⊤/ℑ is a commutative
integral domain. In case ⨿(h) = 0. It follows that ⨿(k) = 0. That is,

⨿(z) = 0 for each z ∈ Z⊤. (43)

Replacing w by wk in (40), where k ∈ S⊤ ∩ Z⊤\ℑ and using (43), we
get

k(⨿(w ◦ s∗)−⨿(s ◦ w∗)− w ◦ s∗ + s ◦ w∗) ∈ Z⊤/ℑ for each w, s ∈ ⊤.
(44)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (40) by k

and then using it in (44), we have k(⨿(w ◦ s∗)−w ◦ s∗) ∈ Z⊤/ℑ for each

w, s ∈ ⊤, and since k ̸= 0, we find that ⨿(w ◦ s∗) − w ◦ s∗ ∈ Z⊤/ℑ for
each w, s ∈ ⊤, that is,

⨿(w ◦ s)− w ◦ s ∈ Z⊤/ℑ for each w, s ∈ ⊤. (45)
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Replacing w with wr in (45), where r ∈ ⊤, we have

(⨿(w ◦ s)− w ◦ s)r + (w ◦ s)⨿(r) (46)

+⨿(w)[r, s] + w⨿([r, s]) + w[r, s] ∈ Z⊤/ℑ for each w, s, r ∈ ⊤.

That is,

[(w ◦ s)⨿(r)+⨿(w)[r, s]+w⨿([r, s])+w[r, s], r] = 0 for each w, s, r ∈ ⊤.

Hence,

[(w◦s)⨿(r)+⨿(w)[r, s]+w⨿([r, s])+w[r, s], r] ∈ ℑ for each w, s, r ∈ ⊤.

Putting s = w = k in the last relation, we get [2k2⨿(r), r] ∈ ℑ for each
r ∈ ⊤. Thus, [⨿(r), r] ∈ ℑ for each r ∈ ⊤. Using [13, Lemma 2.2],
we get ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a commutative integral domain. In case
⨿(⊤) ⊆ ℑ, using the last relation in (39) and Lemma 2.2, we conclude
that ⊤/ℑ is a commutative integral domain.

Now, assume that

⨿(w ◦ w∗) ∈ Z⊤/ℑ for each w ∈ ⊤. (47)

By linearizing (47), we have

⨿(w ◦ s∗) +⨿(s ◦ w∗) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (48)

Assume that 0 ̸= h ∈ H⊤∩Z⊤\ℑ. For each w, s ∈ ⊤, replacing w by wh
in (48), we get

h(⨿(w ◦ s∗) +⨿(s ◦ w∗)) + (w ◦ s∗ + s ◦ w∗)⨿(h) ∈ Z⊤/ℑ. (49)

Multiplying (48) by h and then using it in (49), we find that

(w ◦ s∗ + s ◦ w∗)⨿(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (50)

Hence using similar arguments as used after Eq. (11), we find that
w ◦ s ∈ Z⊤/ℑ for each w, s ∈ ⊤ or ⨿(h) = 0. In case w ◦ s ∈ Z⊤/ℑ for
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each w, s ∈ ⊤ and by using Lemma 2.2(i), we get ⊤/ℑ is a commutative
integral domain. Now, in case ⨿(h) = 0, we get

⨿(z) = 0 for each z ∈ Z⊤. (51)

Replacing w by wk in (48), where k ∈ S⊤ ∩ Z⊤\ℑ and using (51), we
get

k(⨿(w ◦ s∗)−⨿(s ◦ w∗)) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (52)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (48) by k

and then using it in (52), we have k⨿(w ◦ s∗) ∈ Z⊤/ℑ for each w, s ∈ ⊤,

and since k ̸= 0, we find that ⨿(w ◦ s∗) ∈ Z⊤/ℑ for each w, s ∈ ⊤, that

is, ⨿(w ◦ s) ∈ Z⊤/ℑ for each w, s ∈ ⊤. Using the same technique as used
after (45), we get ⨿(⊤) ⊆ ℑ or ⊤/ℑ is a commutative integral domain.
□

Theorem 3.5. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind in-
volution ∗, and ⊤/ℑ 2-torsion free. If ⨿ is a derivation of ⊤, then
⨿(w ◦ w∗) + w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤ if and only if ⊤/ℑ is a
commutative integral domain.

Proof. Using the same technics as in the preceding proof, it is obvious
to see that ⨿(w ◦ w∗)+w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤ implies that ⊤/ℑ
is a commutative integral domain. □

Theorem 3.6. Let ⊤ be a ring, ℑ a prime ideal, ℑ-second kind in-
volution ∗, and ⊤/ℑ 2-torsion free. If ⨿1 and ⨿2 are derivation of
⊤, then ⨿1(w) ◦ w∗ + w ◦ ⨿2(w∗) − w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤
if and only if ⊤/ℑ is a commutative integral domain. Moreover, if
⨿1(w) ◦ w∗+w ◦ ⨿2(w∗) ∈ Z⊤/ℑ for each w ∈ ⊤, then (⨿1(⊤),⨿2(⊤)) ⊆
(ℑ,ℑ) or ⊤/ℑ is a commutative integral domain.

Proof. Assume that

⨿1(w) ◦ w∗ + w ◦ ⨿2(w∗)− w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤. (53)

By linearizing (53), we have

⨿1(w) ◦ s∗+⨿1(s) ◦ w∗+w ◦ ⨿2(s∗)+s ◦ ⨿2(w∗)−w ◦ s∗−s ◦ w∗ ∈ Z⊤/ℑ,
(54)
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for each w, s ∈ ⊤. Assume that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. Replacing w by
wh in (54), we get

h(⨿1(w) ◦ s∗ +⨿1(s) ◦ w∗ + w ◦ ⨿2(s∗) + s ◦ ⨿2(w∗)− w ◦ s∗ − s ◦ w∗)

(55)

+(w ◦ s∗)⨿1(h) + (s ◦ w∗)⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤.

Multiplying (54) by h and then using it in (55), we find that

(w ◦ s∗)⨿1(h) + (s ◦ w∗)⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. (56)

Putting s = w, we get (w ◦ w∗)(⨿1(h) + ⨿2(h)) ∈ Z⊤/ℑ for each w ∈
⊤. Using Lemma 2.1, we have w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤ or

⨿1(h) + ⨿2(h) = 0. In case w ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤ and by
Lemma 2.2(i), we get ⊤/ℑ is a commutative integral domain. In case
⨿1(h) +⨿2(h) = 0, we obtain

⨿2(h) = −⨿1(h). (57)

Using (57) in (56), we get w ◦ s∗⨿1(h) − s ◦ w∗⨿1(h) ∈ Z⊤/ℑ for each

w, s ∈ ⊤. That is, (w ◦ s∗−s ◦ w∗)⨿1(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. Now,
using the same arguments as used in (50), we get ⊤/ℑ is a commutative
integral domain or ⨿1(z) = 0 for each z ∈ Z⊤. Using the last relation in
(57), we get ⨿2(z) = 0 for each z ∈ Z⊤. Thus,

⨿1(z) = 0 = ⨿2(z) for each z ∈ Z⊤. (58)

Replacing w by wk in (54), where k ∈ S⊤ ∩ Z⊤\ℑ and using (58), we
get

k(⨿1(w) ◦ s∗ −⨿1(s) ◦ w∗ + w ◦ ⨿2(s∗) (59)

−s ◦ ⨿2(w∗)− w ◦ s∗ + s ◦ w∗) ∈ Z⊤/ℑ for each w, s ∈ ⊤.

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (54) by k and

then using it in (59), we have k(⨿1(w) ◦ s∗+w ◦ ⨿2(s∗)−w ◦ s∗) ∈ Z⊤/ℑ
for each w, s ∈ ⊤, and since k ̸= 0, we find that ⨿1(w) ◦ s∗+w ◦ ⨿2(s∗)−
w ◦ s∗ ∈ Z⊤/ℑ for each w, s ∈ ⊤, that is, ⨿1(w) ◦ s+w ◦ ⨿2(s)−w ◦ s ∈
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Z⊤/ℑ for each w, s ∈ ⊤, and by using [13, Theorem 2.8], we get ⊤/ℑ is
a commutative integral domain.

Now, assume that

⨿1(w) ◦ w∗ + w ◦ ⨿2(w∗) ∈ Z⊤/ℑ for each w ∈ ⊤. (60)

By linearizing (60), we have

⨿1(w) ◦ s∗ +⨿1(s) ◦ w∗ + w ◦ ⨿2(s∗) + s ◦ ⨿2(w∗) ∈ Z⊤/ℑ, (61)

for each w, s ∈ ⊤. Assume that 0 ̸= h ∈ H⊤ ∩ Z⊤\ℑ. Replacing w by
wh in (61), we get

h(⨿1(w) ◦ s∗ +⨿1(s) ◦ w∗ + w ◦ ⨿2(s∗) + s ◦ ⨿2(w∗)) (62)

+w ◦ s∗⨿1(h) + s ◦ w∗⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤.

Multiplying (61) by h and then using it in (62), we find that w ◦ s∗⨿1(h)+
s ◦ w∗⨿2(h) ∈ Z⊤/ℑ for each w, s ∈ ⊤. Now, use the similar arguments
as used in (56), we get ⊤/ℑ is a commutative integral domain or (58).
That is,

⨿1(z) = 0 = ⨿2(z) for each z ∈ Z⊤. (63)

For each w, s ∈ ⊤, replacing w by wk in (61), where k ∈ S⊤∩Z⊤\ℑ and
using (63), we get

k(⨿1(w) ◦ s∗ −⨿1(s) ◦ w∗ + w ◦ ⨿2(s∗)− s ◦ ⨿2(w∗)) ∈ Z⊤/ℑ. (64)

Since k ∈ Z⊤/ℑ ⊆ Z⊤/ℑ, we obtain k ∈ Z⊤/ℑ. Multiplying (61) by k and

then using it in (64), we have 2k(⨿1(w) ◦ s∗ + w ◦ ⨿2(s∗)) ∈ Z⊤/ℑ for

each w, s ∈ ⊤, and since k ̸= 0, we find that ⨿1(w) ◦ s∗ + w ◦ ⨿2(s∗) ∈
Z⊤/ℑ for each w, s ∈ ⊤, that is, ⨿1(w) ◦ s + w ◦ ⨿2(s) ∈ Z⊤/ℑ for each
w, s ∈ ⊤, and by using [13, Theorem 2.8], we get (⨿1(⊤),⨿2(⊤)) ⊆
(ℑ,ℑ) or ⊤/ℑ is a commutative integral domain. □

4 Illustrative Examples

In this section, we provide non-trivial examples to illustrate and val-
idate the main concepts and results established in this paper. These
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examples demonstrate the applicability of the derived theorems, clarify
the behavior of key notions, and highlight the significance of the intro-
duced structures. By examining concrete cases, we offer deeper insight
into the theoretical results, making them more accessible and compre-
hensible. The presented examples are designed to emphasize the role
of prime ideals, derivations, and second-kind involutions within specific
ring constructions.

Example 4.1. Let C be the set of complex numbers, R be the set of
real numbers, and i =

√
−1. Let C[x] denote the ring of polynomials

in x with coefficients in C. Consider the ring ⊤ = C[x] × C and the
ideal ℑ = C[x] × (0). It follows that ℑ is a prime ideal of ⊤, and the
quotient ring ⊤/ℑ is 2-torsion-free. Define a derivation ⨿ : ⊤ → ⊤
by ⨿(p(x), a) = (p′(x), 0) for all (p(x), a) ∈ ⊤, where p′(x) denotes the
derivative of p(x). Define an involution ∗ : ⊤ → ⊤ by (p(x), a)∗ =
(p(x), a), where p(x) and a denote the complex conjugates of p(x) and
a, respectively. Then ∗ is a ℑ-second kind involution. The set of skew-
symmetric elements in ⊤ is S⊤ = iR[x] × iR, and the center of ⊤ is
Z⊤ = ⊤ The quotient ring ⊤/ℑ is a commutative integral domain,
⨿(⊤) ⊆ ℑ, and all identities presented in our results are satisfied.

Example 4.2. As in Example 4.1, let C,R, i,C[x] be as defined. Con-
sider the ring ⊤ = C[x] × M2(C), where M2(C) is the ring of 2 × 2
complex matrices, and let ℑ = C[x] × (0). Then ℑ is a prime ideal
of ⊤, and the quotient ring ⊤/ℑ is 2-torsion-free. Define a derivation
⨿ : ⊤ → ⊤ by ⨿(p(x), A) = (p′(x), 0) for all (p(x), A) ∈ ⊤, where
p′(x) denotes the derivative of p(x). Define an involution ∗ : ⊤ → ⊤ by
(p(x), A)∗ = (p(x), AT ), where p(x) denotes the complex conjugate of
the polynomial p(x), and AT is the conjugate transpose of A ∈ M2(C).
Then ∗ is an involution. The set of skew-symmetric elements in ⊤ is

S⊤ = iR[x]× {A ∈ M2(C) | AT = −A}.

The center of ⊤ is

Z⊤ = C[x]× {aI2 | a ∈ C},

where I2 is the identity matrix. Then

S⊤ ∩ Z⊤ = iR[x]× {aI2 | a ∈ iR} ̸⊆ ℑ.
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Therefore, ∗ is a ℑ-second kind involution. The quotient ring ⊤/ℑ is
not a commutative integral domain, ⨿(⊤) ⊆ ℑ, and the identities

1. [⨿(w), w∗] ∈ Z⊤/ℑ for each w ∈ ⊤, (Proposition 2.3),

2. ⨿[w,w∗] ∈ Z⊤/ℑ for each w ∈ ⊤, (Theorem 2.4),

3. [⨿1(w), w∗] + [w,⨿2(w∗)] ∈ Z⊤/ℑ for each w ∈ ⊤, (Theorem 2.6),

4. ⨿(w) ◦ w∗ ∈ Z⊤/ℑ for each w ∈ ⊤, (Proposition 3.3),

5. ⨿(w ◦ w∗) ∈ Z⊤/ℑ for each w ∈ ⊤, (Theorem 3.4), and

6. ⨿1(w) ◦ w∗ + w ◦ ⨿2(w∗) ∈ Z⊤/ℑ for each w ∈ ⊤, (Theorem 3.6)

are satisfied.

Here, we will give the following example to show that if the condition
of ℑ-second kind involution is not imposed, then our results may not be
true

Example 4.3. Let ⊤ = M2(Z) be a ring, ℑ = (0) a prime ideal of ⊤,

B =

(
s r
t u

)
∈ ⊤, and ∗1 : ⊤ → ⊤ a ℑ-first kind involution such that

B∗1 =

(
u −r
−t s

)
, where s, r, t, u ∈ Z. Let ⨿ : ⊤ → ⊤ be any inner

derivation. Then ⨿([B,B∗1 ]) ± [B,B∗1 ] ∈ Z⊤/ℑ, ⨿([B,B∗1 ]) ∈ Z⊤/ℑ,

[⨿(B), B∗1 ]+[B,⨿(B∗1)]− [B,B∗1 ] ∈ Z⊤/ℑ, [⨿(B), B∗1 ]+[B,⨿(B∗1)] ∈
Z⊤/ℑ, ⨿(B ◦B∗1)±B ◦B∗1 ∈ Z⊤/ℑ, ⨿(B ◦B∗1) ∈ Z⊤/ℑ, ⨿(B) ◦B∗1 +

B ◦ ⨿(B∗1)−B ◦B∗1 ∈ Z⊤/ℑ, and ⨿(B) ◦B∗1 +B ◦ ⨿(B∗1) ∈ Z⊤/ℑ for
each B ∈ ⊤.

We demonstrate the necessity of the condition of the primeness in
our results through the following illustrative example.

Example 4.4. Let ⊤, ∗1, and B be as in Example 4.3, S = ⊤ × C a
ring, ℑ = (0) × (0) an ideal of S, ZS/ℑ = Z⊤ × C, W = B × v ∈ S,
where v = q1 + iq2 and q1, q2 ∈ R and ∗2 : C → C a second kind
involution such that v∗2 = q1 − iq2, and ∗ : S → S a ℑ-second kind
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involution such that W ∗ = B∗1 × v∗2 . Let ⨿ : S → S be any inner
derivation. Then ⨿([W,W ∗]) ± [W,W ∗] ∈ ZS/ℑ, ⨿([W,W ∗]) ∈ ZS/ℑ,

[⨿(W ),W ∗]+[W,⨿(W ∗)]−[W,W ∗] ∈ ZS/ℑ, [⨿(W ),W ∗]+[W,⨿(W ∗)] ∈
ZS/ℑ, ⨿(W ◦W ∗)±W ◦W ∗ ∈ ZS/ℑ, ⨿(W ◦W ∗) ∈ ZS/ℑ, ⨿(W ) ◦W ∗+

W ◦ ⨿(W ∗) − W ◦W ∗ ∈ ZS/ℑ, and ⨿(W ) ◦W ∗ + W ◦ ⨿(W ∗) ∈ ZS/ℑ
for each W ∈ S.

Conclusion

In this paper, we have delved into the intricate interplay between deriva-
tions, involutions, and the commutativity of prime quotient rings. We
have significantly generalized classical results, such as Posner’s theorem,
by examining these concepts within a broader context of associative rings
equipped with second-kind involutions. Our work establishes new crite-
ria for determining the commutativity of quotient rings ⊤/ℑ, focusing
on the pivotal roles of Lie and Jordan products.

Our findings demonstrate that specific identities involving deriva-
tions and involutions are critical in characterizing the structure of ⊤/ℑ.
In particular, we have shown that the conditions [⨿(w), w∗] ∈ Z⊤/ℑ and

⨿[w,w∗]− [w,w∗] ∈ Z⊤/ℑ (Theorem 2.4, Proposition 2.3) for derivations
and their relation to commutativity, provide novel analytical pathways
to uncover the structure of ⊤/ℑ. Similarly, the investigation of Jor-
dan products (Theorem 3.4, Proposition 3.3), through conditions such
as ⨿(w ◦ w∗) − w ◦ w∗ ∈ Z⊤/ℑ and ⨿(w) ◦ w∗ ∈ Z⊤/ℑ, reveal the re-
lationship between derivations, involution and commutativity of ⊤/ℑ,
when the derivation operates on the Jordan products of elements within
the ring. Moreover, the identities for two derivations are explored in
Theorem 2.6 and Theorem 3.6, where the structure of quotient ring is
characterized through conditions involving the actions of two derivations
on the Lie and Jordan products respectively. Specifically, our work has
shown that if these identities are fulfilled, then ⊤/ℑ is a commutative
integral domain, or the derivations map the whole ring into the prime
ideal.

The results presented here highlight the significance of the imposed
conditions on the derivations and involutions, and the type of product
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they operate on. The theoretical analysis developed in this paper pro-
vides valuable tools for studying the structure of noncommutative rings
and their quotient structures.

It is essential to acknowledge that our results are contingent on the
assumption of prime ideals, the rings to be 2-torsion free and the pres-
ence of second-kind involutions. Relaxing these constraints presents sig-
nificant challenges but also opens up exciting opportunities for future
research. Future investigations could focus on developing analogous re-
sults for more general classes of rings, such as semiprime quotient rings
and rings with different types of involutions. Furthermore, we anticipate
that our framework can motivate the exploration of computational meth-
ods for testing the commutativity conditions developed in this paper,
particularly within the context of symbolic computation in noncommu-
tative polynomial rings. Additionally, the study of these concepts within
the context of ∗-algebras might bring new insights to functional analysis
and operator theory.

The broader goal of this work is to improve our understanding of
the interplay between derivations, involutions, and the underlying ring
structure. The theoretical insights we have provided pave the way for
further exploration in the landscape of noncommutative algebra and its
diverse applications.
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