Journal of Mathematical Extension Vol. 18, No. 9, (2024) (1)1-18 URL: https://doi.org/10.30495/JME.2024.3085 ISSN: 1735-8299 Original Research Paper

On the Parseval Continuous K-g-Frames and Their Duals

N. S. Banitaba

Yazd University

S. M. Moshtaghioun^{*} Yazd University

Abstract. In this article, we explore the stability properties of continuous K-g-frames and provide various characterizations related to synthesis and frame operators. Additionally, we extend certain results from continuous g-frames to tight and parseval continuous K-g-frames. Furthermore, we establish a continuous K-g-dual for Parseval continuous K-g-frames in Hilbert spaces, along with an analysis of their dual properties.

AMS Subject Classification: 46B15; 42C15 **Keywords and Phrases:** Continuous *K-g*-dual, continuous *K-g*-frame, frame operator

1 Introduction

The concept of frames in Hilbert spaces was first introduced by Duffin and Schaeffer [12], when they studied some problems in nonharmonic Fourier series in 1952. Daubechies [9] reintroduced the frames as a

Received: November 2023; Accepted: January 2025

^{*}Corresponding Author

generalization of orthonormal bases. Frames are very important and useful in signal processing, image processing, sampling theory and coding theory; for more details see [6, 8, 10].

Note that a sequence $\{f_n\}_{n=1}^{\infty}$ in a separable Hilbert space H is called a Bessel sequence if there exists B > 0 such that

$$\sum_{n=1}^{\infty} |\langle f, f_n \rangle|^2 \le B ||f||^2, \quad f \in H.$$

By Theorem 3.2.3 of [7], $\{f_n\}_{n=1}^{\infty}$ is a Bessel sequence if and only if the mapping, definde by

$$T: l^2 \longrightarrow H, \quad T(\{c_n\}_{n=1}^\infty) := \sum_{n=1}^\infty c_n f_n,$$

is a well-defined bounded linear operator with $|| T || \leq \sqrt{B}$. Then T is called the synthesis operator of $\{f_n\}_{n=1}^{\infty}$. So, the adjoint operator of T is given by

$$T^*(f) = \{\langle f, f_n \rangle\}_{n=1}^{\infty}, \quad f \in H,$$

and is called the analysis operator of $\{f_n\}_{n=1}^{\infty}$. A sequence $F = \{f_n\}_{n=1}^{\infty}$ in H is called a frame for H, if there exist constants A, B > 0 such that

$$A||f||^2 \le \sum_{n=1}^{\infty} |\langle f, f_n \rangle|^2 \le B||f||^2, \quad f \in H.$$

The constants A and B are called the lower and upper frame bounds, respectively. We say that a frame is tight (resp. Parseval) if one can choose A = B (resp. A = B = 1). The frame operator of a frame $\{f_n\}_{n=1}^{\infty}$ is defined by

$$S: H \longrightarrow H, \quad Sf = TT^*f = \sum_{n=1}^{\infty} \langle f, f_n \rangle f_n, \quad f \in H,$$

which is a bounded, positive and invertible operator; see Lemma 5.1.5 of [7].

The important of paying attention to this issue, caused different generalizations of frames to be proposed. In 2006, Sun [23] introduced g-frames as a generalization of discreate frames. He gave a characterization of g-frames and studied g-Riesz bases, g-orthonormal bases and dual g-frames. Continuous frames as another generalization of frames with respect to a family of operators indexed by a locally compact space endowed with a Radon measure, was proposed by Ali et al [3]. Some another authors investigated continuous frame theory and discussed the dual of continuous frames, continuous frame operator and pre-frame operator, etc [14, 16, 22].

In 2012, K-frames was introduced by Găvruta [15], as a new generalization of frames. It is a frame for the range of a bounded linear operator K on a Hilbert space H, that reconstruct the members of range of K. Recently, Abtahi et al [2] introduced and studied the space of all operators $K \in B(H)$, such that for a given Bessel sequence $\{f_n\}_{n=1}^{\infty}$, to be a K-frame. They showed that in a separable Hilbert space H, if K, L_1 and L_2 belong to B(H) such that $R(K) \subseteq R(L_1K) \cap R(L_2K)$ and $F = \{f_n\}_{n=1}^{\infty}$ and $G = \{g_n\}_{n=1}^{\infty}$ are two strongly disjoint K-frames in H, then $L_1F + L_2G$ is a K-frame for H. We refer the reader to [2, 11, 17, 18, 24].

Alizadeh et al in [4] gave the equivalent characterization of continuous K-g-frames (c-K-g-frames) for H and they showed that $\{\Lambda_{\omega}K^*\}_{\omega\in\Omega}$ is a c-K-g-frame for H, where $K \in B(H)$ and $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$. Moreover, they proved that $\{\Lambda_{\omega}T^*\}_{\omega\in\Omega}$ is a c-TK-g-frame for H, if $T, K \in B(H)$ and $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-K-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$. Also, they introduced the perturbation of c-K-g-frames and proved that if $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-K-g-frame for H and $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ is a family of strongly measurable operators, then $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ is a c-K-g-frame for H.

In this article, we generalize some results from K-frames and c-g-frames to tight and Parseval c-K-g-frames. Then by remebering the concept of c-K-g-duals, we obtain some results about them. Throughout this article, (Ω, μ) is a measure space, H, H_1 and H_2 are separable complex Hilbert spaces and $B(H_1, H_2)$ is the Banach space of all bounded operators from H_1 into H_2 . We use B(H) as the abbreviation of B(H, H). Also, R(K) denotes the range of the operator $K \in B(H)$ and $\{H_{\omega}\}_{\omega \in \Omega}$ is a family of Hilbert spaces. At first, we review some definitions of generalized frames.

Definition 1.1. (see [21]) Let $K \in B(H)$ be a bounded operator. A sequence $\{f_n\}_{n=1}^{\infty}$ in H is called a K-frame for H, if there exist two positive constants A and B such that

$$A \| K^* f \|^2 \le \sum_{n=1}^{\infty} |\langle f, f_n \rangle|^2 \le B \| f \|^2, \quad f \in H.$$

If K = I is the identity operator on H, then K-frames are ordinary frames.

Definition 1.2. (see [4]) A mapping $F = \{f_{\omega}\}_{\omega \in \Omega}$ from a measure space Ω into $\bigcup_{\omega \in \Omega} H_{\omega}$ is called strongly measurable, if F as a mapping from Ω to $\bigoplus_{\omega \in \Omega} H_{\omega}$ to be measurable.

Definition 1.3. (see [4]) Let $K \in B(H)$. A family $\{\Lambda_{\omega} \in B(H, H_{\omega}) : \omega \in \Omega\}$ is called a continuous K-g-frame (c-K-g-frame) for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$, if

- (i) $\{\Lambda_{\omega}f\}_{\omega\in\Omega}$ is strongly measurable, for each $f\in H$;
- (ii) There exist constants $0 < A \leq B < \infty$, such that

$$A\|K^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) \le B\|f\|^2, \qquad f \in H.$$

In particular, if K = I is the identity operator on H, then Λ is called a continuous g-frame (c-g-frame) for H.

As usual, the constants A, B are called the lower and upper c-K-g-frame bounds, respectively. If $A || K^* f ||^2 = \int_{\Omega} || \Lambda_{\omega} f ||^2 d\mu(\omega)$, for all $f \in H$, then $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ is called a tight c-K-g-frame and every tight c-K-g-frame with A = 1, is called Parseval c-K-g-frame.

For a *c*-*g*-Bessel family (or *c*-*K*-*g*-frame) $\{\Lambda_{\omega}\}_{\omega\in\Omega}$, the *c*-*g* (or frame) operator $S: H \longrightarrow H$ is defined by

$$\langle Sf,g\rangle = \int_{\Omega} \langle \Lambda_{\omega}^* \Lambda_{\omega} f,g \rangle d\mu(\omega), \quad f,g \in H.$$

It is obvious that $\langle Sf, f \rangle = \int_{\Omega} ||\Lambda_{\omega}f||^2 d\mu(\omega)$, for all $f \in H$, and so S is a positive operator. In [4], the authors characterized a *c*-K-*g*-frame by frame operator. Also they showed that, under some conditions, the

frame operator of a c-K-g-frame is invertible on the closed subspace range R(K) of K. In the following, we construct some new c-K-g-frames and then we generalize some results from K-frames and c-g-frames to tight and Parseval c-K-g-frames. In particular, according to bounded operators $K_1 \in B(H_1), K_2 \in B(H_2)$ and $T \in B(H_1, H_2)$, if $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ is a c- K_1 -g-frame for H_1 , we provide some conditions such that $\{\Lambda_{\omega}T^*\}_{\omega \in \Omega}$ is a c- K_2 -g-frame for H_2 . Also we prove that any c-K-g-dual of a Parseval c-K-g-frame $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ is both a Parseval c- KK^{\dagger} -g-frame and a Parseval c-g-frame, where K^{\dagger} is the Pseudo-inverse of the operator K [7].

2 Constructing New *c*-*K*-*g*-Frames

In the following, according two bounded operators K_1 and K_2 between Hilbert spaces and a given c- K_1 -g-frame, we construct some new c- K_2 -g-frames. These extend the results of [2]. First, we give the following theorem.

Theorem 2.1. Let K_1 , $K_2 \in B(H)$, α be a scaler and suppose that $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is both a c-K₁-g-frame and c-K₂-g-frame. Then $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c- αK_1 -g-frame, c-K₁K₂-g-frame and c-(K₁ + K₂)-g-frame.

Proof. For simplicity, it can be assumed that the lower and upper bounds of any two frames are equal. So by assumption, there exist positive constants A and B such that

$$A\|K_1^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) \le B\|f\|^2,$$
(1)

and

$$A\|K_{2}^{*}f\|^{2} \leq \int_{\Omega} \|\Lambda_{\omega}f\|^{2} d\mu(\omega) \leq B\|f\|^{2},$$
(2)

for all $f \in H$. For $\alpha = 0$, the implication is trivial. If $\alpha \neq 0$, then by (1),

$$\frac{A}{|\alpha|^2} \|(\alpha K_1)^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\mu(\omega).$$

So $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a *c*- αK_1 -*g*-frame. Moreover

$$\begin{aligned} \|(K_1K_2)^*f\|^2 &= \|K_2^*(K_1^*f)\|^2 \\ &\leq \|K_2\|^2 \|K_1^*f\|^2 \\ &\leq \frac{\|K_2\|^2}{A} \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) \end{aligned}$$

Thus

$$\frac{A}{\|K_2\|^2} \|(K_1 K_2)^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\mu(\omega),$$

for all $f \in H$, and $\{\Lambda_{\omega}\}_{\omega \in}$ is a c- K_1K_2 -g-frame. Finally, by (1), (2) and Cauchy-Schwarz inequality we have

$$\begin{aligned} \|(K_{1}+K_{2})^{*}f\|^{2} &= \|K_{1}^{*}f+K_{2}^{*}f\|^{2} \\ &\leq \|K_{1}^{*}f\|^{2} + \|K_{2}^{*}f\|^{2} + 2|\langle K_{1}^{*}f, K_{2}^{*}f\rangle| \\ &\leq \|K_{1}^{*}f\|^{2} + \|K_{2}^{*}f\|^{2} + 2\|K_{1}^{*}f\|\|K_{2}^{*}f\| \\ &\leq \frac{1}{A}\int_{\Omega}\|\Lambda_{\omega}f\|^{2}d\mu(\omega) + \frac{1}{A}\int_{\Omega}\|\Lambda_{\omega}f\|^{2}d\mu(\omega) \\ &+ \frac{2}{A}\int_{\Omega}\|\Lambda_{\omega}f\|^{2}d\mu(\omega). \end{aligned}$$

Thus we get

$$\frac{A}{4} \| (K_1 + K_2)^* f \|^2 \le \int_{\Omega} \| \Lambda_{\omega} f \|^2 d\mu(\omega),$$

for any $f \in H$. It follows that $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ is a c- $(K_1 + K_2)$ -g-frame. \Box

In [19, 20], the authors have proved the construction of K-g-frames in discrete case. They also investigated g-frame representations via a linear operator. Now, we show that for a c-K-g-frame for H, according to any operator $T \in B(H)$, one can construct some new c-K-g-frames.

Theorem 2.2. Let $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ be a c-K-g-frame for H and $T \in B(H)$. If T^*KK^* is a positive operator, then $\{\Lambda_{\omega} + \Lambda_{\omega}T\}_{\omega\in\Omega}$ is a c-K-g-frame for H.

Proof. By assumption, there exist positive constants A and B such that for every f in the space H,

$$A \|K^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\mu(\omega) \le B \|f\|^2.$$

So for any $f \in H$, we have

$$A\|K^{*}(I+T)f\|^{2} \leq \int_{\Omega} \|\Lambda_{\omega}(I+T)f\|^{2} d\mu(\omega)$$

$$\leq B\|(I+T)f\|^{2}$$

$$\leq B\|I+T\|^{2}\|f\|^{2}.$$

Since T^*KK^* is positive,

$$A\|K^{*}(I+T)f\|^{2} = A(\|K^{*}f\|^{2} + 2Re\langle K^{*}f, K^{*}Tf \rangle + \|K^{*}Tf\|^{2})$$

$$\geq A(\|K^{*}f\|^{2} + \|K^{*}Tf\|^{2})$$

$$\geq A\|K^{*}f\|^{2}.$$

 So

$$A\|K^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega}(I+T)f\|^2 d\mu(\omega) \le B\|I+T\|^2\|f\|^2, \quad f \in H,$$

and $\{\Lambda_{\omega} + \Lambda_{\omega}T\}_{\omega \in \Omega}$ is a *c*-*K*-*g*-frame for *H*.

Theorem 2.3. Suppose that $K_1 \in B(H_1)$ and $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ is a c-K₁-gframe for H_1 . Let $K_2 \in B(H_2)$, $T \in B(H_1, H_2)$ has closed range and $TK_1 = K_2T$. If $R(K_2^*) \subset R(T)$, then $\{\Lambda_{\omega}T^*\}_{\omega \in \Omega}$ is a c-K₂-g-frame for H_2 .

Proof. Since $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a *c*-*K*₁-*g*-frame for *H*₁, there exist positive constants A, B such that

$$A \|K_1^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\mu(\omega) \le B \|f\|^2, \quad f \in H_1.$$

Assume that $h \in H_2$ is arbitrary. We obtain

~

$$A\|K_{1}^{*}T^{*}h\|^{2} \leq \int_{\Omega} \|\Lambda_{\omega}T^{*}h\|^{2}d\mu(\omega)$$

$$\leq B\|T^{*}h\|^{2}$$

$$\leq B\|T\|^{2}\|h\|^{2}.$$

Since $TK_1 = K_2T$, $R(K_2^*) \subset R(T)$ and R(T) is closed, by Lemma 2.2 of [21], for any $h \in H_2$ we have

$$||K_1^*T^*h||^2 = ||T^*K_2^*h||^2 \ge ||T^{\dagger}||^{-2} ||K_2^*h||^2,$$

where T^{\dagger} is the Pseudo-inverse of the operator T. Thus

$$A \|T^{\dagger}\|^{-2} \|K_{2}^{*}h\|^{2} \leq \int_{\Omega} \|\Lambda_{\omega}T^{*}h\|^{2} d\mu(\omega)$$

$$\leq B \|T\|^{2} \|h\|^{2}.$$

That is, $\{\Lambda_{\omega}T^*\}_{\omega\in\Omega}$ is a *c*-*K*₂-*g*-frame for *H*₂. \Box

Corollary 2.4. Let $K \in B(H)$ and $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ be a c-K-g-frame for H. Let $T \in B(H)$ with closed range and TK = KT. If $R(K^*) \subset R(T)$, then $\{\Lambda_{\omega}T^*\}_{\omega \in \Omega}$ is a c-K-g-frame for H.

Recall that an operator $T \in B(H_1, H_2)$ is bounded below, if there exists a constant c > 0 such that

$$\parallel Th \parallel \geq c \parallel h \parallel,$$

for all $h \in H_1$. It is straightforward to see that the operator T is surjective, if and only if, T^* is bounded below, if and only if T^* is injective and has closed range (see for instance, Lemma 2.4.1 from [7]).

Theorem 2.5. Let $K_1 \in B(H_1)$, $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ be a tight c- K_1 -g-frame for H_1 and $K_2 \in B(H_2)$ be a bounded below operator. Let $T \in B(H_1, H_2)$ such that $TK_1 = K_2T$. Then $\{\Lambda_{\omega}T^*\}_{\omega \in \Omega}$ is a c- K_2 -g-frame for H_2 if and only if T is surjective.

Proof. If T is a surjective operator, then by Corollary 3.6 of [21], $\{\Lambda_{\omega}T^*\}_{\omega\in\Omega}$ is a c-K₂-g-frame for H_2 .

Conversely, if $\{\Lambda_{\omega}T^*\}_{\omega\in\Omega}$ is a *c*-*K*₂-*g*-frame for *H*₂ with lower bound *A*₁, then for any $h \in H_2$:

$$A_1 \| K_2^* h \|^2 \le \int_{\Omega} \| \Lambda_{\omega} T^* h \|^2 d\mu(\omega).$$

Since $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a tight *c*-*K*₁-*g*-frame for *H*₁ with bound *A*, then

$$A\|K_1^*f\|^2 = \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega), \quad f \in H_1.$$

Moreover since $K_1^*T^* = T^*K_2^*$, for any $h \in H_2$ we have

$$A\|T^*K_2^*h\|^2 = A\|K_1^*T^*h\|^2$$

= $\int_{\Omega} \|\Lambda_{\omega}T^*h\|^2 d\mu(\omega)$
\ge A_1\|K_2^*h\|^2,

and so

$$||T^*K_2^*h||^2 \ge \frac{A_1}{A} ||K_2^*h||^2, \quad h \in H_2.$$

By the fact that $K_2 \in B(H_2)$ is bounded below, K_2^* is surjective. Now, the above inequality shows that T^* is bounded below and so T is surjective. This completes the proof. \Box

Now, we obtain a new tight c-K-g-frame. We need the following two lemmas:

Lemma 2.6. Let $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ and $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ be two c-g-Bessel families with bounds B_1 and B_2 for H, with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ and $L_1, L_2 \in B(H, H_1)$. Then $\{\Lambda_{\omega}L_1^* + \Gamma_{\omega}L_2^*\}_{\omega\in\Omega}$ is a c-g-Bessel family for H_1 with respect to $\{H_{\omega}\}_{\omega\in\Omega}$.

Proof. $\{\Lambda_{\omega}L_1^* + \Gamma_{\omega}L_2^*\}_{\omega \in \Omega}$ is a *c-g*-Bessel family for H_1 if for each $f \in H_1$:

$$\int_{\Omega} \|(\Lambda_{\omega}L_{1}^{*} + \Gamma_{\omega}L_{2}^{*})f\|^{2}d\mu(\omega) \leq 2\int_{\Omega} \|(\Lambda_{\omega}L_{1}^{*})f\|^{2}d\mu(\omega) \\ + 2\int_{\Omega} \|(\Gamma_{\omega}L_{2}^{*})f\|^{2}d\mu(\omega) \\ \leq 2B_{1}\|L_{1}^{*}f\|^{2} + 2B_{2}\|L_{2}^{*}f\|^{2} \\ \leq 2B_{1}\|L_{1}\|^{2}\|f\|^{2} + 2B_{2}\|L_{2}\|^{2}\|f\|^{2} \\ \leq 2(\sqrt{B_{1}}\|L_{1}\| + \sqrt{B_{2}}\|L_{2}\|)^{2}\|f\|^{2},$$

and the proof is completed. \Box

Lemma 2.7. Let $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ be a c-g-Bessel family for H. Then $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a tight c-K-g-frame for H with frame operator S if and only if there exists a constant A > 0 such that $S = AKK^*$.

Proof. The family $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a tight *c*-*K*-*g*-frame if and only if,

$$A\|K^*f\|^2 = \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega),$$

for all $f \in H$ and some A > 0. Since

$$A\|K^*f\|^2 = \langle AKK^*f, f \rangle$$

and

$$\int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) = \langle Sf, f \rangle,$$

for all $f \in H$, one can see that $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ is a tight *c*-*K*-*g*-frame for *H*, if and only if

$$\langle Sf, f \rangle = \langle AKK^*f, f \rangle,$$

for all $f \in H$. The positivity of the operators S and AKK^* implies that the last assertion is equivalent to $S = AKK^*$. \Box

For the following theorem, we also need the concept of c-K-g-dual of a c-K-g-frame, which will be introduced in section 3 from [5].

Theorem 2.8. Suppose that $K \in B(H)$ and $L_1, L_2 \in B(H, H_1)$. If $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a c-K-g-frame with frame operator S_{Λ} and $\Gamma = {\Gamma_{\omega}}_{\omega \in \Omega}$ is its c-K-g-dual with frame operator S_{Γ} , then ${\Lambda_{\omega}L_1}^* + {\Gamma_{\omega}L_2}^*_{\omega \in \Omega}$ is a tight c-K-g-frame with respect to ${H_{\omega}}_{\omega \in \Omega}$ for H_1 , if and only if there exists constant A > 0 such that

$$AKK^* = L_1 S_{\Lambda} L_1^* + L_1 K L_2^* + L_2 K^* L_1^* + L_2 S_{\Gamma} L_2^*.$$

Proof. By Lemma 2.6, $\{\Lambda_{\omega}L_1^* + \Gamma_{\omega}L_2^*\}_{\omega\in\Omega}$ is a *c-g*-Bessel family for H_1 . If S is the frame operator of this family, then for any $f \in H_1$:

$$Sf = \int_{\Omega} (\Lambda_{\omega} L_1^* + \Gamma_{\omega} L_2^*)^* (\Lambda_{\omega} L_1^* + \Gamma_{\omega} L_2^*) f d\mu(\omega)$$
$$= \int_{\Omega} (L_1 \Lambda_{\omega}^* + L_2 \Gamma_{\omega}^*) (\Lambda_{\omega} L_1^* + \Gamma_{\omega} L_2^*) f d\mu(\omega).$$

By the Lemma 2.7 from [13], we have

$$Sf = L_1 \int_{\Omega} \Lambda_{\omega}^* \Lambda_{\omega} L_1^* f d\mu(\omega) + L_1 \int_{\Omega} \Lambda_{\omega}^* \Gamma_{\omega} L_2^* f d\mu(\omega)$$

+ $L_2 \int_{\Omega} \Gamma_{\omega}^* \Lambda_{\omega} L_1^* f d\mu(\omega) + L_2 \int_{\Omega} \Gamma_{\omega}^* \Gamma_{\omega} L_2^* f d\mu(\omega)$
= $L_1 S_{\Lambda} L_1^* f + L_1 K L_2^* f + L_2 K^* L_1^* f + L_2 S_{\Gamma} L_2^* f.$

Then by Lemma 2.7, the family $\{\Lambda_{\omega}L_1^* + \Gamma_{\omega}L_2^*\}_{\omega\in\Omega}$ is a tight *c-K-g*-frame if and only if, there exists constant A > 0 such that $S = AKK^*$, or equivalently,

$$AKK^* = L_1 S_{\Lambda} L_1^* + L_1 K L_2^* + L_2 K^* L_1^* + L_2 S_{\Gamma} L_2^*,$$

and the proof is completed. $\hfill \Box$

3 c-K-g-Duals

In this section, it is introduced the c-K-g-dual frame of a given c-K-g-frame and we obtain c-K-g-dual of Parseval c-K-g-frames. Then we obtain synthesis operator related to c-K-g-duals. The following theorem is an important result in the study of the c-K-g-duals. We refer to [4, 5] for details.

Theorem 3.1. Let $K \in B(H)$. Then the following statements are equivalent.

- (i) $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-K-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$.
- (ii) $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-g-Bessel family for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ and there exists a c-g-Bessel family $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ such that,

$$\langle Kf,h\rangle = \int_{\Omega} \langle \Lambda_{\omega}^* \Gamma_{\omega} f,h\rangle d\mu(\omega), \qquad f,h \in H$$

So, for any *c*-*K*-*g*-frame $\{\Lambda_{\omega}\}_{\omega\in\Omega}$, we have a *c*-*g*-Bessel family

$$\{\Gamma_{\omega} \in B(H, H_{\omega}) : \omega \in \Omega\}$$

such that

$$Kf = \int_{\Omega} \Lambda_{\omega}^* \Gamma_{\omega} f d\mu(\omega), \qquad f \in H,$$

and

$$K^*f = \int_{\Omega} \Gamma_{\omega}^* \Lambda_{\omega} f d\mu(\omega), \qquad f \in H.$$

The family $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ is called a c-K-g-dual of $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ and it is a c- K^* -g-frame. It is obvious that, under the above assumptions, $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c- K^* -g-dual of $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ and if K is a self adjoint operator, $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ and $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ are called c-K-g-dual pairs.

Theorem 3.2. Suppose that $K \in B(H)$ such that K^* is surjective and $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a Parseval c-K-g-frame for H. Then $\{\Lambda_{\omega}(K^*)^{\dagger}\}_{\omega\in\Omega}$ is a c-K-g-dual of $\{\Lambda_{\omega}\}_{\omega\in\Omega}$. Moreover, $\{\Lambda_{\omega}(K^*)^{\dagger}\}_{\omega\in\Omega}$ is both a Parseval c-K[†]K-g-frame and Parseval c-g-frame.

Proof. Assume that $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a Parseval *c-K-g*-frame. Then

$$\langle K^*f, K^*f \rangle = \int_{\omega} \langle \Lambda_{\omega}f, \Lambda_{\omega}f \rangle d\mu(\omega), \quad f \in H,$$

and we have

$$KK^*f = \int_{\Omega} \Lambda_{\omega}^* \Lambda_{\omega} f d\mu(\omega), \quad f \in H.$$

Since K^* is surjective,

$$f = K^*(K^*)^{\dagger} f = K^*(K^{\dagger})^* f,$$
(3)

for any $f \in H$, and so

$$Kf = KK^*(K^{\dagger})^* f = \int_{\Omega} \Lambda_{\omega}^* \Lambda_{\omega}(K^{\dagger})^* f d\mu(\omega).$$
(4)

Therefore, $\{\Lambda_{\omega}(K^{\dagger})^{*}\}_{\omega\in\Omega} = \{\Lambda_{\omega}(K^{*})^{\dagger}\}_{\omega\in\Omega}$ is a *c*-*K*-*g*-dual of $\{\Lambda_{\omega}\}_{\omega\in\Omega}$.

Now, if we product both sides of the relation (4) by $(K^{\dagger})^* f$, then for any $f \in H$ we have

$$\int_{\Omega} \|\Lambda_{\omega}(K^{\dagger})^{*}f\|^{2} d\mu(\omega) = \|K^{*}(K^{\dagger})^{*}f\|^{2} = \|(K^{\dagger}K)^{*}f\|^{2}, \quad (5)$$

and $\{\Lambda_{\omega}(K^{\dagger})^*\}_{\omega\in\Omega}$ is a Parseval $c-K^{\dagger}K$ -g-frame for H. Finally, by (3), the operator $K^*(K^*)^{\dagger}$ and so $K^{\dagger}K$ is the identity operator on H, and so (5) implies that $\{\Lambda_{\omega}(K^*)^{\dagger}\}_{\omega\in\Omega}$ is a Parseval c-g-frame. \Box

Definition 3.3. A c-g-Bessel sequence $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ in H is independent, if for a c-g-Bessel sequence $\{\Psi_{\omega}\}_{\omega\in\Omega}$ in H and all $f \in H$,

$$\int_{\Omega} \Lambda_{\omega}^{*} \Psi_{\omega} f d\mu(\omega) = 0,$$

implies that $\Psi_{\omega} = 0$ a.e.

In the followig, we inspect the independent relation between a Parseval c-K-g-frame $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ and $\{\Lambda_{\omega}(K^{\dagger})^*\}_{\omega\in\Omega}$ as its c-K-g-dual.

Theorem 3.4. Suppose that $K \in B(H)$ such that K^* is surjective and $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a Parseval c-K-g-frame for H. Then $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is independent if and only if its c-K-g-dual $\{\Lambda_{\omega}(K^{\dagger})^*\}_{\omega\in\omega}$ is independent.

Proof. Assume that $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is independent. By Lemma 2.7, the frame operator related to $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ equals to KK^* . Since K^{\dagger} is the Pseudo-inverse of the operator K, then

$$\int_{\Omega} \Lambda_{\omega}^* \Lambda_{\omega} f d\mu(\omega) = \int_{\Omega} \Lambda_{\omega}^* \Lambda_{\omega} (K^{\dagger})^* K^* f d\mu(\omega), \quad f \in H.$$

Therefore

$$\int_{\Omega} \Lambda_{\omega}^{*} (\Lambda_{\omega} - \Lambda_{\omega} (K^{\dagger})^{*} K^{*}) f d\mu(\omega) = 0,$$

which implies that $\Lambda_{\omega} = \Lambda_{\omega}(K^{\dagger})^* K^*$ and so $\Lambda_{\omega}^* = K K^{\dagger} \Lambda_{\omega}^*$, a.e. Now let $\int_{\Omega} (\Lambda_{\omega}(K^{\dagger})^*)^* \Psi_{\omega} f d\mu(\omega) = 0$, for a *c-g*-Bessel sequence $\{\Psi_{\omega}\}_{\omega \in \Omega}$ and all $f \in H$. Then by Lemma 2.7 of [13], one can observe that

$$K \int_{\Omega} K^{\dagger} \Lambda_{\omega}^{*} \Psi_{\omega} f d\mu(\omega) = \int_{\Omega} K K^{\dagger} \Lambda_{\omega}^{*} \Psi_{\omega} f d\mu(\omega) = 0.$$

So, $\int_{\Omega} \Lambda_{\omega}^* \Psi_{\omega} f d\mu(\omega) = 0$ and by assumption, $\Psi_{\omega} = 0$, a.e. Conversely, let $\{\Lambda_{\omega}(K^{\dagger})^*\}_{\omega \in \Omega}$ be independent and for a *c-g*-Bessel sequence $\{\Psi_{\omega}\}_{\omega \in \Omega}$, we have $\int_{\Omega} \Lambda_{\omega}^* \Psi_{\omega} f d\mu(\omega) = 0$, for all $f \in H$. Then

$$\int_{\Omega} \left(\Lambda_{\omega}(K^{\dagger})^{*}\right)^{*} \Psi_{\omega} f d\mu(\omega) = K^{\dagger} \int_{\Omega} \Lambda_{\omega}^{*} \Psi_{\omega} f d\mu(\omega) = 0.$$

By assumption, $\Psi_{\omega} = 0$, a.e. So $\{\Lambda_{\omega}\}_{\omega \in \Omega}$ is independent. Now, we intend to find the synthesis operator related to $c \cdot K^{\dagger}K \cdot g$ -frame $\{\Lambda_{\omega}(K^{\dagger})^*\}_{\omega \in \Omega}$. Recall from [1] or [4] that the space

$$\begin{array}{ll} (& \bigoplus_{\omega \in \omega} H_{\omega}, \mu)_{L^{2}} \\ = & \{F \in \prod_{\omega \in \Omega} H_{\omega} : F \ is \ strongly \ measurable, \int_{\Omega} \|F(\omega)\|^{2} d\mu(\omega) < \infty\}, \end{array}$$

with inner product given by

$$\langle F,G\rangle = \int_{\Omega} \langle F(\omega),G(\omega)\rangle d\mu(\omega),$$

is a Hilbert space. We initiate with a theorem about the synthesis operator related to c-K-g-frames.

Theorem 3.5. (See [4]) Let $K \in B(H)$ and (Ω, μ) be a σ -finite measure space. Suppose that $\{\Lambda_{\omega} \in B(H, H_{\omega}) : \omega \in \Omega\}$ is a family of operators such that $\{\Lambda_{\omega}f\}_{\omega\in\Omega}$ is strongly measurable, for each $f \in H$. Then $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-K-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ if and only if the operator

$$T: (\bigoplus_{\omega \in \Omega} H_{\omega}, \mu)_{L^2} \longrightarrow H,$$

weakly defined by

$$\langle TF,g\rangle = \int_{\Omega} \langle \Lambda_{\omega}^*F(\omega),g\rangle d\mu(\omega), \qquad F \in \left(\bigoplus_{\omega \in \Omega} H_{\omega},\mu\right)_{L^2}, \ g \in H,$$

is bounded and $R(K) \subseteq R(T)$.

In this case, the adjoint T^* of T is defined by

$$(T^*g)(\omega) = \Lambda_{\omega}(g), \quad \omega \in \Omega, \ g \in H,$$

and $||T|| \leq \sqrt{B}$, where B is the upper c-K-g-frame bound of $\{\Lambda_{\omega}\}_{\omega\in\Omega}$. The above operator T and its adjoint T^* are called the synthesis operator and analysis operator related to $\{\Lambda_{\omega}\}_{\omega\in\Omega}$, respectively. **Corollary 3.6.** Let $K \in B(H)$ such that K^* is surjective. Let μ be a σ -finite measure on Ω . If $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-K-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ and synthesis operator T, then the synthesis operator T_{Γ} related to $\Gamma = \{\Lambda_{\omega}(K^{\dagger})^*\}_{\omega\in\Omega}$ is the bounded operator $T_{\Gamma} = K^{\dagger}T$. Also

$$(T_{\Gamma}^*g)(\omega) = \Lambda_{\omega}(K^{\dagger})^*g,$$

for all $\omega \in \Omega$ and $g \in H$.

Proof. By Theorems 3.1 and 3.2, Γ is a $c-K^*-g$ -frame for H. Now, Theorem 3.5 implies that for all $F \in (\bigoplus_{\omega \in \Omega} H_\omega, \mu)_{L^2}$ and all $g \in H$:

$$\begin{split} \langle T_{\Gamma}F,g\rangle &= \int_{\Omega} \langle (\Lambda_{\omega}(K^{\dagger})^{*})^{*}F(\omega),g\rangle d\mu(\omega) \\ &= \int_{\Omega} \langle K^{\dagger}\Lambda_{\omega}^{*}F(\omega),g\rangle d\mu(\omega) \\ &= \langle K^{\dagger}TF,g\rangle, \end{split}$$

and then $T_{\Gamma} = K^{\dagger}T$. The second part of corollary, is also a direct consequence of Theorem 3.5. \Box

Finally, we find the frame operator S_{Γ} related to the *c-g*-frame $\Gamma = \{\Lambda_{\omega}(K^*)^{\dagger}\}_{\omega\in\Omega}$, as stated in Theorem 3.2. If S is the frame operator related to the Parseval *c-K-g* -frame $\{\Lambda_{\omega}\}_{\omega\in\Omega}$, then for any $f, g \in H$:

$$\begin{split} \langle S_{\Gamma}f,g\rangle &= \int_{\Omega} \langle \Lambda_{\omega}(K^{*})^{\dagger}f,\Lambda_{\omega}(K^{*})^{\dagger}g\rangle d\mu(\omega) \\ &= \int_{\Omega} \langle K^{\dagger}\Lambda_{\omega}^{*}\Lambda_{\omega}(K^{*})^{\dagger}f,g\rangle d\mu(\omega) \\ &= \langle \int_{\Omega} K^{\dagger}\Lambda_{\omega}^{*}\Lambda_{\omega}(K^{*})^{\dagger}fd\mu(\omega),g\rangle \\ &= \langle K^{\dagger}\int_{\Omega}\Lambda_{\omega}^{*}\Lambda_{\omega}(K^{*})^{\dagger}fd\mu(\omega),g\rangle \\ &= \langle K^{\dagger}S(K^{*})^{\dagger}f,g\rangle. \end{split}$$

Hence, $S_{\Gamma} = K^{\dagger} S(K^*)^{\dagger}$.

Acknowledgements

The authors would like to express the deepest gratitude to the reviewers for their valuable suggestions.

References

- M.R. Abdollahpour and M.H. Faroughi, Continuous g-frames in Hilbert spaces, Southeast Asian Bull Math, 32 (2008), 1-19.
- [2] F. Abtahi, Z. Kamali and Z. Keyshams, On the sum of generalized frames in Hilbert spaces, *Mediterr. J. Math. Soc.*, 18 (2011), 177-198.
- [3] S.T. Ali, J.P. Antoine and J.P. Gazeau, Continuous frames in Hilbert spaces, Ann. Phys., 222 (1993), 1-37.
- [4] E. Alizadeh, A. Rahimi, E. Osgooei and M. Rahmani, Continuous K-g-frames in Hilbert spaces, Bull. Iran Math. Soc., 45 (2019), 1091-1104.
- [5] E. Alizadeh, A. Rahimi, E. Osgooei and M. Rahmani, Some properties of continuous K-g-frames in Hilbert spaces, UPB Sci. BA., 81 (2019), 43-52.
- [6] P.G. Casazza, The art of frame theory, *Taiwanes J. Math.*, 4 (2000), 129-201.
- [7] O. Christensen, An Introduction to Frames and Riesz Bases, 2End Edn. Birkhäuser, basel, (2016).
- [8] C.K. Chui, An Introduction to Wavelets, Academic Press Inc, boston, (1992).
- [9] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271-1283.
- [10] I. Daubechies, Ten Lectures on Wavelets, SIAM. Conf. Series in Applied Math. boston, (1992).
- [11] M.L. Ding, X.C. Xiao and X.M. Zeng, Tight K-frames in Hilbert spaces (in chinese), Acta Math. Sin., 56 (2013), 105-112.
- [12] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.*, 72 (1952), 341-366.

- [13] H. Faraj, M. Rossafi, B. Moalige, S. Kabbaj and A. Touri, Dual continuous K-frames in Hilbert spaces, J. Math. Comput. Sci., 11 (2021), 7844-7856.
- [14] M. Fornasier and H. Rauhut, Continuous frames, function spaces and the discretization problem, J. Fourier Anal. Appl., 3 (2005), 245-287.
- [15] L. Găvruta, Frames of operators, Appl. Comput. Harmon. Anal., 32 (2012), 139-144.
- [16] D. Han, D.R. Larson, B. Liu and R. Liu, Operator-valued measures, dilations and the theory of frames, 229-1075, Mem. Amer. Math. Soc., (2014).
- [17] M. He, J. Leng, J. Yu and Y. Xu, On the sum of K-frames in Hilbert spaces, *Mediterr. J. Math.*, 17 (2020), 1-19.
- [18] Y. Huang, Sh. Shi, New constructions of K-g-frames, *Results Math.*, 73 (2018), 1-13.
- [19] S. Jahedi, F. Javadi and M.J. Mehdipour, On g-frame representations via linear operators, J. Pseudo-Differ. Oper. Appl., (2023), 14-52.
- [20] F. Javadi and M.J. Mehdipour, On constructions of K-g-frames in Hilbert spaces, *Mediterr. J. Math.*, 18 (2021), 210.
- [21] M. Jia, Y.C. Zhu, Some results about the operator perturbation of a K-frame, Results Math., 73 (2018), 1-11.
- [22] A. Rahimi, A. Najati and Y.N. Dehghan, Continuous frames in Hilbert spaces, *Methods Funct. Anal. Topol.*, 12 (2006), 170-182.
- [23] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322 (2006), 437-452.
- [24] Y. Zhou and Y.C. Zhu, K-g-frames and dual g-frames for closed subspaces, Acta Math. Sin. (Chin. Ser), 56 (2013), 799-806.

Narjes S. Banitaba

PhD Candidate of Mathematics Department of Mathematics, Yazd University Yazd, Iran E-mail: n.banitaba@pnu.ac.ir

S. Mohammad Moshtaghioun

Associate Professor of Mathematics Department of Mathematics, Yazd University, Yazd, Iran E-mail: moshtagh@yazd.ac.ir