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1 Introduction

Let H be a Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥·∥.
Many important real-world problems can be formulated as the finding of
zero(s) of an operator. The variational inclusion problem seeks a point
a∗ ∈ H such that

0 ∈ (G1 + B)(a∗), (1)

where G1 : H → 2H is a multivalued operator and B : H → H is a
single valued operator. For B = 0,(1) becomes the inclusion problem
introduced by Rockafellar [20]. Indeed, Problem (1) includes many im-
portant optimization problems like variational inequalities, minimization
problems, split feasibility problems, fixed point problems, Nash equilib-
rium problems in noncooperative games, and many more. Also, many
problems in signal processing, image recovery, and machine learning can
be formulated as (1); see, e.g, [2, 6, 7, 8, 10, 11, 18, 19, 22, 23, 25, 26]
and the references therein. The problem of finding common elements of
the set of solutions of variational inequality problems and the set of fixed
points of nonlinear operators has become an interesting area of research
for many researchers working in the area of nonlinear operator theory
see, e.g, [1, 2, 12, 13, 19, 22, 23, 26].

In this paper, we consider the following split problem which aims to
find a∗ ∈ H such that

a∗ ∈ (G1 + B)−1 (0) ∩ Fix(S), Aa∗ ∈ G2
−1(0), (2)

where G1,G2 : H → 2H are multivalued operators, B,S : H → H are
single valued operators and A : H → H is a non-zero bounded linear
operator which A∗ is the adjoint of A. Also Fix(S) is the set of fixed
point of S and (G1 + B)−1(0) denotes the solution set of the variational
inclusion of finding a point a∗ ∈ H such that

0 ∈ (G1 + B)(a∗), (3)

and G2
−1(0) is defined in a similar way. There are several ways to solve

the split problems, see [3-24].
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A valuable approach to solve variational inclusion Problem (3) is the
well-known forward-backward algorithm [14] defined by

aj+1 = J G1
λj

(I − λjB)aj, a0 ∈ H,

where the operator B is generally (inverse) strongly monotone. To relax
the strong monotonicity condition imposed on B, Tseng [21] suggested
a modified forward-backward method defined by{

bj = J G1
λj

(I − λjB)(cj),

cj+1 = bj − µj(B(bj)− B(cj)),

where B is a monotone continuous Lipschitz operator. Cholamjiak et
al. [8] proposed the following Tseng-type method to solve Problem (3)
without the prior knowledge of Lipschitz constant of the operator B,

bj = J G1
λj

(I − λjB)(cj),

cj+1 = (1− θj)cj + θjbj + θjλj(B(cj)− B(bj)),

µj+1 = min
{
λ, µ∥wj−bj∥

∥B(wj)−B(bj)∥

}
.

By use of the Krasnoselśkii-Mann theorem ([2]), Akram et al. presented
the following iterative algorithm for solving the common solution of split
variational inclusion problem and fixed point problem by using appro-
priate assumptions:{

bj = aj − τ
[
J G1
λj

aj +A∗
(
I − J G2

λ2

)
Aaj

]
,

aj+1 = αjψ(aj) + (1− αj)Sbj,

where τ = 1
∥A∥2 , S is a nonexpansive mapping and ψ is a contraction.

Motivated and inspired by the works of [2, 8], we construct an it-
erative algorithm for finding a solution of the split Problem (2). This
method consists of forward-backward method, fixed point method, self-
adaptive method. Weak and strong convergence of the sequence gener-
ated by proposed algorithm are discussed.
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This work is organized as follows: In Section 2, we recall some lem-
mas, theorems, and definitions as preliminaries. In Section 3, we suggest
an algorithm and investigate its convergence and rate convergence anal-
ysis. Then we give an example to support our results. Finally, Section 4
is devoted to the conclusion.

2 Preliminaries
Let H be a Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥·∥.
Let G : H → 2H be a multivalued operator. The graph of G is displayed
with G(G) and defined by

G(G) =
{
(s, t) : s ∈ H, t ∈ G(s)

}
.

Recall that G is said to be

1. monotone if for all s, a ∈ H , t ∈ G(s) and b ∈ H(a),

⟨s− a, t− b⟩ ≥ 0;

2. maximal monotone if and only if for (s, t) ∈ H ×H,

⟨s− a, t− b⟩ ≥ 0, ∀ (a, b) ∈ G(G),

implies that (s, t) ∈ G(G);

3. ρ-strongly monotone if there exists a constant ρ > 0 such that

⟨s− a, t− b⟩ ≥ ρ∥s− a∥2, ∀ s, a ∈ H, t ∈ G(s), b ∈ G(a).

Let B : H → H be an operator, B is called

1. Lipschitz continuous if there exists a constant L > 0 such that

∥B(a)− B(b)∥ ≤ L∥a− b∥, ∀ a, b ∈ H;

2. monotone if the following relation holds:

⟨B(a)− B(b), a− b⟩ ≥ 0, ∀ a, b ∈ H;
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3. firmly nonexpansive if the following relation holds:

⟨B(a)− B(b), a− b⟩ ≥ ∥B(a)− B(b)∥2, ∀ a, b ∈ H;

4. demiclosed if Fix(B) ̸= ∅ and {aj} is a sequence in H and weakly
convergent to a ∈ H such that (I − B)aj → 0 where I is identity
mapping in H, implies B(a) = a.

The resolvent mapping J G
λ : H → H associated with the maximal mono-

tone operator G is defined by

J G
λ (a) = (I + λG)−1(x), ∀ a ∈ H,

for some λ > 0, where I is identity mapping in H. It is known that for
all λ > 0, the resolvent mapping J G

λ is single valued, nonexpansive and
firmly nonexpansive.

There exist two basic concepts of convergence rate of a sequence [17,
Chapter 9]. Let {aj} be a sequence in H and a ∈ H. The sequence {aj}
is called

(i) convergent R-linearly to a if

lim sup
j→∞

∥aj − a∥1/j < 1;

(ii) convergent Q-linearly to a if there exist constant numbers r ∈ (0, 1)
and j0 ≥ 1 such rhat

∥aj+1 − a∥ ≤ r∥aj − a∥, ∀ j ≥ j0.

It is known that Q-linear convergence implies R-linear convergence [17,
Section 9.3]. The inverse in general is not true.

Lemma 2.1 ([5]). Let H be a real Hilbert space. Let G : H → 2H

be a maximal monotone operator and B : H → H be a monotone and
Lipschitz continuous operator. Then G + B is a maximal monotone
operator.
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Lemma 2.2 ([4]). If B : H → H is nonexpansive, then I − B is demi-
closed at zero. Moreover, if B is firmly nonexpansive, then I − B is
firmly nonexpansive.

Lemma 2.3 ([4]). If G : H → 2H is a maximal monotone operator, then
J G
λ and I − J G

λ are firmly nonexpansive.

Theorem 2.4 ([9], Theorem 3.1). If B : H → H is a nonexpansive
mapping and b ∈ Fix(B). Then for all x ∈ H,

⟨a− Ba, b− Ba⟩ ≤ 1
2∥a− Ba∥2.

3 Main Results

In this section, we introduce the proposed algorithm. Then we establish
the weak convergence of the sequence generated by the algorithm. By
additional assumption of strong monotonicity of the operator, the strong
convergence of the sequence is attained. Then, we discuss on the rate
convergence of the generated sequence. The proposed algorithm con-
sists of forward-backward method, fixed point method and self-adaptive
method. In addition it uses a simple step-size rule without the prior
knowledge of Lipschitz constant of the operator.

Algorithm 3.1.
Initialization: Choose arbitrary initial point a0 ∈ H and λ′, λ0 > 0.

Take α, η ∈ (0, 1], µ ∈ (0, 1), and θ ∈ (0, 1] such that

2
µ+3 < θ < 1. (4)

Iterative Steps: Calculate aj+1 and λj+1 as follows

Step 1. Assume that aj ∈ H, and λj are given. Put τ = 1
∥A∥2 , compute

uj = aj − τA∗
(
I − J G2

λ′

)
Aaj,

fj = (1− α)aj + αuj.
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Step 2. Compute

bj = J G1
λj

(I − λjB)fj,
tj = (1− θ)fj + θbj + θλj(B(fj)− B(bj)), (5)

and
aj+1 = ηtj + (1− η)Stj.

Step 3. Update
λj+1 = min

{
λj,

µ∥fj−bj∥
∥B(fj)−B(bj)∥

}
. (6)

Define the set

Υ =
{
a ∈ H : a ∈ (G1 + B)−1(0) ∩ Fix(S), Aa ∈ G−1

2 (0)
}
.

Now, we prove if Υ ̸= ∅, then under some conditions on operators, the
sequence generated by Algorithm 3.1 is weakly convergent to a point
in Υ. To prove the main result, we need the following lemma.

Lemma 3.2. If θ, µ are real numbers in [0, 1] satisfying
2

µ+3 < θ < 1
1−µ , µ ̸= 1,

then
θ(1−µ2)
2−θ+θµ + 1−θ

θ < 1. (7)

Proof. The inequality (7) is equivalent to(
µ2 + 2µ− 3

)
θ2 + (5− µ)θ − 2 > 0,

that is a quadratic equation in term of θ. Since the discriminant of this
equation is equal to ∆ = (3µ + 1)2. So this equation has two roots as
θ1 = 2

µ+3 and θ2 = 1
1−µ . Considering (µ2 + 2µ − 3) < 0, it suffices to

assume that 2
µ+3 < θ < 1

1−µ . □

Theorem 3.3. Let H be a real Hilbert space. Let G1,G2 : H → 2H

be maximal monotone operators and B : H → H be a monotone and
Lipschitz continuous operator. Also assume that S : H → H is a non-
expansive operator and A : H → H is a bounded linear operator which
A∗ is the adjoint of A. If Υ is not empty, then the sequence generated
by Algorithm 3.1, converges weakly to a solution of the Problem (2).
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Proof. Since Υ is not empty, let ξ ∈ Υ. By the definition of {tj} in
Algorithm 3.1, we have

∥tj − ξ∥2 = ∥(1− θ)(fj − ξ) + θ(bj + λj(B(fj)− B(bj))− ξ∥2

= (1− θ)∥fj − ξ∥2 + θ∥bj + λj(B(fj)− B(bj))− ξ∥2

− θ(1− θ)∥bj − fj + λj(B(fj)− B(bj))∥2. (8)

Also, we have

∥bj + λj(B(fj)− B(bj))− ξ∥2

= ∥bj + fj − fj + λj(B(fj)− B(bj))− ξ∥2

≤ ∥bj − fj∥2 + ∥fj − ξ∥2 + λj
2∥B(fj)− B(bj)∥2

+ 2⟨bj − fj, fj − ξ⟩+ 2λj⟨bj − fj,B(fj)− B(bj)⟩
+ 2λj⟨fj − ξ,B(fj)− B(bj)⟩

= ∥fj − ξ∥2 + ∥bj − fj∥2 + 2⟨bj − fj, fj − bj⟩
+ 2⟨bj − fj, bj − ξ⟩+ λj

2∥B(fj)− B(bj)∥2

+ 2λj⟨bj − fj,B(fj)− B(bj)⟩
+ 2λj⟨fj − ξ,B(fj)− B(bj)⟩

≤ ∥fj − ξ∥2 − ∥bj − fj∥2 + λj
2∥B(fj)− B(bj)∥2

+ 2λj⟨bj − ξ,B(fj)− B(bj)⟩+ 2⟨bj − fj, bj − ξ⟩
≤ ∥fj − ξ∥2 − ∥bj − fj∥2 + λj

2∥B(fj)− B(bj)∥2

− 2⟨bj − ξ, fj − bj − λj(B(fj)− B(bj))⟩. (9)

From bj = J G1
λj

(I − λjB)fj, we get

fj − bj − λj(B(fj)− B(bj)) ∈ λj(G1 + B)bj. (10)

By Lemma 2.1, G1+B is monotone. This together with 0 ∈ λj (G1+B)ξ
imply that

⟨fj − bj − λj(B(fj)− B(bj)), bj − ξ⟩ ≥ 0. (11)
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Using (6), (9) and (11), we conclude that

∥bj + λj(B(fj)− B(bj))− ξ∥2

≤ ∥fj − ξ∥2 − ∥bj − fj∥2 + λj
2∥B(fj)− B(bj)∥2

≤ ∥fj − ξ∥2 − ∥bj − fj∥2 + λj
2

λ2
j+1
µ2∥fj − bj∥2

≤ ∥fj − ξ∥2 −
(
1− λ2

j

λ2
j+1
µ2

)
∥fj − bj∥2. (12)

By (5), (8) and (12), we obtain

∥tj − ξ∥2 = (1− θ)∥fj − ξ∥2 + θ∥bj + λj(B(fj)− B(bj))− ξ∥2

− θ(1− θ)∥bj + λj(B(fj)− B(bj))− ξ∥2

≤ (1− θ)∥fj − ξ∥2 + θ(∥fj − ξ∥2

−
(
1− λ2

j

λ2
j+1
µ2

)
∥fj − bj∥2

− θ(1− θ)∥bj + λj(B(fj)− B(bj))− ξ∥2

= ∥fj − ξ∥2 − θ

(
1− λj

2

λ2
j+1
µ2

)
∥fj − bj∥2

− θ(1− θ)∥bj − fj + λj(B(fj)− B(bj))∥2

= ∥fj − ξ∥2 − θ

(
1− λj

2

λ2
j+1
µ2

)
∥fj − bj∥2

− 1−θ
θ ∥tj − fj∥2, (13)

it follows from (5) and (6) that

∥tj − bj∥ = ∥(1− θ)(fj − bj) + θλj(B(fj)− B(bj))∥
≤ (1− θ)∥(fj − bj)∥+ θλj∥(B(fj)− B(bj))∥
≤ (1− θ)∥(fj − bj)∥+ λj

λj+1
µθ∥fj − bj∥

=
(
(1− θ) + λj

λj+1
µθ

)
∥fj − bj∥, (14)
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which gives

∥tj − fj∥ ≤ ∥tj − bj∥+ ∥bj − fj∥

≤
(
1− θ + λj

λj+1
µθ

)
∥fj − bj∥+ ∥fj − bj∥

=
(
2− θ + λj

λj+1
µθ

)
∥bj − fj∥, (15)

it turns out that

∥bj − fj∥ ≥
[
2− θ + λj

λj+1
µθ

]−1
∥tj − fj∥. (16)

It follows from (13), (14) and (16), that

∥tj − ξ∥2 ≤ ∥fj − ξ∥2 −
{
θ

(
1− λ2

j

λ2
j+1
µ2

)
·
[
2− θ + λj

λj+1
µθ

]−2
+ 1−θ

θ

}
∥tj − fj∥2. (17)

We put

Hj = θ

(
1− λ2

j

λ2
j+1
µ2

)[
2− θ +

λj
λj+1

µθ

]−2

+ 1−θ
θ . (18)

Thus,

∥tj − ξ∥2 ≤ ∥fj − ξ∥2 −Hj∥tj − fj∥2. (19)

Also, we have

∥fj − ξ∥2 = ∥(1− α)aj + αuj − ξ∥2

= ∥(1− α)(aj − ξ) + α(uj − ξ)∥2

= (1− α)∥aj − ξ∥2 + α∥uj − ξ∥2

− α(1− α)∥aj − uj∥2. (20)
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By Lemma 2.3, I − J G2
λ′ is firmly nonexpansive. So, we get

⟨A∗
(
I − J G2

λ′

)
Aa−A∗

(
I − J G2

λ′

)
Aξ, a− ξ

〉
=

〈(
I − J G2

λ′

)
Aa−

(
I − J G2

λ′

)
Aξ,Aa−Aξ

〉
≥

∥∥∥(I − J G2
λ′

)
Aa−

(
I − J G2

λ′

)
Aξ

∥∥∥2
= 1

∥A∗∥2 · ∥A∗∥2
∥∥∥(I − J G2

λ′

)
Aa−

(
I − J G2

λ′

)
Aξ

∥∥∥2
≥ 1

∥A∗∥2 ∥A
∗
(
I − J G2

λ′

)
Aa−A∗

(
I − J G2

λ′

)
Aξ∥2

= τ
∥∥∥A∗

(
I − J G2

λ′

)
Aa−A∗

(
I − J G2

λ′

)
Aξ

∥∥∥2 .
Using the above relations, we have,

∥uj − ξ∥2 =
∥∥∥aj − τA∗

(
I − J G2

λ′

)
Aaj − ξ

∥∥∥2
= ∥aj − ξ∥2 + τ2 ∥A∗

(
I − J G2

λ′

)
Aaj∥2

− 2τ
〈
aj − ξ,A∗

(
I − J G2

λ′

)
Aaj

〉
= ∥aj − ξ∥2 + τ2

∥∥∥A∗
(
I − J G2

λ′

)
Aaj

−A∗
(
I − J G2

λ′

)
Aξ

∥∥∥2
− 2τ

〈
aj − ξ,A∗

(
I − J G2

λ′

)
Aaj

−A∗
(
I − J G2

λ′

)
Aξ

〉
≤ ∥aj − ξ∥2 − τ2

∥∥∥A∗
(
I − J G2

λ′

)
Aaj

−A∗
(
I − J G2

λ′

)
Aξ

∥∥∥2
≤ ∥aj − ξ∥2. (21)

By definition of {fj}, it follows that

∥tj − fj∥2 = ∥tj − (1− α)aj − αuj∥2

= ∥tj − aj − α(uj − aj)∥
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= ∥tj − aj∥2 + α2∥uj − aj∥2 − 2α⟨tj − aj, uj − aj⟩
≥ ∥tj − aj∥2 + α2∥uj − aj∥2 − α∥tj − aj∥2 − α∥uj − aj∥2

= (1− α)∥tj − aj∥2 − α(1− α)∥uj − aj∥2. (22)

From (17), (20),(21) and (22), we get

∥tj − ξ∥2 ≤ (1− α)∥aj − ξ∥2 + α∥uj − ξ∥2

− α(1− α)∥aj − uj∥2 −Hj

(
(1− α)∥tj − aj∥2

− α(1− α)∥uj − aj∥2
)

≤ (1− α)∥aj − ξ∥2 + α∥aj − ξ∥2

+ α(1− α)(Hj − 1)∥ξj − aj∥2 −Hj(1− α)∥tj − aj∥2

= ∥aj − ξ∥2 + α(1− α)(Hj − 1)∥uj − aj∥2

−Hj(1− α)∥tj − aj∥2. (23)

Now, we show that limj→∞ λj = λ. If for some j, B(bj) = B(fj), then
λj+1 = λj. Otherwise since B is Lipschitz continuous, then

∥B(bj)− B(fj)∥ ≤ L∥bj − fj∥.

Thus
µ∥bj−fj∥

∥B(bj)−B(fj)∥ ≥ µ
L · ∥bj−fj∥

∥bj−fj∥ = µ
L .

The above relation shows that the sequence {λj} is bounded from below.
Since {λj} is nonincreasing, then it is convergent. Let limj→∞ λj = λ.
Considering 2

µ+3 < θ < 1, for enough large j we have

0 ≤ Hj = θ
(
1− λj

2

λj+1
2µ

2
) [

2− θ + λj
λj+1

µθ
]−2

+ 1−θ
θ

≤ lim
j→∞

Hj =
θ(1−µ2)

(2−θ+θµ)2
+ 1−θ

θ

≤ θ(1−µ2)
(2−θ+θµ) +

1−θ
θ < 1. (24)

Now, by definition of {aj+1} and from nonexpansivity of S, we get

∥aj+1 − ξ∥ = ∥ηtj + (1− η)Stj − ξ∥
= ∥η(tj − ξ) + (1− η)(Stj − Sξ)∥
≤ η∥tj − ξ∥+ (1− η)∥tj − ξ∥ = ∥tj − ξ∥. (25)
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From Eqs. (23), (25) and considering (24), for enoughlarge j, we get

∥aj+1 − ξ∥ ≤ ∥aj − ξ∥.

So the sequence ∥aj − ξ∥ is noninceasing and bounded from below. We
can assume that limj→∞ ∥aj − ξ∥ = γ. Also, again by (23) and (25), we
conclude that

∥aj+1 − ξ∥2 ≤ ∥aj − ξ∥2 + α(1− α)(Hj − 1)∥uj − aj∥2. (26)

By taking lim inf of both sides of inequality (26) and that H < 1, we
observe that

γ ≤ γ + α(1− α)(H− 1) lim sup
j→∞

∥uj − aj∥2,

and so
lim sup
j→∞

∥uj − aj∥ = 0.

By a similar way, lim supj→∞ ∥tj − aj∥ = 0. Also

∥fj − aj∥ = ∥(1− α)aj + αuj − aj∥ = α∥uj − aj∥.

Above inequality implies that limj→∞ ∥fj−aj∥ = 0 and so {fj} is bounded.
In addition,

∥fj − tj∥ = ∥fj − aj∥+ ∥aj − tj∥.

Hence, the above inequality implies that limj→∞ ∥fj− tj∥ = 0 and so {tj}
is bounded. Next, we show that {bj} is bounded.

∥bj − ξ∥2 = ∥J G1
λj

(I − λjB)fj − J G1
λj

(I − λjB)ξ∥2

≤ ∥(I − λjB)fj − (I − λjB)ξ∥2

≤ ∥fj − ξ∥2 + λ2j ∥Bfj − Bξ∥2

≤ ∥fj − ξ∥2 + λ2
j

λj+1
2µ

2∥fj − ξ∥2. (27)

Above inequality shows that {bj} is bounded. From (14), we observe

∥tj − bj∥ ≤
(
1− θ + λj

λj+1
µθ

)
∥fj − bj∥

≤
(
1− θ + λj

λj+1
µθ

)
(∥fj − tj∥+ ∥tj − bj∥) . (28)
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Since (1 − θ + µθ) < 1 and {bj} is bounded, by taking lim sup of both
sides of above inequality, we see that limj→∞ ∥tj − bj∥ = 0. Since {aj}
is bounded, it has a weakly convergent subsequence, take {am} is a
subsequence that is weakly convergent to ϑ ∈ H. In the sequel, we show
that ϑ ∈ Υ. For the convenience, we divide the rest of the proof into
four steps.
Step 1. ϑ ∈ (G1 + B)−1(0). Since {am} is weakly convergent to ϑ
and ∥am − bm∥ → 0, so bm ⇀ ϑ. Let (u, v) ∈ G(G1 + B), that is,
v− B(u) ∈ G1(u). On the other hand, the equality

bm = J G1
λj

(I − λmB)fm,

leads to
1
λm

(fm − λmBfm − bm) ∈ G1bm.

Maximal monotonicity of G1 leads to〈
v− Bu− 1

λm
(fm − λmBfm − bm), u− bm

〉
≥ 0,

thus

⟨v, u− bm⟩ ≥
〈
Bu+ 1

λm
(fm − λmBfm − bm), u− bm

〉
= 1

λm
⟨fm − bm, u− bm⟩+ ⟨B(u)− B(bm), u− bm⟩

+ ⟨B(bm)− B(fm), u− bm⟩
≥ − 1

λm
∥fm − bm∥∥u− bm∥

− ∥B(bm)− B(fm)∥∥u− bm∥. (29)

Since ∥bm−fm∥ → 0, {bm} is bounded and B is Lipschitz, so ⟨v, u−ϑ⟩ ≥
0. Maximality of (G1+B) leads to 0 ∈ (G1+B)ϑ, that is 0 ∈ (G1+B)−1(0).
Step 2. ϑ ∈ Fix(S). Note that

∥aj − ξ∥ ≤ ∥aj − tj∥+ ∥tj − ξ∥ ≤ 2∥aj − tj∥+ ∥aj − ξ∥,

the relation limj→∞ ∥aj − ξ∥ = γ leads to limj→∞ ∥tj − γ∥ = γ. Also,

∥aj+1 − ξ∥2 ≤ η∥tj − ξ∥2 + (1− η)∥Stj − Sξ∥2

− η(1− η)∥tj − Stj∥2

≤ ∥tj − ξ∥2 − η(1− η)∥tj − Stj∥2. (30)
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Taking lim inf of the both sides of (30), we get

γ2 ≤ γ2 − η(1− η) lim sup
j→∞

∥tj − Stj∥2.

Then
lim sup
j→∞

∥tj − Stj∥ = 0.

Since S is nonexpansive, it follows by Lemma 2.2 that I−S is demiclosed,
therefor ϑ = Sϑ.
Step 3. Aϑ ∈ G−1

2 (0). Note that

lim
j→∞

∥uj − aj∥ = τ lim
j→∞

∥∥∥A∗
(
I − J G2

λ′

)
Aaj

∥∥∥ = 0.

By Theorem 2.4, we can deduce that〈
am − ξ,A∗

(
I − J G2

λ′

)
Aam

〉
=

〈
Aam −Aξ,

(
I − J G2

λ′

)
Aam

〉
=

〈
Aam −Aξ +

(
I − J G2

λ′

)
Aam

−
(
I − J G2

λ′

)
Aam,

(
I − J G2

λ′

)
Aam

〉
=

〈
J G2
λ′ Aam −Aξ,

(
I − J G2

λ′

)
Aam

〉
+
∥∥∥(I − J G2

λ′

)
Aam

∥∥∥2
= −

〈
Aξ − J G2

λ′ Aam,
(
I − J G2

λ′

)
Aam

〉
+
∥∥∥(I − J G2

λ′

)
Aam

∥∥∥2
≥ −1

2

∥∥∥(I − J G2
λ′

)
Aam

∥∥∥2 + ∥∥∥(I − J G2
λ′

)
Aam

∥∥∥2
= 1

2

∥∥∥(I − J G2
λ′

)
Aam

∥∥∥2 . (31)

Since {am} is weakly convergent to ϑ, so Aam is weakly convergent to
Aϑ. By (31) and (31), we obtain

∥(I − J G2
λ′ )Aam∥ → 0.
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Since (I−J G2
λ′ ) is nonexpansive, so is demiclosed, by Lemma 2.3, J G2

λ′ Aϑ =
Aϑ, that is Aϑ ∈ G−1

2 (0). Note that we established ϑ ∈ Υ.
Step 4. Whole sequence {aj} is weakly convergent to ϑ. Let {am} and
{ak} be two subsequences of {aj} that weakly converge to ϑ1 and ϑ2
respectively. Note that

2⟨aj, ϑ1 − ϑ2⟩ = ∥ϑ1∥2 − ∥ϑ2∥2 + ∥aj − ϑ1∥2 − ∥aj − ϑ2∥2.

Since limj→∞ ∥aj − ϑ1∥ and limj→∞ ∥aj − ϑ2∥ exist, so we can let

lim
j→∞

⟨aj, ϑ1 − ϑ2⟩ = ζ.

Consequently
⟨ϑ1, ϑ1 − ϑ2⟩ = ⟨ϑ2, ϑ1 − ϑ2⟩.

Thus ϑ1 = ϑ2, that is, whole sequence {aj} has weakly unique limit. So
{aj} is weakly convergent to ϑ. This completes the proof. □

In the sequel, by adding the assumption of strongly monotonicity on
B, we consider the rate convergence of Algorithm 3.1. Now, we have the
following result.

Theorem 3.4. Under the hypothesis of Theorem 3.3, in addition, let
B is strongly monotone. Then the sequence generated by Algorithm 3.1
converges at least R-linearly to the unique solution of Problem (2).

Proof. We have

∥bj − fj + λj(B(wj − B(bj))∥
≥ ∥bj − fj∥ − λj∥B(wj)− B(bj)∥

≥ ∥bj − fj∥ −
λj
λj+1

µ∥fj − bj∥

=
(
1− λj

λj+1
µ
)
∥fj − bj∥. (32)

Note that for enough large j, (1 − λj
λj+1

µ) ≥ 0. In addition, arguing
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similarly to the proof of Theorem 3.3, we get

∥tj − ξ∥2 ≤ ∥fj − ξ∥2 − θ
(
1− λj

2

λj+1
2µ

2
)
∥fj − bj∥2

− θ(1− θ)∥bj − fj + λj(B(fj)− B(bj))∥2

≤ ∥fj − ξ∥2 − θ
[ (

1− λj
2

λj+1
2µ

2
)

+ (1− θ)
(
1− λj

λj+1
µ
)2 ]

∥fj − bj∥2. (33)

Now, because

bj − λj(B(fj)− B(bj)) ∈ λj(G1 + B)bj,

0 ∈ λj(G1+B))ξ and λj(G1+B)) is νλj− strongly monotone, we conclude
that

⟨fj − bj − λj(B(fj)− B(bj)), bj − ξ⟩ ≥ νλj∥bj − ξ∥2. (34)
So

νλj∥bj − ξ∥2 ≤ ⟨fj − bj, bj − ξ⟩ − λj⟨(B(fj)− B(bj)), bj − ξ⟩
≤ ∥fj − bj∥∥bj − ξ∥+ λj

λj+1
µ∥fj − bj∥∥bj − ξ∥

=
(
1 + λj

λj+1
µ
)
∥fj − bj∥∥bj − ξ∥, (35)

which one deduce that

∥fj − ξ∥ ≤ ∥fj − bj∥+ ∥bj − ξ∥

≤
[
1 + 1

λjν

(
1 + λj

λj+1
µ
)]

∥fj − bj∥, (36)

it turns into

∥fj − bj∥ ≥
[
1 + 1

λjν

(
1 + λj

λj+1
µ
)]−1

∥fj − ξ∥. (37)

It follows from (33) and (37) that

∥tj − ξ∥2 ≤
{
1−

[
θ
(
1− λj

2

λj+1
2µ

2
)
+ (1− θ)

(
1− λj

λj+1
µ
)2

]
·
[(

1 + 1
λjν

(
1 + λj

λj+1
µ
))2

]−1}
∥fj − ξ∥2, (38)
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by (21) and (22), we observe that ∥fj − ξ∥2 ≤ ∥aj − ξ∥2. From (30) and
that ∥aj+1 − ξ∥2 ≤ ∥tj − ξ∥2 and (38), it is deduced that

∥aj+1 − ξ∥2 ≤ ρj∥aj − ξ∥2,

where

ρj = 1−
[
θ
(
1− λj

2

λj+1
2µ

2
)
+ (1− θ)

(
1− λj

λj+1
µ
)2

]
·
[
1 + 1

λjν

(
1 + λj

λj+1
µ
)]2

.

It is clear that, limj→∞ ρj = 1− k, where

k =
(
θ(1− µ2) + (1− θ)(1− µ)2

)[(
1 + 1+µ

λν

)2
]
.

Since 2
µ+3 < θ < 1, µ ̸= 1, so 1− 2θ < 0. Therefor

θ(1− µ2) + (1− θ)(1− µ)2 = (1− 2θ)µ2 + 2(θ − 1)µ+ 1 < 1.

Thus, 0 < k < 1 that means 0 < limj→∞ ρj < 1. So the sequence
{∥aj − ξ∥} is Q−linearly convergent. □

The following corollary is obtained by Theorem 3.3 with θ = 1 and
S = I.
Corollary 3.5. Suppose that the hypothesis of Theorem 3.3 are satisfied.
Take λ′, λ0 > 0 and three numbers µ, α ∈ (0, 1) and η ∈ (0, 1]. Let {aj} be
the sequence defined by the following iterative algorithm. Choose a0 ∈ H
and compute

uj = aj − τA∗(I − J G2
λ′ )Aaj,

fj = (1− α)aj + αuj,

bj = J G1
λj

(I − λjB)fj,
tj = bj + λj(B(fj)− B(bj)),

and

aj+1 = ηtj + (1− η)tj,

λj+1 = min
{
λj,

µ∥fj−bj∥
∥B(fj)−B(bj)∥

}
.
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Then the sequence {aj} converges weakly to a point in{
a : a ∈ (G1 + B)−1(0), Aa ∈ G−1

2 (0)
}
.

The following corollary is obtained by Theorem 3.3 with θ = η = 1.

Corollary 3.6. Suppose that the hypothesis of Theorem 3.3 are satisfied.
Take λ′, λ0 > 0 and two numbers µ, α ∈ (0, 1). Let {aj} be the sequence
defined by the following iterative algorithm. Choose a0 ∈ H and compute

uj = aj − τA∗ (I − J A
λ′ aj

)
,

fj = (1− α) aj + αuj,

bj = J G1
λj

(I − λjB) fj,

and

aj+1 = bj + λj (B (fj)− B (bj)) ,

λj+1 = min
{
λj,

µ∥fj−bj∥
∥B(fj)−B(bj)∥

}
.

Then the sequence {aj} converges weakly to a point in{
a : a ∈ (G1 + B)−1(0), Aa ∈ G−1

2 (0)
}
.

Example 3.7. Let H = R3 with the inner product defined by

⟨x, y⟩ = x1y1 + x2y2 + x3y3,

and

∥x∥2 = x1
2 + x2

2 + x3
2, ∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3.

We define the operators G1 and G2 by

G1 =

 1/3 0 0
0 1/2 0
0 0 1

 , G2 =

 1/4 0 0
0 1/3 0
0 0 1/2

 .
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Clearly G1 and G2 are maximal monotone operators and their resolvents
are defined by

J G1
λj

= (I + λjG1)
−1 =


3

3+λj
0 0

0 2
2+λj

0

0 0 1
1+λj

 ,

J G2
λ′ = (I + λ′G2)

−1 =


4

4+λ′ 0 0

0 3
3+λ′ 0

0 0 2
2+λ′

 .

Now, consider a bounded linear operator A and its adjoint operator A∗

as

A =

 1 3 2
4 2 1
1 3 5

 , A∗ =

 1 4 1
3 2 3
2 1 5

 .

Not that ∥A∥2 = 7.56 and so τ = 0.0175. We define the mappings B and
S by

B =

 1
2 0 0
0 1

2 0
0 0 1

2

 , S =

 1 0 0
0 1 0
0 0 1

 .

Clearly B is monotone and Lipschitz continuous and S is nonexpansive.
Choose the scalars in Algorithm 3.1 as λ′ = 1

2 , λ0 = 1, η = 0.1, α = 1
4 ,

µ = 0.9, θ = 0.6. So all conditions of Theorem 3.3 are satisfied. Now,
we consider arbitrary initial points

a0 = (1, 1, 1)T , (2, 2, 3)T , (3, 4, 3)T ,

in Algorithm 3.1. Then, the sequence generated by the proposed algo-
rithm converges to a solution (0, 0, 0)T . The convergence graph of ∥aj∥
and ∥aj+1−aj∥ is shown in Figs. 1 and 2. Moreover, Table 1 shows that
the numerical results for the three initial points. All of the codes are
written in MATLAB r2015a.

4 Conclusion
In this paper, we investigated an iterative algorithm for solving split
variational inclusion problem and fixed point problem in real Hilbert
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Table 1: Table of Figs. 1 and 2.

a0 ∥aj∥ ∥aj+1 − aj∥

1.91× 10−6 1.17× 10−6

(1, 1, 1)T No. Iter. 58 52
CPU Time(s) 0.00007 0.00002

1.22× 10−6 1.15× 10−6

(2, 2, 3)T No. Iter. 61 55
CPU Time(s) 0.0002 0.00002

1.11× 10−6 1.19× 10−6

(3, 4, 3)T No. Iter. 62 56
CPU Time(s) 0.00037 0.00002
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Figure 1: Convergence graph of ∥aj∥.

spaces. We proposed an iterative method which consist of fixed point
method, Tseng-type splitting method and self-adaptive method for find-
ing a solution of the considered problem. In addition the algorithm
used a simple step-size rule without the prior knowledge of Lipschitz
constant of the operator and without any linesearch procedure. The
step-sizes were updated at each iteration. Also, weak and strong con-
vergence results of the proposed algorithm are obtained under some mild
conditions. In addition, we established the convergence rate of the pro-
posed algorithm. Finally, we provided a numerical example to illustrate
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Figure 2: Convergence graph of ∥aj+1 − aj∥.

the computational performance of the new algorithm.
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