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Abstract. We study shifted Legendre polynomials and develop some
operational matrices of integrations. We use these operational matrices
and develop new sophisticated technique for numerical solutions to the
following coupled system of fredholm integro differential equations

DαU(x) = f(x) + λ11

∫ 1

0

K11(x, t)U(t)dt + λ12

∫ 1

0

K12(x, t)V (t)dt,

DαV (x) = g(x) + λ21

∫ 1

0

K21(x, t)U(t)dt + λ22

∫ 1

0

K22(x, t)V (t)dt,

U(0) = C1, V (0) = C2,

where Dα is fractional derivative of order α with respect to x, 0 < α 6 1,
λ11, λ12, λ21, λ22 are real constants, f, g ∈ C([0, 1]) and K11, K12, K21,
K22 ∈ C([0, 1]× [0, 1]). We develop simple procedure to reduce the cou-
pled system of equations to a system of algebraic equations without dis-
cretizing the system. We provide examples and numerical simulations to
show the applicability and simplicity of our results and to demonstrate
that the results obtained using the new technique matches well with the
exact solutions of the problem. We also provide error analysis.
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1. Introduction

Fredholm integro-differential equations arise in many applied problems such
as floating structures and viscoelastic material dynamics [32], liquidity risk
modeling [26], dynamics of fluid in porus media, water percolation [5, 24]
etc. Fredholm integro-differential equations with integer order derivatives are
well studied and numerous techniques such as differential transform method
[3], Adomian decomposition [6, 4], Homotopy perturbation [7], Modified de-
composition [1], Numerical scheme based on rationalized haar function and
block pulses [20, 18], Galerkin method with hybrid functions [19], Tau method
[16, 17] and Taylor series method [9, 31, 28, 21, 10] etc are available to ap-
proximate solutions of fredholm integro-differential equations analytically and
numerically.
Recently, the study of Fredholm integro differential equations with fractional
order derivatives has attracted some attentions, for example, A. Anguraj [2]
developed some useful results for existence of solutions to fractional order in-
tegral equations via contraction mapping principle and the Krasnoselskii fixed
point theorem. We also refer to [8, 33, 25] for the results on existence of so-
lutions. Beside results on existence of solutions, another important task is to
search for solutions of the problem. However, in most cases, exact analytic
solutions of fractional order problems are not available. The non availability
of the exact solutions of coupled system of fractional order Fredholm integro-
differential equations and the wide range of their applications, motivated us to
develop some numerical scheme for such system.
There do exist various numerical schemes, some cited above, for numerical solu-
tions of differential equations including fractional order and partial differential
equations. One of them is the scheme using operational matrices of integrations
and differentiations. The techniques using operational matrices are simple and
widely applicable for most problems in differential equations. Recently, we de-
veloped a scheme for the numerical solutions of coupled system of fredholm type
integral equations [12], and coupled systems of PDEs and FDEs [13, 14, 11].
In this paper, we study the most simplest shifted Legendre polynomials and de-
velop operational matrix of integrations. Based on the new operational matrix
along with other matrices available in the literature, we develop a scheme for
numerical solutions of the following fractional order coupled system of fredholm
integro-differential equations of the form
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DαU(x) = f(x) + λ11

∫ 1

0

K11(x, t)U(t)dt+ λ12

∫ 1

0

K12(x, t)V (t)dt,

DαV (x) = g(x) + λ21

∫ 1

0

K21(x, t)U(t)dt+ λ22

∫ 1

0

K22(x, t)V (t)dt,

U(0) = C1, V (0) = C2.

(1)

The technique convert the system (1) to a system of easily solvable alge-
braic equations without discretizing the system. We provide a simple numerical
scheme which yields highly accurate results. It is worth mentioning that the
scheme is computer oriented. We use matlab programming to carry out all the
calculation.
The article is organized as follows: In sections 1 and 2, we provide introduction
and preliminaries. In Section 3, operational matrices for the kernel function
using shifted Legendre polynomials are developed and in section 4, we use the
operational matrices for solutions of the coupled system of fredholm integro
differential equations. In Section 5, the proposed method is applied to several
examples. Finally in Section 6 a short conclusion and acknowledgment about
the work is made.

2. Preliminaries

In this section, we recall some basic definitions and known results from frac-
tional calculus, we refer to [27, 15] for more details.

Definition 2.1. Given an interval [a, b] ⊂ R, the Riemann-Liouville fractional
order integral of order α ∈ R+ of a function φ ∈ (L1[a, b],R) is defined by

Iαa+φ(x) =
1

Γ (α)

∫ x

a

(x− s)α−1φ(s)ds,

provided the integral on right hand side exists.

Definition 2.2. For a given function φ(x) ∈ Cn[a, b], the Caputo fractional
order derivative of order α is defined as

Dαφ(x) =
1

Γ(n− α)

∫ x

a

φ(n)(t)
(x− t)α+1−n dt, n− 1 6 α < n , n ∈ N,

provided the right side is pointwise defined on (a,∞), where n = [α]+1 in case
α not an integer and n = α in case α is an integer.
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Hence, it follows that Iαxk = Γ(1+k)
Γ(1+k+α)x

k+α for α > 0, k > 0, DαC =
0, for a constant C and

Dαxk =
Γ(1 + k)

Γ(1 + k − α)
xk−α, for k > [α]. (2)

2.1 The shifted legendre polynomials

The shifted Legendre polynomials are defined by

Pi(x) =
i∑

k=0

(−1)i+k
(i+ k)!
(i− k)!

xk

(k!)2
, i = 0, 1, 2, 3..., (3)

where Pi(0) = (−1)i, Pi(1) = 1 and the orthogonality condition is given by∫ 1

0

Pi(x)Pj(x)dx =
{

1
2i+1 , if i = j;
0, if i 6= j.

Hence, it follows that any f(x) ∈ C[0, 1] can be approximated as [29]

f(x) ≈
m∑
a=0

CaPa(x) = KT
M P̂M (x), (4)

where Ca = (2a+ 1)
∫ 1

0
f(x)Pa(x)dx, M = m+ 1, KM is the coefficient vector

and P̂M (x) is M terms function vector. In two dimensional space, Legendre
polynomials with two variables are defined as a product functions of two Leg-
endre polynomials and the orthogonality condition is found to be∫ 1

0

∫ 1

0

Pi(x)Pj(t)Pa(x)Pb(t)dxdt =
{ 1

(2i+1)(2j+1) , if a = i, b = j;
0, otherwise.

Any function f ∈ C([0, 1] × [0, 1]) can be approximated by two dimensional
Legendre polynomial as

f(x, t) ≈
m∑
i=0

m∑
j=0

CijPi(x)Pj(t),

Cij = (2i+ 1)(2j + 1)
∫ 1

0

∫ 1

0

f(x, t)Pi(x)Pj(t)dxdt,

(5)

which in vector notation, can be written as

f(x, t) ≈ (P̂M (x))TC(M×M)P̂M (t), (6)

where P̂M (x) and P̂M (t) are column vectors of Legendre polynomials and
CM×M is the coefficient matrix. The following result guarantees the conver-
gence of the two dimensional Legendre series.
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2.2 Error estimates and convergence

It is known [22] that for a sufficiently smooth function f(x, t) in some domain
Ω, if

Fm(x, t) =
m∑
i=0

m∑
j=0

CijPi(x)Pj(t) =
m∑
i=0

m∑
j=0

Cijψij(x, t) = CTM×MΨ(x, t)

be the 2D shifted Legendre function expansion, where

CM×M = [C00, C01, ..., C0m, ..., C2m, ...., Cmm]T ,

then there is a real number α such that ‖f(x, t)− Fm(x, t)‖2 6 α
(m+1)!22m+1 .

Moreover, if C̄M×M = [C̄00, C̄01, ..., C̄0m, ..., C̄2m, ...., C̄mm]T be an approxi-
mation for the 2D shifted Legendre function coefficients vector CM×M and
F̄m(x, t) = C̄M×MΨ(x, t), then there exists a real number β such that ‖f(x, t)−
F̄m(x, t)‖2 6 α

(m+1)!22m+1 +β‖Fm−F̄m)‖2. For the proof and more detail study
on the theme, we refer to study [22].

3. Operational Matrices of Integrations

Now, we develop operational matrix of integration for the product function∫ 1

0
f(x, t)g(t)dt using shifted Legendre polynomials. We use this matrix and a

matrix of fractional order integration to reduce the system of equations to a
system of algebraic equations.

Lemma 3.1. Let f(x, t) ∈ C([0, 1]× [0, 1]) and g(t) ∈ C([0, 1]), then∫ 1

0

f(x, t)g(t)dt ≈ KMGM×M P̂ (x)

where KM is the Legendre coefficient vector of the function g(t) and the matrix
GM×M = [qij ] where qij = 1

2j+1Cij , i, j = 1, 2, ...,M .

Proof. In view of (4) and (5), we write

f(x, t) ≈
m∑
i=0

m∑
j=0

CijPi(x)Pj(t),

Cij = (2j + 1)(2i+ 1)
∫ 1

0

∫ 1

0

f(x, t)Pi(x)Pj(t)dxdt,
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g(t) ≈
m∑
a=0

daPa(t), da = (2a+ 1)
∫ 1

0

g(t)Pa(t)dt.

Hence, ∫ 1

0

f(x, t)g(t)dt ≈
∫ 1

0

(
m∑
i=0

m∑
j=0

CijPi(x)Pj(t))(
m∑
a=0

daPa(t))dt,

which implies that∫ 1

0

f(x, t)g(t)dt ≈
m∑
i=0

m∑
j=0

m∑
a=0

daCijPi(x)
∫ 1

0

Pj(t)Pa(t)dt.

Using the orthogonality relation, we obtain∫ 1

0

f(x, t)g(t)dt ≈
m∑
i=0

m∑
j=0

djCijPi(x)(
1

2j + 1
) =

m∑
j=0

m∑
i=0

djqijPi(x), (7)

where qij = 1
2j+1Cij . In matrix notation, (7) can be written as∫ 1

0

f(x, t)g(t)dt ≈ KMGM×M P̂ (x),

where GM×M = [qij ]M×M and the desire result follows. �

The following result is known [30].

Lemma 3.2. Let P̂ (t) be the function vector as defined in (4) then the fractional
integration of order α of P̂ (t) is given by

Iα(P̂ (t)) ' PαP̂ (t)

where Pα is the operational matrix of integration of order α and is defined as

Pα =



∑0
k=0 Θ0,0,k

∑0
k=0 Θ0,1,k · · ·

∑0
k=0 Θ0,j,k · · ·

∑0
k=0 Θ0,m,j∑1

k=0 Θ1,0,k

∑1
k=0 Θ1,1,k · · ·

∑1
k=0 Θ1,j,k · · ·

∑1
k=0 Θ1,m,j

...
...

...
...

...
...∑i

k=0 Θi,0,k

∑i
k=0 Θi,1,k · · ·

∑i
k=0 Θi,j,k · · ·

∑i
k=0 Θi,m,k

...
...

...
...

...
...∑m

k=0 Θm,0,k

∑m
k=0 Θm,1,k · · ·

∑m
k=0 Θm,j,k · · ·

∑m
k=0 Θm,m,k


,

where

Θi,j,k = (2j + 1)
j∑
l=0

(−1)i+j+k+l(i+ k)!(l + j)!
(i− k)!k!Γ(k + α+ 1)(j − l)!(l!)2(k + l + α+ 1)

.
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4. Application of the Operational Matrices

Now, we develop a scheme for numerical solutions of the system (1). We seek
the solutions U(x) and V (x) in terms of shifted Legendre polynomials such
that the following hold

DαU(x) ≈ HT
M P̂ (x), DαV (x) ≈ LTM P̂ (x), (8)

where HM and LM are respectively are the unknown coefficient vector to be
calculated. Applying Iα on both the side of (8), using (3) and the initial con-
ditions, we obtain

U(x)− C1 ≈ HT
MP

α
M×M P̂ (x), V (x)− C2 ≈ LTMP

α
M×M P̂ (x), (9)

which implies that
U(x) ≈ (HT

MP
α
M×M + C̃1)P̂ (x)

V (x) ≈ (LTMP
α
M×M + C̃2)P̂ (x)

(10)

where C̃1P̂ (x) ≈ C1 and C̃2P̂ (x) ≈ C2. For simplicity, we use the notations

(HT
MP

α
M×M + C̃1) = EM , (LTMP

α
M×M + C̃2) = RM . (11)

Now, in view of Lemma (3.1) and (11), we obtain∫ 1

0

K11(x, t)U(t)dt ≈ EMG11P̂ (x),
∫ 1

0

K12(x, t)V (t)dt ≈ RMG12P̂ (x),∫ 1

0

K21(x, t)U(t)dt ≈ EMG21P̂ (x),
∫ 1

0

K22(x, t)V (t)dt ≈ RMG22P̂ (x),
(12)

where G11, G12, G21, G22 are M ×M matrices corresponding to K11, K12,
K21, K22 respectively. Further, writing f(x) ≈ F1P̂ (x), g(x) ≈ F2P̂ (x), where
F1, F2 are M terms coefficient vectors for f and g. Using (8) and (12) in (1),
we obtain

HT
M P̂ (x) = λ11E

T
MG11P̂ (x) + λ12R

T
MG12P̂ (x) + F1P̂ (x)

LTM P̂ (x) = λ21E
T
MG21P̂ (x) + λ22R

T
MG22P̂ (x) + F2P̂ (x),

which in matrix notation can be rewritten as(
HT
M P̂ (x)

LTM P̂ (x)

)
=

(
λ11E

T
MG11P̂ (x)

λ22R
T
MG22P̂ (x)

)
+

(
λ12R

T
MG12P̂ (x)

λ21E
T
MG21P̂ (x)

)
+

(
F1P̂ (x)
F2P̂ (x)

)
,

Taking the transpose of the above matrix, we get(
HT
M P̂ (x) LTM P̂ (x)

)
=

(
λ11E

T
MG11P̂ (x) λ22R

T
MG22P̂ (x)

)
+(

λ12R
T
MG12P̂ (x) λ21E

T
MG21P̂ (x)

)
+

(
F1P̂ (x) F2P̂ (x)

)
,
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and after simplification, we obtain

(
HT
M LTM

)
A =

(
ETM RTM

) (
λ11G11 0

0 λ22G22

)
A+

(
ETM RTM

) (
0 λ21G21

λ12G12 0

)
A+

(
F1 F2

)
A,

where

A =
(
P̂ (x) 0

0 P̂ (x)

)
.

Hence, it follows that

(
HT
M LTM

)
−

(
ETm RTm

) (
λ11G11 λ21G21

λ12G12 λ22G22

)
−

(
F1 F2

)
= 0,

which in view of (11) yields

(
HT
M LTM

)
−

(
HT
M LTM

) (
λ11P

αG11 λ21P
αG21

λ12P
αG12 λ22P

αG22

)
−

(
C̃1 C̃2

) (
λ11G11 λ21G21

λ12G12 λ22G22

)
−

(
F1 F2

)
= 0,

a generalized Sylvestor type equation which can easily be solved for the un-
known HM and LM by using any computational software. Using HM and LM
in (10) we can get the approximate solution to the system.

5. Illustrative Examples

We apply the technique to some problems whose exact solutions are known.

Example 5.1. Consider the following system of equations

DαU(x) =f(x) + 2
∫ 1

0

(x+ t)U(t)dt− 2
∫ 1

0

(x− 1)V (t)dt,

DαV (x) =g(x) + 3
∫ 1

0

(x2 + t2)U(t)dt− 3
∫ 1

0

(x2 − t2)V (t)dt.

subject to the conditions

U(0) = 10, V (0) = 14,



ON THE SOLUTION OF A NONCONVEX FRACTIONAL ... 47

where f(x) = −16x3+9x2+ 83x
10 −

679
30 and g(x) = −28x3+10x− 231x2

20 − 1539
70 .

The exact solution of the problem is U(x) = −4x4 + 3x2 + 2x2 + 10 and
V (x) = −7x4 − 6x2 + 5x2 + 14. We compare the approximate solution of
the problem obtained with the method of the paper to the exact solution for
different values ofM . We see that the solution obtained via this new techniques
matches well with the exact solution of the problem even for relatively small
value of M = 3, which shows the rapid convergence. This phenomena is shown
in Fig (1), where the blue dots and yellow dots respectively represent the exact
solution U(x), V (x) while the red line and green line respectively represent the
approximate solution U(x), V (x). Further, We provide numerical simulations
of the the scheme for different values of α. It is observed that as α → 1, the
various solutions approaches the exact solution of the problem at α = 1. This
phenomena is shown in Fig (2) and Fig (3). We see that the error decreases
significantly as the value ofM increases. This phenomena can easily be observed
from the Fig (4) and Fig (5). Further, we note that if the exact solution is a
polynomial of degree M . Then, at scale equal to M , this scheme will provide
the exact solution as it also evident from the figure (Fig (4), Fig (5)).

Figure 1: Comparison of the exact solution U(x) and V (x), with the solution
obtained with the method of the paper at M = 3. Dots represents the exact
solution while lines represents the approximate solution of the problem.
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DαU(x) = f(x) + λ11

 1

0

K11(x, t)U(t)dt+ λ12

 1

0

K12(x, t)V (t)dt,

DαV (x) = g(x) + λ21

 1

0

K21(x, t)U(t)dt+ λ22

 1

0

K22(x, t)V (t)dt,

U(0) = C1, V (0) = C2.

(1)

The technique convert the system (1) to a system of easily solvable alge-
braic equations without discretizing the system. We provide a simple numerical
scheme which yields highly accurate results. It is worth mentioning that the
scheme is computer oriented. We use matlab programming to carry out all the
calculation.
The article is organized as follows: In sections 1 and 2, we provide introduction
and preliminaries. In Section 3, operational matrices for the kernel function
using shifted Legendre polynomials are developed and in section 4, we use the
operational matrices for solutions of the coupled system of fredholm integro
differential equations. In Section 5, the proposed method is applied to several
examples. Finally in Section 6 a short conclusion and acknowledgment about
the work is made.

2. Preliminaries

In this section, we recall some basic definitions and known results from frac-
tional calculus, we refer to [27, 15] for more details.

Definition 2.1. Given an interval [a, b] ⊂ R, the Riemann-Liouville fractional
order integral of order α ∈ R+ of a function φ ∈ (L1[a, b],R) is defined by

Iαa+φ(x) =
1
Γ (α)

 x

a

(x− s)α−1φ(s)ds,

provided the integral on right hand side exists.

Definition 2.2. For a given function φ(x) ∈ Cn[a, b], the Caputo fractional
order derivative of order α is defined as

Dαφ(x) =
1

Γ(n− α)

 x

a

φ(n)(t)
(x− t)α+1−n

dt, n− 1  α < n , n ∈ N,

provided the right side is pointwise defined on (a,∞), where n = [α]+1 in case
α not an integer and n = α in case α is an integer.
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-

Figure 2: At M = 4, U(x) is given for different values of α such as
for α = 0.5 (red line), α = 0.6 (blue line), α = 0.7 (green line),
α = 0.8 (orange line), α = 0.9 (pink line), α = 1.0 (black line) and the
blue dots represents the exact U(x).

Figure 3: At M = 4, V (x) is given for different values of α such as
for α = 0.5 (red line), α = 0.6 (blue line), α = 0.7 (green line),
α = 0.8 (orange line), α = 0.9 (pink line), α = 1.0 (black line) and the
red dots represents the exact V (x).

Figure 4: Absolute error in U(x) obtained with new method at M =
3 (blue line) and M = 4 (red line).
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1. Introduction

Fredholm integro-differential equations arise in many applied problems such
as floating structures and viscoelastic material dynamics [32], liquidity risk
modeling [26], dynamics of fluid in porus media, water percolation [5, 24]
etc. Fredholm integro-differential equations with integer order derivatives are
well studied and numerous techniques such as differential transform method
[3], Adomian decomposition [6, 4], Homotopy perturbation [7], Modified de-
composition [1], Numerical scheme based on rationalized haar function and
block pulses [20, 18], Galerkin method with hybrid functions [19], Tau method
[16, 17] and Taylor series method [9, 31, 28, 21, 10] etc are available to ap-
proximate solutions of fredholm integro-differential equations analytically and
numerically.
Recently, the study of Fredholm integro differential equations with fractional
order derivatives has attracted some attentions, for example, A. Anguraj [2]
developed some useful results for existence of solutions to fractional order in-
tegral equations via contraction mapping principle and the Krasnoselskii fixed
point theorem. We also refer to [8, 33, 25] for the results on existence of so-
lutions. Beside results on existence of solutions, another important task is to
search for solutions of the problem. However, in most cases, exact analytic
solutions of fractional order problems are not available. The non availability
of the exact solutions of coupled system of fractional order Fredholm integro-
differential equations and the wide range of their applications, motivated us to
develop some numerical scheme for such system.
There do exist various numerical schemes, some cited above, for numerical solu-
tions of differential equations including fractional order and partial differential
equations. One of them is the scheme using operational matrices of integrations
and differentiations. The techniques using operational matrices are simple and
widely applicable for most problems in differential equations. Recently, we de-
veloped a scheme for the numerical solutions of coupled system of fredholm type
integral equations [12], and coupled systems of PDEs and FDEs [13, 14, 11].
In this paper, we study the most simplest shifted Legendre polynomials and de-
velop operational matrix of integrations. Based on the new operational matrix
along with other matrices available in the literature, we develop a scheme for
numerical solutions of the following fractional order coupled system of fredholm
integro-differential equations of the form
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Figure 2: At M = 4, U(x) is given for different values of α such as
for α = 0.5 (red line), α = 0.6 (blue line), α = 0.7 (green line),
α = 0.8 (orange line), α = 0.9 (pink line), α = 1.0 (black line) and the
blue dots represents the exact U(x).

Figure 3: At M = 4, V (x) is given for different values of α such as
for α = 0.5 (red line), α = 0.6 (blue line), α = 0.7 (green line),
α = 0.8 (orange line), α = 0.9 (pink line), α = 1.0 (black line) and the
red dots represents the exact V (x).

Figure 4: Absolute error in U(x) obtained with new method at M =
3 (blue line) and M = 4 (red line).
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Figure 5: Absolute error in V (x) obtained with new method at M =
3 (green line) and M = 4 (purple line).

Example 5.2. Consider the following system of equations

DαU(x) =f(x) +
 1

0
sin(x− t)U(t)dt+

 1

0
cos(x+ t)V (t)dt,

DαV (x) =g(x) +
 1

0
sin(x+ t)U(t)dt+

 1

0
sin(x− t)V (t)dt.

subject to the conditions

U(0) = 0, V (0) = 1,

where f(x) = πcos(πx)− sin(x+1)+sin(x)
π2−1

− πsin(x−1)+sin(x)
π2−1

and g(x) =

−( cos(x−1)+cos(x)
π2−1

+ πsin(πx) + πsin(x+1)+πsin(x)
π2−1

. The exact solution of
the problem is U(x) = sin(πx) and V (x) = cos(πx). Comparison of the
exact solution with that of the approximate solution obtained with the
new method for different value of M is shown in Fig (6) which demon-
strate that as the scale level M increases the approximate solutions
approaches the exact solution of the problem. The solutions for different
values of α are displayed in Fig (7), Fig (8) and the same conclusion
follows as in Example (5.1). The absolute error is shown in Fig (9) and
Fig (10). We note that the error decreases significantly as the scale level
M increases. As evident from Fig (9) and Fig (10) that the absolute
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DαU(x) = f(x) + λ11

 1

0

K11(x, t)U(t)dt+ λ12

 1

0

K12(x, t)V (t)dt,

DαV (x) = g(x) + λ21

 1

0

K21(x, t)U(t)dt+ λ22

 1

0

K22(x, t)V (t)dt,

U(0) = C1, V (0) = C2.

(1)

The technique convert the system (1) to a system of easily solvable alge-
braic equations without discretizing the system. We provide a simple numerical
scheme which yields highly accurate results. It is worth mentioning that the
scheme is computer oriented. We use matlab programming to carry out all the
calculation.
The article is organized as follows: In sections 1 and 2, we provide introduction
and preliminaries. In Section 3, operational matrices for the kernel function
using shifted Legendre polynomials are developed and in section 4, we use the
operational matrices for solutions of the coupled system of fredholm integro
differential equations. In Section 5, the proposed method is applied to several
examples. Finally in Section 6 a short conclusion and acknowledgment about
the work is made.

2. Preliminaries

In this section, we recall some basic definitions and known results from frac-
tional calculus, we refer to [27, 15] for more details.

Definition 2.1. Given an interval [a, b] ⊂ R, the Riemann-Liouville fractional
order integral of order α ∈ R+ of a function φ ∈ (L1[a, b],R) is defined by

Iαa+φ(x) =
1
Γ (α)

 x

a

(x− s)α−1φ(s)ds,

provided the integral on right hand side exists.

Definition 2.2. For a given function φ(x) ∈ Cn[a, b], the Caputo fractional
order derivative of order α is defined as

Dαφ(x) =
1

Γ(n− α)

 x

a

φ(n)(t)
(x− t)α+1−n

dt, n− 1  α < n , n ∈ N,

provided the right side is pointwise defined on (a,∞), where n = [α]+1 in case
α not an integer and n = α in case α is an integer.
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error is << 10−3, which is much more acceptable number and guaran-
tees the high accuracy of the method.We also investigate the behavior of
solution at high scale level, that is M = 10, 20, 25, 30. We observe that
the solution becomes more and more accurate. See for example Fig (11)
and Fig (12). One can see that the error of approximation is also much
more less than 10−15. This guarantees the convergence of approximate
solutions to the exact solutions.

Figure 6: Comparing the exact solution with the solution obtained with
the new method at (M = 4, 5) red dots and blue dots represents the
exact U(x) and V (x), while the dashed line represents the approximate
solutions at M = 3 and solid lines represents approximate solution at
M = 4.

Figure 7: Approximate U(x) at M = 4 and for α = 0.5 (red line),
α = 0.6 (blue line), α = 0.7 (green line), α = 0.8 (orange line),
α = 0.9 (pink line), α = 1.0 (black line) and the red dots represents
the exact U(x).
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1. Introduction

Fredholm integro-differential equations arise in many applied problems such
as floating structures and viscoelastic material dynamics [32], liquidity risk
modeling [26], dynamics of fluid in porus media, water percolation [5, 24]
etc. Fredholm integro-differential equations with integer order derivatives are
well studied and numerous techniques such as differential transform method
[3], Adomian decomposition [6, 4], Homotopy perturbation [7], Modified de-
composition [1], Numerical scheme based on rationalized haar function and
block pulses [20, 18], Galerkin method with hybrid functions [19], Tau method
[16, 17] and Taylor series method [9, 31, 28, 21, 10] etc are available to ap-
proximate solutions of fredholm integro-differential equations analytically and
numerically.
Recently, the study of Fredholm integro differential equations with fractional
order derivatives has attracted some attentions, for example, A. Anguraj [2]
developed some useful results for existence of solutions to fractional order in-
tegral equations via contraction mapping principle and the Krasnoselskii fixed
point theorem. We also refer to [8, 33, 25] for the results on existence of so-
lutions. Beside results on existence of solutions, another important task is to
search for solutions of the problem. However, in most cases, exact analytic
solutions of fractional order problems are not available. The non availability
of the exact solutions of coupled system of fractional order Fredholm integro-
differential equations and the wide range of their applications, motivated us to
develop some numerical scheme for such system.
There do exist various numerical schemes, some cited above, for numerical solu-
tions of differential equations including fractional order and partial differential
equations. One of them is the scheme using operational matrices of integrations
and differentiations. The techniques using operational matrices are simple and
widely applicable for most problems in differential equations. Recently, we de-
veloped a scheme for the numerical solutions of coupled system of fredholm type
integral equations [12], and coupled systems of PDEs and FDEs [13, 14, 11].
In this paper, we study the most simplest shifted Legendre polynomials and de-
velop operational matrix of integrations. Based on the new operational matrix
along with other matrices available in the literature, we develop a scheme for
numerical solutions of the following fractional order coupled system of fredholm
integro-differential equations of the form
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error is << 10−3, which is much more acceptable number and guaran-
tees the high accuracy of the method.We also investigate the behavior of
solution at high scale level, that is M = 10, 20, 25, 30. We observe that
the solution becomes more and more accurate. See for example Fig (11)
and Fig (12). One can see that the error of approximation is also much
more less than 10−15. This guarantees the convergence of approximate
solutions to the exact solutions.

Figure 6: Comparing the exact solution with the solution obtained with
the new method at (M = 4, 5) red dots and blue dots represents the
exact U(x) and V (x), while the dashed line represents the approximate
solutions at M = 3 and solid lines represents approximate solution at
M = 4.

Figure 7: Approximate U(x) at M = 4 and for α = 0.5 (red line),
α = 0.6 (blue line), α = 0.7 (green line), α = 0.8 (orange line),
α = 0.9 (pink line), α = 1.0 (black line) and the red dots represents
the exact U(x).
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Figure 8: Approximate V(x) at M = 4 and for α = 0.5 (red line),
α = 0.6 (blue line), α = 0.7 (green line), α = 0.8 (orange line),
α = 0.9 (pink line), α = 1.0 (black line) and the blue dots represents
the exact U(x).

Figure 9: Amount of absolute error in U(x) at different value of M,i.e.
red line (M=3), green lines (M=4) and blue lines for (M=5).

Figure 10: Amount of absolute error in V(x) at different value of M,i.e.
red line (M=4), green lines (M=5) and blue lines for (M=6).
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DαU(x) = f(x) + λ11

 1

0

K11(x, t)U(t)dt+ λ12

 1

0

K12(x, t)V (t)dt,

DαV (x) = g(x) + λ21

 1

0

K21(x, t)U(t)dt+ λ22

 1

0

K22(x, t)V (t)dt,

U(0) = C1, V (0) = C2.

(1)

The technique convert the system (1) to a system of easily solvable alge-
braic equations without discretizing the system. We provide a simple numerical
scheme which yields highly accurate results. It is worth mentioning that the
scheme is computer oriented. We use matlab programming to carry out all the
calculation.
The article is organized as follows: In sections 1 and 2, we provide introduction
and preliminaries. In Section 3, operational matrices for the kernel function
using shifted Legendre polynomials are developed and in section 4, we use the
operational matrices for solutions of the coupled system of fredholm integro
differential equations. In Section 5, the proposed method is applied to several
examples. Finally in Section 6 a short conclusion and acknowledgment about
the work is made.

2. Preliminaries

In this section, we recall some basic definitions and known results from frac-
tional calculus, we refer to [27, 15] for more details.

Definition 2.1. Given an interval [a, b] ⊂ R, the Riemann-Liouville fractional
order integral of order α ∈ R+ of a function φ ∈ (L1[a, b],R) is defined by

Iαa+φ(x) =
1
Γ (α)

 x

a

(x− s)α−1φ(s)ds,

provided the integral on right hand side exists.

Definition 2.2. For a given function φ(x) ∈ Cn[a, b], the Caputo fractional
order derivative of order α is defined as

Dαφ(x) =
1

Γ(n− α)

 x

a

φ(n)(t)
(x− t)α+1−n

dt, n− 1  α < n , n ∈ N,

provided the right side is pointwise defined on (a,∞), where n = [α]+1 in case
α not an integer and n = α in case α is an integer.
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Figure 8: Approximate V(x) at M = 4 and for α = 0.5 (red line),
α = 0.6 (blue line), α = 0.7 (green line), α = 0.8 (orange line),
α = 0.9 (pink line), α = 1.0 (black line) and the blue dots represents
the exact U(x).

Figure 9: Amount of absolute error in U(x) at different value of M,i.e.
red line (M=3), green lines (M=4) and blue lines for (M=5).

Figure 10: Amount of absolute error in V(x) at different value of M,i.e.
red line (M=4), green lines (M=5) and blue lines for (M=6).
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Figure 11: Amount of absolute error in U(x) at different value of M.

Figure 12: Amount of absolute error in V(x) at different value of M.

Example 5.3. From the above two examples we see that the the solu-
tion is too much accurate and also the convergence of the approximate
solution is shown but only for integer order. In this example we will show
that the solution also converges to the exact solution at fractional value
of α. Consider the following coupled system

D8/10U(x) =f(x) +
 1

0
(x+ 3 + t)2U(t)dt+

 1

0
(x+ t)2V (t)dt,

D8/10V (x) =g(x) +
 1

0
(x+ 4t+ 2)U(t)dt+

 1

0
(x2 + t3 + xt)V (t)dt,

We select the source terms

f(x) = 55666529
60690000x+

7847968538941487
36028797018963968(

15625
924 x21/5−1875

22 x16/5+1300
11 x11/5−

503
6 x6/5 + 1251

50 x1/5) + 8543
30000(x+ 3)2 + 3279

5780x
2 + 643897

606900 , and g(x) =
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holm integro-differential equations, operational matrices of integrations,
numerical

1. Introduction

Fredholm integro-differential equations arise in many applied problems such
as floating structures and viscoelastic material dynamics [32], liquidity risk
modeling [26], dynamics of fluid in porus media, water percolation [5, 24]
etc. Fredholm integro-differential equations with integer order derivatives are
well studied and numerous techniques such as differential transform method
[3], Adomian decomposition [6, 4], Homotopy perturbation [7], Modified de-
composition [1], Numerical scheme based on rationalized haar function and
block pulses [20, 18], Galerkin method with hybrid functions [19], Tau method
[16, 17] and Taylor series method [9, 31, 28, 21, 10] etc are available to ap-
proximate solutions of fredholm integro-differential equations analytically and
numerically.
Recently, the study of Fredholm integro differential equations with fractional
order derivatives has attracted some attentions, for example, A. Anguraj [2]
developed some useful results for existence of solutions to fractional order in-
tegral equations via contraction mapping principle and the Krasnoselskii fixed
point theorem. We also refer to [8, 33, 25] for the results on existence of so-
lutions. Beside results on existence of solutions, another important task is to
search for solutions of the problem. However, in most cases, exact analytic
solutions of fractional order problems are not available. The non availability
of the exact solutions of coupled system of fractional order Fredholm integro-
differential equations and the wide range of their applications, motivated us to
develop some numerical scheme for such system.
There do exist various numerical schemes, some cited above, for numerical solu-
tions of differential equations including fractional order and partial differential
equations. One of them is the scheme using operational matrices of integrations
and differentiations. The techniques using operational matrices are simple and
widely applicable for most problems in differential equations. Recently, we de-
veloped a scheme for the numerical solutions of coupled system of fredholm type
integral equations [12], and coupled systems of PDEs and FDEs [13, 14, 11].
In this paper, we study the most simplest shifted Legendre polynomials and de-
velop operational matrix of integrations. Based on the new operational matrix
along with other matrices available in the literature, we develop a scheme for
numerical solutions of the following fractional order coupled system of fredholm
integro-differential equations of the form
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Figure 11: Amount of absolute error in U(x) at different value of M.

Figure 12: Amount of absolute error in V(x) at different value of M.

Example 5.3. From the above two examples we see that the the solu-
tion is too much accurate and also the convergence of the approximate
solution is shown but only for integer order. In this example we will show
that the solution also converges to the exact solution at fractional value
of α. Consider the following coupled system

D8/10U(x) =f(x) +
 1

0
(x+ 3 + t)2U(t)dt+

 1

0
(x+ t)2V (t)dt,

D8/10V (x) =g(x) +
 1

0
(x+ 4t+ 2)U(t)dt+

 1

0
(x2 + t3 + xt)V (t)dt,

We select the source terms

f(x) = 55666529
60690000x+

7847968538941487
36028797018963968(

15625
924 x21/5−1875

22 x16/5+1300
11 x11/5−

503
6 x6/5 + 1251

50 x1/5) + 8543
30000(x+ 3)2 + 3279

5780x
2 + 643897

606900 , and g(x) =
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+ 17836292133957925
874635076432369287168

(180625x21/5+151725x16/5+149940x11/5−200200x6/5−52668x1/5)+
3279
5780x

2 + 12526163
20230000x+

111591679
91035000 .

The exact solutions of this problem is known and is defined as U(x) =
(x− 1)5− (x− 1/10)4 and V (x) = ((x+1)3− (x− 2/17)2)x(x− 1). We
approximate solutions of this problem at different scale level and observe
that the approximation solutions become more and more accurate with
the increase of scale level.This phenomena is shown in Fig (13). The
absolute error of the solution U(x) and V (x) is shown in Fig (14) and
Fig (15) respectively.One can see that the error is much more less than
10−4. Which is acceptable number.

Figure 13: Comparison of exact solution of Example 5.3 with approxi-
mate solutions at different scale level. The solid dots represents the exact
solution while the lines represents the approximate solutions.

Figure 14: Amount of absolute error in U(x) of Example 5.3 at high
scale level.
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DαU(x) = f(x) + λ11

 1

0

K11(x, t)U(t)dt+ λ12

 1

0

K12(x, t)V (t)dt,

DαV (x) = g(x) + λ21

 1

0

K21(x, t)U(t)dt+ λ22

 1

0

K22(x, t)V (t)dt,

U(0) = C1, V (0) = C2.

(1)

The technique convert the system (1) to a system of easily solvable alge-
braic equations without discretizing the system. We provide a simple numerical
scheme which yields highly accurate results. It is worth mentioning that the
scheme is computer oriented. We use matlab programming to carry out all the
calculation.
The article is organized as follows: In sections 1 and 2, we provide introduction
and preliminaries. In Section 3, operational matrices for the kernel function
using shifted Legendre polynomials are developed and in section 4, we use the
operational matrices for solutions of the coupled system of fredholm integro
differential equations. In Section 5, the proposed method is applied to several
examples. Finally in Section 6 a short conclusion and acknowledgment about
the work is made.

2. Preliminaries

In this section, we recall some basic definitions and known results from frac-
tional calculus, we refer to [27, 15] for more details.

Definition 2.1. Given an interval [a, b] ⊂ R, the Riemann-Liouville fractional
order integral of order α ∈ R+ of a function φ ∈ (L1[a, b],R) is defined by

Iαa+φ(x) =
1
Γ (α)

 x

a

(x− s)α−1φ(s)ds,

provided the integral on right hand side exists.

Definition 2.2. For a given function φ(x) ∈ Cn[a, b], the Caputo fractional
order derivative of order α is defined as

Dαφ(x) =
1

Γ(n− α)

 x

a

φ(n)(t)
(x− t)α+1−n

dt, n− 1  α < n , n ∈ N,

provided the right side is pointwise defined on (a,∞), where n = [α]+1 in case
α not an integer and n = α in case α is an integer.
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The exact solutions of this problem is known and is defined as U(x) =
(x− 1)5− (x− 1/10)4 and V (x) = ((x+1)3− (x− 2/17)2)x(x− 1). We
approximate solutions of this problem at different scale level and observe
that the approximation solutions become more and more accurate with
the increase of scale level.This phenomena is shown in Fig (13). The
absolute error of the solution U(x) and V (x) is shown in Fig (14) and
Fig (15) respectively.One can see that the error is much more less than
10−4. Which is acceptable number.

Figure 13: Comparison of exact solution of Example 5.3 with approxi-
mate solutions at different scale level. The solid dots represents the exact
solution while the lines represents the approximate solutions.

Figure 14: Amount of absolute error in U(x) of Example 5.3 at high
scale level.
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Figure 15: Amount of absolute error in V(x) of Example 5.3 at high
scale level.

6. Conclusion and future work

From the above analysis and calculations we observe that the method
provides high accurate estimator of the approximate solutions. The method
works well for coupled system with initial conditions. The method ap-
proximate the solutions of such systems with smooth solutions. Our fu-
ture work is related to solve such problems with boundary conditions. We
will also extend the method to solve problems having non smooth solu-
tions. The accuracy obtained with the current method is satisfactory. It
is also expected that the accuracy is improved by using other orthogonal
polynomials like Brenstein polynomials, Jacobi polynomials, Laguerre
polynomials etc.
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1. Introduction

Fredholm integro-differential equations arise in many applied problems such
as floating structures and viscoelastic material dynamics [32], liquidity risk
modeling [26], dynamics of fluid in porus media, water percolation [5, 24]
etc. Fredholm integro-differential equations with integer order derivatives are
well studied and numerous techniques such as differential transform method
[3], Adomian decomposition [6, 4], Homotopy perturbation [7], Modified de-
composition [1], Numerical scheme based on rationalized haar function and
block pulses [20, 18], Galerkin method with hybrid functions [19], Tau method
[16, 17] and Taylor series method [9, 31, 28, 21, 10] etc are available to ap-
proximate solutions of fredholm integro-differential equations analytically and
numerically.
Recently, the study of Fredholm integro differential equations with fractional
order derivatives has attracted some attentions, for example, A. Anguraj [2]
developed some useful results for existence of solutions to fractional order in-
tegral equations via contraction mapping principle and the Krasnoselskii fixed
point theorem. We also refer to [8, 33, 25] for the results on existence of so-
lutions. Beside results on existence of solutions, another important task is to
search for solutions of the problem. However, in most cases, exact analytic
solutions of fractional order problems are not available. The non availability
of the exact solutions of coupled system of fractional order Fredholm integro-
differential equations and the wide range of their applications, motivated us to
develop some numerical scheme for such system.
There do exist various numerical schemes, some cited above, for numerical solu-
tions of differential equations including fractional order and partial differential
equations. One of them is the scheme using operational matrices of integrations
and differentiations. The techniques using operational matrices are simple and
widely applicable for most problems in differential equations. Recently, we de-
veloped a scheme for the numerical solutions of coupled system of fredholm type
integral equations [12], and coupled systems of PDEs and FDEs [13, 14, 11].
In this paper, we study the most simplest shifted Legendre polynomials and de-
velop operational matrix of integrations. Based on the new operational matrix
along with other matrices available in the literature, we develop a scheme for
numerical solutions of the following fractional order coupled system of fredholm
integro-differential equations of the form
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Figure 15: Amount of absolute error in V(x) of Example 5.3 at high
scale level.
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provides high accurate estimator of the approximate solutions. The method
works well for coupled system with initial conditions. The method ap-
proximate the solutions of such systems with smooth solutions. Our fu-
ture work is related to solve such problems with boundary conditions. We
will also extend the method to solve problems having non smooth solu-
tions. The accuracy obtained with the current method is satisfactory. It
is also expected that the accuracy is improved by using other orthogonal
polynomials like Brenstein polynomials, Jacobi polynomials, Laguerre
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The technique convert the system (1) to a system of easily solvable alge-
braic equations without discretizing the system. We provide a simple numerical
scheme which yields highly accurate results. It is worth mentioning that the
scheme is computer oriented. We use matlab programming to carry out all the
calculation.
The article is organized as follows: In sections 1 and 2, we provide introduction
and preliminaries. In Section 3, operational matrices for the kernel function
using shifted Legendre polynomials are developed and in section 4, we use the
operational matrices for solutions of the coupled system of fredholm integro
differential equations. In Section 5, the proposed method is applied to several
examples. Finally in Section 6 a short conclusion and acknowledgment about
the work is made.

2. Preliminaries

In this section, we recall some basic definitions and known results from frac-
tional calculus, we refer to [27, 15] for more details.
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provided the right side is pointwise defined on (a,∞), where n = [α]+1 in case
α not an integer and n = α in case α is an integer.
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Fredholm integro-differential equations arise in many applied problems such
as floating structures and viscoelastic material dynamics [32], liquidity risk
modeling [26], dynamics of fluid in porus media, water percolation [5, 24]
etc. Fredholm integro-differential equations with integer order derivatives are
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Recently, the study of Fredholm integro differential equations with fractional
order derivatives has attracted some attentions, for example, A. Anguraj [2]
developed some useful results for existence of solutions to fractional order in-
tegral equations via contraction mapping principle and the Krasnoselskii fixed
point theorem. We also refer to [8, 33, 25] for the results on existence of so-
lutions. Beside results on existence of solutions, another important task is to
search for solutions of the problem. However, in most cases, exact analytic
solutions of fractional order problems are not available. The non availability
of the exact solutions of coupled system of fractional order Fredholm integro-
differential equations and the wide range of their applications, motivated us to
develop some numerical scheme for such system.
There do exist various numerical schemes, some cited above, for numerical solu-
tions of differential equations including fractional order and partial differential
equations. One of them is the scheme using operational matrices of integrations
and differentiations. The techniques using operational matrices are simple and
widely applicable for most problems in differential equations. Recently, we de-
veloped a scheme for the numerical solutions of coupled system of fredholm type
integral equations [12], and coupled systems of PDEs and FDEs [13, 14, 11].
In this paper, we study the most simplest shifted Legendre polynomials and de-
velop operational matrix of integrations. Based on the new operational matrix
along with other matrices available in the literature, we develop a scheme for
numerical solutions of the following fractional order coupled system of fredholm
integro-differential equations of the form
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equations. One of them is the scheme using operational matrices of integrations
and differentiations. The techniques using operational matrices are simple and
widely applicable for most problems in differential equations. Recently, we de-
veloped a scheme for the numerical solutions of coupled system of fredholm type
integral equations [12], and coupled systems of PDEs and FDEs [13, 14, 11].
In this paper, we study the most simplest shifted Legendre polynomials and de-
velop operational matrix of integrations. Based on the new operational matrix
along with other matrices available in the literature, we develop a scheme for
numerical solutions of the following fractional order coupled system of fredholm
integro-differential equations of the form




