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Abstract. Let F be a compact subset of the complex plane, m be the
Lebesgue measure and ν = m|F . If A is the multiplication operator on
L2(ν) and C∗(A) is the C∗-algebra generated by A, then F is convex if
and only if the pure state space of C∗(A) is convex.
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1 Introduction

Let H be a complex Hilbert space with inner product ⟨., .⟩ and the
norm ∥.∥. Let B(H) be the set of all bounded linear operators on H
and T ∈ B(H). The spectrum of T is the set of all λ ∈ C for which
the operator T − λI does not have an inverse that is a bounded linear
operator. The spectrum of T is denoted by σ(T ) and it is a non-empty
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compact subset of the complex plane. The numerical range W (T ) is
defined by

W (T ) = {< Tx, x >: x ∈ H, ∥x∥ = 1}.
The numerical range of an operator is a subset of the complex plane.

One of the most important properties of the numerical range is its con-
vexity. Another important property of W (T ) is that its closure contains
the spectrum i.e. σ(T ) ⊆ W (T ). Numerical range is a connected set
and for normal operator N ,

W (N) = co(σ(N)), (1)
where the co(σ(N)) is the convex hull of σ(N). A more complete dis-
cussion about the numerical range of operators on a Hilbert space is
presented in sources [5] and [6] and recently in [14].

The attainment problem is one of the numerical range problems.
The attainment problem asks: which subsets of the complex plane are
the numerical ranges of a bounded linar operator in a Hilbert space? In
Hilbert spaces with dimension ≥ 2ℵ, due to the crowdedness of the space,
everything happens and it can be proved that every convex and compact
subset of the complex plane is the numerical range of a diagonal, and
hence normal, operator [8].

In this paper we aim to prove that each compact subset F of the
complex plane is the spectrum of the multiplication operator A on L2(ν),
where ν is the Lebesgue meaure on R2 restricted on F . Let C∗(A) be
the C∗-algebra generated by A. We show that: F is convex if and only if
the pure state space of C∗(A), the space of all non-zero homomorphisms
on C∗(A) to C together with wk∗-topology, is convex.

2 Main Results
Let A be a unital C*-algebra with dual A′ and state space S = {φ ∈
A′

: φ ≥ 0, φ(1) = 1}. By the Krein-Milman theorem, the state space S
has extreme points. The extreme points of the state space are termed
pure states and is denoted by M(A). The C*-algebra numerical range
of the element a ∈ A, V (a), is defined by

V (a) := {φ(a) : φ ∈ S}.
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Unlike the numerical range of bounded linear operators on infinite di-
mensional Hilbert spaces, which may not be closed, the numerical range
of elements of C∗-algebras is always closed. Other properties, convexity,
inclusion in the closed sphere to the center of the origin and radius ∥a∥,
and linearity it is similar to the numerical range of the operator (Refer
to [2] and [9] for additional information).

The above definition is a generalization of the definition of the nu-
merical range of bounded linear operators on Hilbert spaces, which
means that, if A = B(H), for some complex Hilbert space H, and
T ∈ A, then V (T ) is the closure of W (T ).

If a ∈ A, then a is normal if aa∗ = a∗a. This definition stems from
the definition of a normal linear operator. A bounded linear operator
on a comlex Hilbert space is normal if commutes with its adjoint. For
more details, see [4].
By an attainment problem, we have the following proposition:

Proposition 2.1. Every non-empty compact subset of the complex plane
is the spectrum of a normal operator.

Remark 2.2. Any non-empty compact subset F of C is the spectrum
of a normal operator acting on ℓ2(N). One simply chooses a dense
subset {dn}n in F , and defines the diagonal (hence normal) operator
DF = Diag(dn) with respect to some orthonormal basis for ℓ2(N). Then
σ(DF ) = {dn}n = F . Since the closure of the numerical range of a nor-
mal operator is the convex hull of its spectrum(see Problem 216 of [6]),
thus, if F is non-empty, compact and convex, then with DF as defined
above,

W (DF ) = co(σ(DF )) = co(F ) = F.

The next theorem, a standard result (basic Gelfand theory) in C*-
algebra theory (e.g. Theorem 2.1.13 of [11]), is the most important tool
to prove the main result of this section.

Theorem 2.3. If A is an abelian C*-algebra with pure state space M
and a ∈ A such that A = C∗(a), then the map γ : M → σ(a) defined by
γ(ϕ) = ϕ(a) is a homeomorphism.
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Proof. Since A is an abelian C*-algebra, then its pure state space, M,
is a wk∗ compact Hausdorff space. To prove this statement, suppose
that {ϕi} is a net in M such that ϕi → ϕ, in wk∗ topology, for some
ϕ ∈ ball(A∗). If x, y ∈ A, then

ϕ(xy) = lim
i
ϕi(xy) = lim

i
ϕi(x)ϕi(y) = ϕ(x)ϕ(y).

So ϕ is a homomorphism. Since

ϕ(1) = lim
i
ϕi(1) = 1,

thus ϕ ̸= 0 and therefore ϕ ∈ M.
If ϕ ∈ M and λ = ϕ(a), then a−λ ∈ kerϕ. So a−λ is not invertible and
λ ∈ σ(a); that is, M(a) ⊆ σ(a). Now assume that λ ∈ σ(a); so a− λ is
not invertible and, hence, (a−λ)A is a proper ideal. Let Y be a maximal
ideal in A such that (a− λ)A ⊆ Y . If ϕ ∈ M such that Y =kerϕ, then
0 = ϕ(a − λ) = ϕ(a) − λ; hence σ(a) ⊆ M(a). For continiuty of γ, let
ϕi → ϕ, in wk∗ topology in M. Then γ(ϕi) = ϕi(a) → ϕ(a) = γ(ϕ).
This implies γ is continuous. By Gelfand transform, A is ∗-isomorphism
to C(M), the commutative C∗-algebra of continuous complex functions
on M. If ρ : C(σ(a)) → C∗(a) is the functional calculus, τ ♯ : C(σ(a)) →
C(M), τ ♯(f) = foτ , where τ : M → σ(a), τ(ϕ) = ϕ(a), then the
following diagram is comutative i.e, γoρ = τ ♯,

C∗(a)
γ // C(M)

C(σ(a))

ρ

OO
τ ♯

99sssssssss

And this completes the proof of the theorem. □

Remark 2.4. Suppose F is a compact subset of the complex plane.
Then, by Proposition 2.1, there is a normal operator N on Hilbert space
H such that σ(N) = F . Put A = C∗(N), the abelian C∗-algebra gen-
erated by N , which results from the normality of N and the continuity
of involution and S be the state space of A. Then by Theorem 2.3 the
map γ : S → F defined by γ(ϕ) = ϕ(N) is a homeomorphism. Since
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{ϕ(N) : ϕ ∈ S} is the C*-algebra numerical range of N , then, by con-
vexity of numerical range, F is convex if and only if the pure state space
of A is convex [3]. One simple counterexample is F = {0, 1}. It’s the
spectrum of the 2-by-2 diagonal matrix diag (0, 1), but since it’s discon-
nected, it cannot be homeomorphic to any compact convex subset. It
turns out that the above main result (each compact subset is homeo-
morphic to a compact convex subset) is a special case of one proved by
D. A. Herrero [7], saying that any nonempty bounded convex set in the
complex plane is homeomorphic to the numerical range of some bounded
linear operator on a Hilbert space. The states space S and the maximal
ideals space M(A) are different spaces. There M(A) is a subspace of
S which consists of multiplicative functionals and S = coM(A). So, if
M(A) is convex then, F is convex.

The question arises that there is such a space with these conditions.
For the possibility of this condition or for the sake of non-obviousness
the Remark 2.4, we provide an example.

Example 2.5. Let X be a compact Hausdorff topological space, γ be
a self homeomorphism of X, Σ = (X, γ) be the topological dynamical
system respect to X and γ and ℓ1(Σ) be a crossed product Banach ∗-
algebra associated with these data. If X is a singleton set, then ℓ1(Σ)
is the group algebra of the integers. The commutant C(X)

′
1 of C(X) in

ℓ1(Σ) is known to be a maximal abelian subalgebra which has non-zero
intersection with each non-zero closed ideal. The maximal ideal space
of C(X)

′
1 is described explicitly, and is seen to coincide with its pure

state space and to be a topological quotient of X × T, where T is the
unit circle in complex plane. For more details see [10].

The attainment problem for numerical range needs to be modified to
keep it interesting. To make the prbolem interesting, we assume the con-
dition of separability of Hilbert space as mandatory i.e., which nonempty
bounded convex subset of R2 is the numerical range of some operator
on a separable Hilbert space? For this, we must characterize the nu-
merical range of bounded linear operators on separable Hilbert spaces.
For example, the numerical range of any normal operator on a separa-
ble Hilbert space is a Borel set [12]. Also the numerical range of any
operator on a separable Hilbert space is Gδσ [1]. In a survey paper [15],
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the authors considerd the problem of which nonempty bounded convex
subset of the complex plane is the numerical range of some bounded lin-
ear operator on a complex separable Hilbert space. In [13], the authors
asked, is every compact convex set the numerical range of some opera-
tor on separable Hilbert space. This question is still open. For further
discussion, concepts will be needed. A closed subspace M of H is called
reducing subspace for T ∈ B(H) if T (M) ⊆ M and T (M⊥) ⊆ M⊥. A
vector x in H is a star-cyclic vector if H is the smallest reducing sub-
space for T that contains x. The operator T is star cyclic if it has a
star-cyclic vector. A vector x is a star-cyclic vector for T if and only if
H = {Sx : S ∈ C∗(T )}, where C∗(T ) is the C∗−algebra generated by T ,
i.e, {p(T, T ∗)x : p = a polynomial} is dense in H. If T has a star-cyclic
vector, then H is separable, because we can choose the polynomials with
rational coefficient.
In the following example, we give the answer, although not completely,
to the numerical range attainment problem.

Example 2.6. Let F ⊂ R2 be a compact convex set and ν is the
Lebesgue meaure on R2 restricted on F . By the Lindelof Covering The-
orem we can prove that ν is a regular Borel measure with support F ,
i.e, ν(F c) = 0. Define A on L2(ν) by Af(z) = zf(z) for eachf in L2(ν).
If M = sup{|z| : z ∈ F}, then∫

R2

|z.f(z)|2dν =

∫
F
|z.f(z)|2dν ≤M2

∫
R2

|f(z)|2dν <∞

So z.f(z) ∈ L2(ν), and then A is well define. It is easy to check that A
is normal. Suppose that λ is a point in support of ν. Let Un = B(λ, 1n),
then Un ∩ F ̸= ∅ and so ν(Un) > 0. Put fn = 1√

ν(Un)
χUn . Then

∥(z − λ)fn∥22 =
∫
R2

|(z − λ).fn(z)|2dν

=
1

ν(Un)

∫
Un

|z − λ|2dν

≤ 1

n2
→ 0

that is λ ∈ σap(A) ⊆ σ(A). On the other hand if λ /∈ F , then there
is an open set U in R2 such that ν(U) = 0 and λ ∈ U . Define ψ(z) =
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(λ − z)−1χUc ∈ L∞(ν) and B : L2(ν) → L2(ν) by B(f(z)) = ψ(z)f(z).
We have (λ− A)B = B(λ− A) = I. Thus, λ /∈ σ(A) and so σ(A) = F .
Also C∗(A) = {Mh : h ∈ C(F )}, where Mh denote the multiplication
operator by h on L2(ν) and C(F ) is the continuous complex function
on F . Then {T1 : T ∈ C∗(A)} = {Mh(1) : h ∈ C(F )} = C(F ), and
C(F ) is dense in L2(ν), so A is star cyclic operator and then L2(ν) is
separable. Now by using relation (1), we have W (A) = F .

The lattice of the invariant subspaces of the multiplication operator
has not yet been fully calculated and is an open problem. Therefore, we
will consider this problem in the following remark.

Remark 2.7. If the closed linear span of the vectors comprising the
orbit x, Tx, T 2x, T 3x, ... of a vector x ∈ H under T is equal all of H, then
the vector x is said to be cyclic for T and T is cyclic operator. In other
words, a vector x in H is a cyclic vector if {p(T )x : p = a polynomial} is
dense in H. The operator T is cyclic if it has a cyclic vector. It is easy
to see that any cyclic operator is star cyclic. If A is the multiplication
operator defined in Example 2.6, then there is no known characterization
of lattice of invariant subspace of A, i.e., Lat(A). Since the cyclicity of
operators and invariant subspaces are two related concepts and that the
multiplicative operator is a star cyclic, so maybe this issue can be useful
in solving the problem of finding invarinat subspaces of the multiplicative
operator. For instance, if x ∈ L2(ν) is a noncyclic vector for A then the
closure of {p(A)x : p = a polynomial} is a nontrivial element in Lat(A).
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