Journal of Mathematical Extension Vol. 18, No. 12, (2024) (5) 1-16

ISSN: 1735-8299

URL: http://doi.org/10.30495/JME.2024.3049

Original Research Paper

(P,H)-Factorable Operators on $L^p(G)$ for Non-Abelian Groups

F. Roohi Afrapoli

Ferdowsi University of Mashhad

R. A. Kamyabi Gol

Ferdowsi University of Mashhad Center of Excellence in Analysis on Algebraic Structures (CEAAS)

F. Esmaeelzadeh*

Bojnourd Branch, Islamic Azad University

Abstract. For a locally compact group G and a closed subgroup H of G, we define the (p, H)-bracket product, which serves as a type of semi-inner product for $L^p(G)$. We proceed to investigate some of its properties. Additionally, we delve into the study of (p, H)-factorable operators and indicate the Riesz representation type theorem for this product, among other things.

AMS Subject Classification: 43A15; 43A70

Keywords and Phrases: (p, H)-bracket product, H-orthogonality, (p, H)-factorable operator, Riesz representation type theorem, semi-inner product.

Received: May 2024; Accepted: December 2024

*Corresponding Author

1 Introduction

In the realm of shift invariant systems on frames, various authors, including de Boor et al. [1], Ron and Shen [8], and Cacazza and Lammers [1], have extensively utilized the bracket product defined as

$$[f,g](x) = \sum_{\alpha \in 2\pi \mathbb{Z}^n} f(x+\alpha) \overline{g(x+\alpha)},$$

on $L^2(\mathbb{R}^n)$. Interestingly, this emerges as a special instance of the inner product on a Hilbert C^* -module, a concept effectively employed by Rieffel [4] and others in advancing results in harmonic analysis on non-commutative groups. In our paper [9], we introduce the (ϕ, p) -bracket product for a locally compact Abelian group G with a lattice L, defined by

$$\Gamma_g: L^p(G) \to L^1(G/\phi(L)),$$

such that

$$f \mapsto \Gamma_g(f) = [f,g]_{\phi,p},$$

where

$$[f,g]_{\phi,p}(x) = \sum_{k \in L} fg^{p-1}(x\phi(k^{-1})).$$

Let us outline the structure of the paper. In Section 2, we revisit essential definitions and fundamentals concerning the quotient space G/H, where H denotes a closed subgroup of a locally compact group G. Section 3 introduces the definition of the (p,H)-bracket product for $L^p(G)$ and explores some of its fundamental properties. In Section 4, we delve into the study of (p,H)-factorable operators and establish a form of the Riesz Representation Theorem for the (p,H)-bracket product. While our focus has been on closed subgroups in this paper, it's worth noting that the validity of the (p,H)-bracket product can be verified for any desired subgroup.

2 Preliminaries and Notations

Let G be a locally compact group and H be a closed subgroup of G with the Haar measures dx and dh, respectively. Consider G/H as a homogeneous space in which G acts from the left, and let μ be a Radon measure on G. For x in G and a Borel subset E of G/H, the translation μ_x of μ is defined by $\mu_x(E) = \mu(xE)$. Then μ is said to be G-invariant if $\mu_x = \mu$, for all $x \in G$. Moreover, the measure μ is called strongly quasi invariant if there is a continuous function $\lambda: G \times G/H \to (0, \infty)$ such that $d\mu_x(\dot{y}) = \lambda_x(\dot{y})d\mu(\dot{y})$ for all $x \in G$ and $\dot{y} = yH \in G/H$, where λ_x is defined by $\lambda_x(\dot{y}) = \lambda(x,\dot{y})$.

A ρ -function for the pair (G, H) is a continuous function $\rho : G \to (0, \infty)$ such that

$$\rho(x\xi) = \frac{\Delta_H(g)}{\Delta_G(\xi)}\rho(x), \quad (x \in G, \xi \in H). \tag{1}$$

By [4, Proposition 2.54] for any locally compact group G and any closed subgroup H, the pair (G, H) admits a rho-function. Assume that $dx, d\dot{x}, dh, d\mu(\dot{x})$ are chosen such that

$$\int_{G} f(x)dx = \int_{G/H} \int_{H} f(xh)dhd\mu(\dot{x}), \quad (f \in L^{1}(G)). \tag{2}$$

This equality is known as Weil's type of formula (for details see [4]). Suppose again that ρ is a continuous, strictly positive function on G satisfying (1). It is well known that

$$\lambda_x(j) = \frac{d\mu}{d\mu}(j) = \frac{\rho(xy)}{\rho(y)}, \quad (x, y \in G).$$
 (3)

Also, for a relatively invariant measure on G/H which arises for a rho-function ρ , we have

$$\rho(xy) = \frac{\rho(x)\rho(y)}{\rho(e)}, \quad (x, y \in G). \tag{4}$$

The group G acts on G/H by the action $\Lambda: G \times G/H \to G/H$ defined by

$$\Lambda_y(\dot{x}) = y^{-1}x, \quad (y \in G), \tag{5}$$

which are homeomorphisms on G/H. The measure $d\mu(\dot{x})$ on G/H defined by (2) has the property

$$\int_{G/H} F(\dot{x}) d\mu(\dot{x}) = \int_{G/H} F(\lambda_y(\dot{x})) d\mu(\dot{x}), \quad (x \in G, F \in L^1(G/H)),$$

where λ_y and Λ_y are given by (3) and (5), respectively.

3 (p, H)-Bracket Product and Its Basic Properties

For $1 , <math>(L^p(G), \|\cdot\|_p)$ stands for the Banach space of equivalence classes of Haar-measurable complex-valued functions on G whose p^{th} powers are integrable.

Let q be the conjugate exponent to p. Let f, g be in $L^p(G)$, it is clear that $|g|^{p-1}$ in $L^q(G)$. So $f|g|^{p-1}$ in $L^1(G)$ and hence by Weil's formula, we get

$$\int_{G/H} \left| \int_{H} \frac{g|g|^{p-1}(xh)}{\rho(xh)} dh \right| d\mu(\dot{x}) = \int_{G} |f| |g|^{p-1}(x) dx \le ||f||_{p} ||g||_{p}^{p-1}.$$

Thus for almost all x in G, the integral $\int_H \frac{f|g|^{p-1}(xh)}{\rho(xh)}dh$ is absolutely convergent.

Therefore, each function $g \in L^p(G)$ induces a bounded linear map

$$\Gamma_q: L^p(G) \to L^1(G/H),$$

Let

$$f \mapsto \Gamma_g(f) = [f, g]_{p,H}$$

with $\|\Gamma_g\| = \|g\|_{p'}^{-1}$, where

$$[f,g]_{p,H}(x) := \int_H \frac{g |g|^{p'-1}(xh)}{\rho(xh)} dh.$$

Note that $\Gamma_g(f) = [f, g]_{p,H}$ is a periodic function on H. Indeed, for $f, g \in L^p(G)$ we have

$$[f,g]_{p,H}(x\xi) = \int_{H} \frac{g |g|^{p'-1}(x\xi h)}{\rho(x\xi h)} dh$$

$$= \int_{H} \frac{g |g|^{p'-1}(xh)}{\rho(xh)} dh$$
$$= [f, g]_{p,H}(x),$$

for all $\xi \in H$. So one may consider the (p, H)-bracket product as a mapping $[\cdot, \cdot]_{p,H}: L^p(G) \times L^{p'}(G) \to L^1(G/H)$ that for $f, g \in L^p(G)$ is defined by

$$r_g(f)(\dot{x}) = \int_H \frac{g |g|^{p'-1}(xh)}{\rho(xh)} dh,$$

for all $\dot{x} \in G/H$. Consequently, one may define the (p, H)-norm as follows,

$$||f||_{p,H}: L^p(G) \to L^p(G/H),$$

 $f \mapsto ||f||_{p,H} = (\Gamma_{|f|}(|f|))^{1/p},$

which is an isometry, $||||f|||_{p,H} = ||f||_p$. Indeed, by Weil's Formula for $f \in L^p(G)$, 1 we have,

$$|||f|||_{p,H}^{p} = \int_{G/H} ||f||_{p,H}^{p}(\dot{x})d\dot{x}$$

$$= \int_{G/H} \Gamma_{|f|}(|f|)(\dot{x})d\dot{x}$$

$$= \int_{G/H} \int_{H} \frac{|f|^{p-1}(xh)}{\rho(xh)} dhd\dot{x}$$

$$= \int_{G} \frac{|f|^{p}(xh)}{\rho(xh)} dhd\dot{x}$$

$$= \int_{G} |f|^{p}(x) dx$$

$$= ||f||_{p}^{p}.$$

The basic properties of $[\cdot, \cdot]_{p,H}$, $\|\cdot\|_{p,H}$ are gathered in the next proposition and the proof is similar to [proposition 2.7, 9] the proof for which has been omitted.

Proposition 3.1. Let H be a closed subgroup of a locally compact group G, let 1 and <math>q the conjugate exponent to p. Then for every $f, g \in L^p(G)$, $c \in \mathbb{C}$:

- (i) $[f+h,g]_{p,H}(\dot{x}) = [f,g]_{p,H}(\dot{x}) + [h,g]_{p,H}(\dot{x}).$
- (ii) $[cf, g]_{p,H}(\dot{x}) = c[f, g]_{p,H}(\dot{x}) = [f, c^{p'-1}g]_{p,H}(\dot{x}).$
- (iii) $||f||_{p,H} = 0 \iff f = 0 \text{ a.e.}$
- (iv) $||cf||_{p,H} = |c|||f||_{p,H}$.
- (v) $||f||_{p,H}^{p-1} = |||f|^{p-1}||_{q,H}$.
- (vi) $||f||_{p,H} ||g||_{p',H} \ge |[f,g]_{p,H}(\dot{x})|$ (Hölder's inequality).
- (vii) $||f + g||_{p,H}(\dot{x}) \le ||f||_{p,H}(\dot{x}) + ||g||_{p,H}(\dot{x})$ (triangle inequality).
- (viii) $\int_{G/H} [f,g]_{p,H}(\dot{x})d\dot{x} \leq \langle f,g^{p'-1}\rangle_{L^p,L^q}$, where $\langle \cdot,\cdot \rangle_{L^p,L^q}$ stands for the duality of L^p and L^q .
- (ix) $[f,g]_{p,H}(\dot{x}) = [g^{p'-1}, f^{p-1}]_{q,H}(\dot{x}).$

Remark 3.2. The (p, H)-bracket product is linear in the first component, but it is not linear in the second component.

Remark 3.3. Note that Proposition 3.1 shows that $[\cdot, \cdot]_{p,H}$ is a type of semi-inner product on $L^p(G)$. More precisely, for any coset \dot{x} in G/H, $[\cdot, \cdot]_{p,H}(\dot{x})$ is a semi-inner product. For more details on semi-inner product see [3].

Recall that the definition of left translation operator $L_y: L^p(G) \to L^p(G)$ is defined by $L_y(f)(x) = f(y^{-1}x)$. Further, we also define $L_y: L^1(G/H) \to L^1(G/H)$ by $L_y\Gamma_g(f) = \Gamma_g(f)(y^{-1}x)$, for any \dot{x} in G/H.

Proposition 3.4. Let y in G and L_y be the left translation operator. For f, g in $L^p(G)$, we have

$$\int_{G/H} \Gamma_g L_y f(\dot{x}) d\mu(\dot{x}) = \int_{G/H} \Gamma_{L_y^{-1}g} f(\dot{x}) d\mu(\dot{x}).$$

where μ is the Radon measure on G/H satisfying the Weil's formula (2). Moreover, when μ is the relatively invariant measure which arises from a rho-homomorphism function ρ , we have:

(i)
$$L_y(\Gamma_g f) = \frac{\dot{\rho}(y)}{\rho(e)} \Gamma_{L_y g}(L_y f),$$

(ii)
$$L_y[f, L_{y^{-1}}g]_{p,H} = \frac{\rho(y)}{\rho(e)}[L_yf, g]_{p,H},$$

(iii)
$$||L_y f||_{p,H}^p = \frac{\rho(e)}{\rho(y)} ||L_y f||_{p,H}^p.$$

Proof. For f, g in $L^p(G)$, we have,

$$\begin{split} \int_{G/H} \Gamma_g L_y f(\dot{x}) d\mu(\dot{x}) &= \int_{G/H} \int_H \frac{L_y f|g|^{p-1}(xh)}{\rho(xh)} dh d\mu(\dot{x}) \\ &= \int_G L_y f|g|^{p-1}(x) dx \\ &= \int_G f(y^{-1}x)|g|^{p-1}(x) dx \\ &= \int_G f(x)|g|^{p-1}(yx) dx \\ &= \int_G f(x) L_{y^{-1}} g|g|^{p-1}(x) dx \\ &= \int_{G/H} \int_H \frac{f L_{y^{-1}} g^{p-1}(xh)}{\rho(xh)} dh d\mu(\dot{x}) \\ &= \int_{G/H} \Gamma_{L_{y^{-1}}} gf(\dot{x}) d\mu(\dot{x}). \end{split}$$

Now using (2.4), we get,

$$\begin{split} L_y(\Gamma_g f)(\dot{x}) &= \Gamma_g f(y^{-1} \dot{x}) \\ &= \int_H \frac{f|g|^{p-1} (y^{-1} x h)}{\rho(y^{-1} x h)} dh \\ &= \int_H \frac{f(y^{-1} x h)|g|^{p-1} (y^{-1} x h)}{\rho(y^{-1}) \rho(x h)} dh \\ &= \frac{\rho(y)}{\rho(e)} \Gamma_{L_y g}(L_y f)(\dot{x}). \end{split}$$

So the proof (i) is completed. By (i), the proof of (ii) is obvious. For

(iii), we have,

$$\begin{split} \|L_y f\|_{p,H}(\dot{x}) &= [L_y f, L_y f]_{p,H}(\dot{x}) \\ &= \frac{\rho(e)}{\rho(y)} \|f\|_{p,H}(\dot{x}) \\ &= \frac{\rho(e)}{\rho(y)} \|L_y f\|_{p,H}(\dot{x}). \end{split}$$

Corollary 3.5. With the assumption as in Proposition 3.2, if G/H possesses a G-invariant measure, including when G is abelian, we have:

- (i) $L_y \Gamma_g f = \Gamma_{L_y g}(L_y f)$,
- (ii) $L_y[f, L_{y^{-1}}g]_{p,H} = [L_yf, g]_{p,H},$
- (iii) $||L_y f||_{p,H} = ||L_y f||_{p,H}$.

Now we consider the set of all H-periodic functions in $L^{\infty}(G)$,

$$B_{\infty}(G) = \{k \in L^{\infty}(G); k(xh) = k(x), \text{ for all } h \in H\}.$$

It is easy to show that $B_{\infty}(G)$ is a subspace of $L^{\infty}(G)$. In the following proposition, we mention some more properties of $B_{\infty}(G)$.

Proposition 3.6. Let $f, g \in L^p(G)$, $1 < p, q < \infty$ and q is the conjugate exponent of p. Then for all $k \in B_{\infty}(G)$ we have,

- (i) $\Gamma_g(fk) = k(\Gamma_g f)$,
- (ii) $\Gamma_g f = k^{p-1} \Gamma_g f$.

In particular, if k satisfies $k(\dot{x}) \neq 0$ a.e., then $\Gamma_g f = 0$ if and only if $\Gamma_g(fk) = 0$.

Proof. By the definition of the (p, H)-bracket product, the proof is immediate. \Box

Definition 3.7. Let $f \in L^p(G)$, $g \in L^q(G)$ where 1/p + 1/q = 1

and $1 < p, q < \infty$. For $E \subseteq L^p(G)$, the H-orthogonal complement of E is

$$\begin{split} E^{\perp,H} &= \{ g \in L^q(G); \Gamma_g f = 0 \text{ a.e.} \mu \text{ for all } f \in E \} \\ &= \{ g \in L^q(G); \langle f, g^{p-1} \rangle_{p,L^p,H} = 0 \text{ a.e.} \mu \text{ for all } f \in E \}. \end{split}$$

The following proposition declares the space $E^{\perp,H}$.

Proposition 3.8. For $E \subseteq L^p(G)$, we have $E^{\perp,H} = \bigcap_{k \in B_{\infty}(G)} (kE)^{\perp,H}$.

Proof. For $g \in E^{\perp,H}$, $k \in B_{\infty}(G)$ and $f \in E$, by Proposition 3.6, we have

$$\begin{split} \langle fk,g^{p-1}\rangle_{p,L^p,H} &= \int_G (fk)(g)(x)dx \\ &= \int_{G/H} \int_H \frac{fkg(xh)}{\rho(xh)} dh d\mu(\dot{x}) \\ &= \int_{G/H} \Gamma_{g^{p-1}}(fk)(\dot{x}) d\mu(\dot{x}) \\ &= \int_{G/H} k(\dot{x})(\Gamma_{g^{p-1}}f)(\dot{x}) d\mu(\dot{x}) \\ &= 0 \end{split}$$

Hence $g \in \bigcap_{k \in B_{\infty}(G)} (kE)^{\perp,H}$. Now let $g \in \bigcap_{k \in B_{\infty}(G)} (kE)^{\perp,H}$ and $f \in E$. For $n \in \mathbb{N}$, define $k_n(\dot{x}) = (\Gamma_{g^{p-1}}f)(\dot{x})$, when $|(\Gamma_{g^{p-1}}f)(\dot{x})| \leq n$, and $k_n(\dot{x}) = 0$ otherwise. Then $k_n \in B_{\infty}(G)$. So we have

$$0 = \int_{G/H} k_n |g^{p-1}f|(\dot{x}) d\mu(\dot{x})$$

$$= \int_{G/H} |k_n|^{p-1} (\dot{x}) (\Gamma_{g^{p-1}}f)(\dot{x}) d\mu(\dot{x})$$

$$= \int_{G/H} |k_n|^p (\dot{x}) d\mu(\dot{x}).$$

Therefore $|k_n(\dot{x})|=0$, for almost all \dot{x} . Hence $\Gamma_{g^{p-1}}f(\dot{x})=0$ a.e., that is $g\in E^{\perp,H}$. \square

4 (p, H)-Factorable Operator on $L^p(G)$

Let G be a locally compact abelian (LCA) group and H be a closed subgroup of G. In this section, (p, H)-factorable operators are defined. Moreover, the relation between (p, H)-factorable operators and (p, H)-bracket product is indicated. Finally, a type of Riesz Representation theorem for $L^p(G)$ with the (p, H)-bracket product is given.

Let G be a (LCA) group, then G/H admits a G-invariant measure which we denote by dx. We shall denote the dual group of G by \hat{G} . Let the Fourier transform

$$: L^1(G) \to C_0(\hat{G}), \quad f \mapsto \hat{f},$$

be defined by

$$\hat{f}(\xi) = \int_{G} f(x)\overline{\xi(x)}dx$$
 for $\xi \in \hat{G}$.

It is It is well known that if $f \in L^p(G)$ $(1 \le p \le 2)$, then \hat{f} in $L^q(\hat{G})$ satisfies $\|\hat{f}\|_q \le \|f\|_p$, where q and p are conjugate exponents (see [4, Theorem 4.27]).

Definition 4.1. Let G be a LCA group and H be a closed subgroup of G. An operator $U: L^p(G) \to L^p(E)$ that $1 < r, p < \infty$ is called (p, H)-factorable if U(kf) = kU(f), for all $f \in L^p(G)$ and all H-periodic $k \in L^\infty(G)$, where E = G/H.

Note that for $g \in L^p(G)$, $1 , Proposition 3.6(i) shows that <math>[\cdot, g]_{p,H}$ is (p, H)-factorable.

In the following, some properties of the (p, H)-factorable operators are investigated, whose proofs are almost the same as the ones when H is a lattice in G, (see [Lemma 3.2, 3.3, 9]), so we omit the proofs.

Lemma 4.2. Let $U_1, U_2 : L^p(G) \to L^1(G/H)$ be two (p, H)-factorable operators. Then $U_1 = U_2$ if and only if

$$\int_{G/H} U_1(f)(\dot{x}) d\dot{x} = \int_{G/H} U_2(f)(\dot{x}) d\dot{x},$$

for every $f \in L^p(G)$.

To demonstrate the lemma, it's worth noting that if $k \in L^{\infty}(G)$ and $f \in L^{p}(G)$, then $kf \in L^{1}(G)$. Thus, we can utilize Weil's formula.

Lemma 4.3. Let $k \in B_{\infty}(G)$ and $f \in L^p(G)$ where 1 . Then

$$\int_{G} |k^{p} f(x)| dx = \int_{G/H} |k(\dot{x})|^{p} ||f||_{p,H}^{p}(\dot{x}) d\dot{x},$$

for $\dot{x} \in G/H$.

Proposition 4.4. Let U be a (p, H)-factorable linear operator from $L^p(G)$ to $L^p(G/H)$, 1 . Then <math>U is bounded if and only if there is a constant B > 0 (B = ||U||) so that for every $f \in L^p(G)$ we have,

$$|U(f)(\dot{x})| \leq B||f||_{p,H}(\dot{x})$$
, for a.e. $\dot{x} \in G/H$.

Proof. Let $k \in B_{\infty}(G)$ and $f \in L^p(G)$. By Lemma 4.3,

$$\int_{G/H} |k(\dot{x})|^p |U(f)(\dot{x})|^p d\dot{x} = \int_G |U(kf)(x)|^p dx$$

$$\leq ||U(kf)||_{L^p(G)}^p$$

$$\leq ||U||^p ||kf||_{L^p(G)}^p$$

$$= ||U||^p \int_{G/H} |k(\dot{x})|^p ||f||_{p,H}^p (\dot{x}) d\dot{x}.$$

Therefore,

$$|U(f)(\dot{x})| \le B||f||_{p,H}(\dot{x}).$$

It follows immediately that $|U(f)(\dot{x})|^p \leq ||U||^p ||f||_{p,H}^p(\dot{x})$, a.e. for $\dot{x} \in G/H$.

Conversely, let $f \in L^p(G)$, we have,

$$\begin{split} \|U(f)\|_{p}^{p} &= \int_{G/H} |U(f)(\dot{x})|^{p} d\dot{x} \\ &\leq \int_{G/H} B^{p} \|f\|_{p,H}^{p} (\dot{x}) d\dot{x} \\ &= B^{p} \int_{G/H} \|f\|_{p,H}^{p} (\dot{x}) d\dot{x} \\ &= B^{p} \|f\|_{p}^{p}. \end{split}$$

So, the proof is completed. \Box

Corollary 4.5. If $U: L^p(G) \to L^p(G/H)$ (1 is a <math>(p, H)-factorable linear operator, then U is bounded if and only if there is a constant B > 0 (B = ||U||) so that for every $f \in L^p(G)$,

$$||U(f)||_{p,H}(\dot{x}) \le B||f||_{p,H}(\dot{x}).$$

Theorems 4.6 and 4.7 serve as the main theorems in this section, representing certain types of Riesz representation theorem for the (p, H)-bracket product in $L^p(G)$.

Theorem 4.6. The operator $U: L^p(G) \to L^1(G/H)$ is a bounded (p, H)-factorable if and only if there exists $g \in L^q(G)$ such that $U(f) = [f, g]_{p,H}$ a.e. for all $f \in L^p(G)$ in which 1 , <math>1/p + 1/q = 1. Moreover, $||U|| = ||g||_q$.

Proof. Let $U:L^p(G)\to L^1(G/H)$ for $1< p<\infty$ be a bounded (p,H)-factorable operator. Define the linear functional $\Psi:L^p(G)\to \mathbb{C}$ by $\Psi(f)=\int_{G/H}U(f)(\dot{x})d\dot{x}$.

The isometrically isomorphic of $(L^p(G))^* \cong L^q(G)$ implies that there exists $g \in L^q(G)$ such that $\Psi(f) = \int_G fg(x)dx$ for all $f \in L^p(G)$. Thus

$$\int_{G/H} U(f)(\dot{x})d\dot{x} = \Psi(f) = \int_G fg(x)dx = \int_{G/H} (\Gamma_{g^{p-1}}f)(\dot{x})d\dot{x}.$$

By Proposition 4.4, $U(f) = \Gamma_{g^{p-1}} f$ a.e. for all $f \in L^p(G)$. Moreover, for any $f \in L^p(G)$,

$$||U(f)||_{L^{1}(G/H)} = ||\Gamma_{g^{p-1}}f||_{L^{1}(G/H)}$$

$$= ||fg||_{1}$$

$$\leq ||f||_{p}||g||_{q}.$$

So $||U|| \le ||g||_q$. Now letting $f = |g^{p-1}|$, hence

$$\begin{split} \|U(|g^{p-1}|)\|_{L^1(G/H)} &= \int_{G/H} |U(|g^{p-1}|)(\dot{x})| d\dot{x} \\ &= \int_{G/H} |\Gamma_{g^{p-1}}|g^{p-1}|(\dot{x})| d\dot{x} \\ &= \int_{G/H} ||g^{p-1}|, |g^{p-1}|\rangle_{p,H}(\dot{x}) d\dot{x} \\ &= \int_{G/H} |g|_{p,H}^q(\dot{x}) d\dot{x} \\ &= \|g\|_{q}^q. \end{split}$$

Thus

$$\|g\|_q^q = \|U(|g^{p-1}|)\|_{L^1} \leq \|U\|\|g\|_q^{q-1},$$

i.e., $\|g\|_q \leq \|U\|$. For the converse, according to boundedness of $g,\,U$ is bounded.

Moreover, for every H-periodic $k \in L^{\infty}(G)$ and $f \in L^{p}(G)$,

$$U(kf)(\dot{x}) = \Gamma_{a^{p-1}}(kf)(\dot{x}) = k(\Gamma_{a^{p-1}}f)(\dot{x}) = kU(f)(\dot{x}),$$

where $\dot{x} \in G/H$. Therefore the proof is complete.

Note that for p=2, Theorem 4.6 is the Theorem 5.25 in [5]. We say $f \in L^p(G)$ is (p, H)-bounded if there exists M>0 such that $||f||_{p,H} \leq M$ a.e. $\dot{x} \in G/H$.

In the next Theorem we assume that H is also a co-compact subgroup of G.

Theorem 4.7. A linear operator $U: L^p(G) \to L^p(G/H)$ (1 is a bounded <math>(p, H)-factorable if and only if there exists (p, H)-bounded $g \in L^q(G)$ such that $U(f) = \Gamma_{g^{p-1}}f$ a.e. $(\dot{x} \in G/H)$ for all $f \in L^p(G)$. Moreover,

$$||U|| = \operatorname{ess\,sup}_{\dot{x} \in G/H} ||g||_{q,H}(\dot{x}),$$

where $\frac{1}{n} + \frac{1}{a} = 1$.

Proof. Let U be a bounded (p, H)-factorable operator from $L^p(G) \to L^p(G/H)$. Since G/H is compact, $L^p(G/H) \subseteq L^1(G/H)$ and so by Theorem 4.6, there exists $g \in L^q(G)$ such that $U(f) = \Gamma_{g^{p-1},H}f$, a.e. $(\dot{x} \in G/H)$, for all $f \in L^p(G)$.

Letting $f = g^{q-1}$, by Proposition 4.4 we get

$$|\Gamma_{g^{p-1}}|g|^{q-1}(\dot{x})| = |U(|g^{q-1}|)(\dot{x})|$$

$$\leq ||U|||g^{q-1}|_{p,H}(\dot{x}),$$

for $\dot{x} \in G/H$. Hence $|g^{q-1}|_{p,H} \le \|U\|$ a.e. Thus $\|g\|_{q,H} \le \|U\|$ a.e.

For the converse, let g be a (p,H)-bounded function and $U(f) = \Gamma_{g^{p-1}}f$ a.e. $\dot{x} \in G/H$ for some $g \in L^q(G)$. Then U is (p,H)-factorable. Now by the assumption that g is (p,H)-bounded and by Theorem 4.6, we have

$$\begin{split} \|U(f)\|_{p}^{p} &= \int_{G/H} |\Gamma_{g^{p-1}} f|^{p}(\dot{x}) d\dot{x} \\ &\leq \int_{G/H} \|f\|_{p,H}^{p}(\dot{x}) \|g\|_{q,H}^{p}(\dot{x}) d\dot{x} \\ &\leq esssup_{\dot{x} \in G/H} \|g\|_{q,H}^{p}(\dot{x}) \int_{G/H} \|f\|_{p,H}^{p}(\dot{x}) d\dot{x} \\ &= esssup_{\dot{x} \in G/H} \|g\|_{q,H}^{p}(\dot{x}) \|f\|_{p}^{p}. \end{split}$$

Thus, U is bounded. Now by replacing $f=g^{q-1}$ in the above, we get

$$||U|| = \operatorname{esssup}_{\dot{x} \in G/H} ||g||_{q,H}(\dot{x}).$$

This result makes the proof complete. \Box

References

[1] Casazza P.G. and Lammers M.C., *Bracket products for Weyl-Heisenberg frames*, Advances in Gabor analysis. Appl. Numer. Harmon. Anal., Birkhäuser Boston, (2003), pp 71-98.

- [2] DeBoor C., DeVore R. A. and Ron A., The structure of finitely generated shift-invariant spaces in $L^2(\mathbb{R}^d)$, J. Funct. Anal. 119, No. 1, (1994), pp 37-78.
- [3] Dragomir S.S., semi-inner products and application, Nova Science Publishers, Hauppauge, New York, (2004).
- [4] Folland G.B., A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton (1995).
- [5] Folland G.B., Real Analysis, John Wiley, New York (1984).
- [6] Kamyabi Gol R.A. and Raisi Tosi R., Bracket products on locally compact Abelian groups, J. Sci. Islam. Repub. Iran, Vol. 19, No. 2, (2008), pp 153-157.
- [7] Rieffel M.A., Projective modules over higher-dimensional noncommutative tori, Can. J. Math., (1988), pp 257-388.
- [8] Ron A. and Shen Z., Frame and stable bases for shift invariant subspaces of $L^2(\mathbb{R}^d)$, Canada. J. Math., (1995), pp 1051-1094.
- [9] Roohi Afrapoli F., Kamyabi Gol R.A. and Esmaeelzadeh F., (p, H)Factorable operators on $L^p(G)$ for a Locally Compact Abelian Group,
 Bulletin of the Iranian Mathematical Society, (2022), Vol 48, Issue
 2, p673.

Fatemeh Roohi Afrapoli

PhD Candidate of Mathematics
Department of Mathematics,
Ferdowsi University of Mashhad, Mashhad, Iran.
fatemerooihiafrapoli@gmail.com

Rajab Ali Kamyabi Gol

Full Professor of Mathematics
Department of Mathematics, Ferdowsi University of Mashhad,
Center of Excellence in Analysis on Algebraic Structures (CEAAS),
P.O. Box 1159-91775, Mashhad, Iran.
kamyabi@ferdowsi.um.ac.ir

Fatemeh Esmaeelzadeh

Assistant Professor of Mathematics Department of Mathematics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran. esmaeelzadeh@bojnourdiau.ac.ir