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1 Introduction

Integral equations (IEs) are an important tool for scientific expression
of many phenomena and modeling of a wide range of scientific processes
and have wide applications in various scientific fields such as mathe-
matical physics, economics, biology, scattering theory, mechanics and
population dynamics, [13, 19, 39, 40, 41, 47]. The importance of the
existence of the solution in such studies cannot be overstated, as many
times no analytical solution can be found for such problems.

So far, many researchers have been study in this field and have re-
flected the results of their research [6, 17]. Employing fixed point theo-
rems (FPTs) to check the existence of solutions in different types of IEs
is one of the most important methods used by scientists in this field,
for more instance, consider [2, 22, 25, 26]. Some systems are such that
to model them, familiarity with fractional integral equations (FIEs) is
necessary. Also, in the solution’s existence, we can refer to the works
done in [8, 32, 48, 50], and other classes of these equations in [4, 34, 49],
which all are based on FPTs. Some phenomena include random param-
eters that leads to encountering stochastic IEs [38, 46]. Such systems
have more complexities and it is important to make sure they have so-
lution. Methods based on FPTs are some studies that researchers have
done to ensure the existence of solutions in different classes of such equa-
tions [12, 16, 27, 42]. There are equations that contain a combination
of random parameters and derivative of fractional order. Such complex
equations can be found in [18, 23].

The introduction and study on the existence of the solution of frac-
tional functional IE in the Riemann-Liouville (RL) sense, using FPT in
Banach algebra is given in [5, 9, 31]. In 2021, Samei et al. investigated
the following singular fractional q-integro-differential equation involving
Caputo fractional q-derivative, for 0 < s < 1,

CDσ
q y(s) = g

(
s, y(s), y′(s), CDζ

qy(s),

∫ s

0
y(r)β(r) dr

)
, (1)

under boundary conditions y(0) = 0 and y(1) = CDη
qy(τ), where y ∈

C([0, 1]), σ ∈ [1, 2), ζ, η, τ ∈ (0, 1), β ∈ L1([0, 1]) is nonnegative with
∥β∥1 = m and g(s.y1, y2, y3, y4) is singular at some points of s [44].
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Aydogan in [7] considered the following k-dimensional hybrid differential
system

CDσ
q

(
m1(s)

(
y1(s)

l1(s,y1(s))

)′
− m̃1(s)h̃1(y1(s))

)
+ q1(s)y1(s)

= f1(s)h1(y1(s)),

CDσ
q

(
m2(s)

(
y2(s)

l2(s,y2(s))

)′
− m̃2(s)h̃2(y2(s))

)
+ q2(s)y2(s)

= f2(s)h2(y2(s)),
. . .

CDσ
q

(
mk(s)

(
yk(s)

lk(s,yk(s))

)′
− m̃k(s)h̃k(yk(s))

)
+ qk(s)yk(s)

= fk(s)hk(yk(s)),

under the sigma boundary value conditions

(
yi(s)

li(s,yi(s))

)′ ∣∣∣
s=0

= m̃i(s)
mi(s)

h̃i(yi(s))
∣∣∣
s=0

, 1 ≤ i ≤ k,

and
∑k

i=1 ζi

(
yi(ai)

li(ai,yi(ai))

)
= ρi

∑k
i=1

yi(zi)
li(zi,yi(zi))

. Bhupeshwar et al. first,

focused on examining the existence and uniqueness of solutions Ψ-Hilfer
FDI

HDσ,ζ;Ψy(s) = g
(
s, y(s)

)
, s ∈ [s1, s2] ⊂ R>0, (2)

under conditions y(s+1 ) = y′(s+1 ) and y(u) = KIσ;Ψy(s), with η = σ +
ζ(3 − σ), where 2 < σ < 3, K ∈ R, Iσ;Ψy(s) is the Ψ-RL FI of order
σ, and in the second stage, provided two distinct existence results for
Ψ-Hilfer FDI (2) via new conditions

{
y
(j)
Ψ (s1) = 0, j = 0, 1, 2, . . . (n− 2), y

(j)
Ψ =

(
d

Ψ′(s)ds

)j
y(s),

yn−1
Ψ (u) = yu ∈ R,

where g(·, y(·)) ∈ C([0, 1]) [11].

In this study, we examine the existence of the solution of following
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fractional stochastic integro-differential equations (FSIDEs),

CDσ(y(s) + g(s, y(s))) = f
(
s, y(α(s))

)
+ F

(
s, y(β(s)),

∫ s

0
k1(s, t, y(θ(t))) ds,∫ s

0
k2(s, t, y(µ(t))) dW (t)

)
, (3)

for s ∈ Ia := [0, a], under the initial conditions

y(ı̇)(0) = xı̇, ı̇ = 0, 1, . . . , n− 1, (4)

where, y ∈ C(Ia) as the analytical solution of (3) is unknown and all
other functions are known stochastic processes defined on the some prob-
ability space (Ω,F , P ), and W (s) is the Brownian motion. Also, y(i)(0)
is the ı̇-th order of derivative of continuous function x at point 0 and
xi’s are constant. In addition α, θ, µ ∈ C(Ia), f, g ∈ C(Ia × R), and
k1, k2 ∈ C(Ia × Ia × R) are continuous functions. The development of
the concept of measures of non-compactness (M.N.C) was first done by
Kuratowski [30]. Later, other researchers used this concept in investigat-
ing the existence of different types of solutions for the IEs [3, 10, 15, 33].
This research examines the existence of a solution to FSIDE (3) by ap-
plying the concept of M.N.C and in this way, the FPT of Petryshyn is
used.

2 Auxiliary Facts and Notations

In this section we review some definitions and theorems, by stating
some auxiliary facts and notations. First, we provide some prelimi-
nary concepts of fractional calculus. Then some basic introductions
about stochastic calculations, and in the next subsection about FPT of
Petryshyn, which depend on the concept of M.N.C, brief explanations
will be provided.
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2.1 Fractional calculus

Definition 2.1 ([28]). The RL FI of order σ > 0 of a function ξ, is
defined as

Iσξ(τ) =

∫ τ

0

(τ−µ)σ−1

Γ(σ) ξ(µ) dµ, τ > 0.

Of course, to learn about the properties of the RL derivative, you can
see [28]. In this article, the definition of Caputo derivative is considered,
which can better model the phenomenon and is compatible with the
initial conditions of the problems.

Definition 2.2 ([28]). The Caputo derivative of fractional order σ ≥ 0
for a function ξ(τ) is defined by

(
CDσξ

)
(τ) =

∫ τ

0

(τ−µ)n−σ−1

Γ(n−σ) τ (n)(µ) dµ,

for n− 1 < σ ≤ n, n ∈ N.

Lemma 2.3 ([28]). Let σ > 0 and n = [σ] + 1. For two fractional
operators defined above, the following properties yield

(i)
(
Iσ CDσξ

)
(τ) = ξ(τ)−

n−1∑
i=0

ξ(i)(0)

i!
τ i;

(ii)
(
CDσIσξ

)
(τ) = ξ(τ).

2.2 Stochastic calculus

Systems types have been described and evolved using DEs and IEs, since
their inception, based on their applications (i.e. economic, mechanical
and social systems). These equations applied to model phenomena that
in part deal with movement. SDE is a new branch of mathematics that
defines the characteristics of random motion based on very broad math-
ematical foundations. Mathematical models involving measuring uncer-
tainty, are key to the solution and play an important part in the branch
of science and industry, which is why scientists use SDEs as needed in
systems modeling. The SEs are equations in which one, or more terms
are random processes. Therefore, the solution of SEs may also be of
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the type of stochastic processes that despite the similarity to the meth-
ods of solving ordinary DEs, there are differences. We studied the basic
concepts of this discussion using the concept of Brownian motion.

Definition 2.4. ([29]) Brownian motion W (s) which is the following
properties is a stochastic process.

a) For 0 ≤ s1 < s2 < · · · < sn, the increments

W (s1), W (s2)−W (s1), . . . , W (sn)−W (sn−1),

are independent of the path;

b) W (s) − W (t) having mean and variance 0 and variance s − t,
respectively, has a normal distribution, as a resultW (s) has normal
distribution with mean and variance 0 and variance s;

c) The W (s), for s ≥ 0 is a continuous functions.

The definition in part (a), (b) and (c), assumes the start of movement
from s. The condition P (W (0) = 0) = 0 standardizes Brownian motion
where it start at 0.

Before explaining the next theorem which implies the existence of a
SI, it is necessary to state the following definition.

Definition 2.5 ([29]). When for all s, Y (s) be F̃s-measurable, the pro-
cess Y is called adapted to the filtration F̃ = (F̃s).

Theorem 2.6 ([29]). If Y be a process that satisfies the continuous

adapted condition, then the
∫ T
0 Y (s) dW (s) exists.

If Brownian motion was derivable everywhere, its integral would not
be a problem, but considering that it is not derivable anywhere, therefore
the SI cannot be calculated by normal methods. The common method
for calculating the SI is to use the integration by parts method, which
converts the SI into a computable normal or simple integral. So that for
the differentiable and bounded function ϕ, we have [36]:∫ s

0
ϕ(t) dW (t) = ϕ(s)W (s)−

∫ s

0
W (t)ϕ′(t) dt, 0 ≤ s ≤ 1, (5)

which is an alternative method for calculating SIs.
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2.3 Petryshyn’s fixed-point theorem

Here, we employ the symbol E for Real Banach space, the symbol B̄r
for Closed ball with center 0 and radius r, the symbol ∂B̄r for Sphere in
E around 0 with radius r > 0, and finally the symbol C(Ia) for Space of
all continuous and real-valued functions on Ia = [0, a]. We recall some
definitions and theorems that are required for the sequel.

Definition 2.7 ([30]). Let Y ⊂ E be a bounded set, then α(Y ) =
inf

{
ρ > 0 : Y can be covered by a finite number of sets with diameter

≤ ρ
}
, is said to be the Kuratowski M.N.C.

Definition 2.8 ([21]). Let Y ⊂ E be a bounded set, then the Hausdorff
M.N.C is given by µ(Y ) = inf

{
ρ > 0 : Y has a finite ρ-net in E}.

Theorem 2.9 ([21]). Let Y ⊂ E be a bounded set, then the M.N.C α
and µ fulfill µ(Y ) ≤ α(Y ) ≤ 2µ(Y ).

The space C(Ia) is a Banach space under the norm ∥y∥ = sup
{
|y(s)| :

s ∈ Ia
}
, and we shall write the modulus of continuity of a function

y ∈ C(Ia) as

ω(y, ρ) = sup
{
|y(s)− y(t)| : |s− t| ≤ ρ

}
.

Since y is uniformly continuous on Ia, we have w(y, ρ) → 0, as ρ→ 0.

Theorem 2.10 ([21]). In Hausdorff M.N.C, for all bounded sets Y ⊂
C(Ia)

µ(Y ) = lim
ρ→0

{
sup ω(y, ρ) : y ∈ Y

}
. (6)

Definition 2.11. [35] Let Q : E → E be a continuous map. Q is said to
be a k-set contraction if for all Y ⊂ C(Ia) be bounded, Q(Y ) is bounded
and α(QY ) ≤ kα(Y ), 0 < k < 1. Moreover, Q is is said to be condensing
(densifying) map if α(QY ) < α(Y ).

Note that, a k-set contraction with 0 < k < 1 yields condensing
(densifying) but not vice versa.

Theorem 2.12 ([37, 45]). Suppose that Q : B̄r → E is a densifying
mapping that satisfies the boundary condition,

(P) if Q(Y ) = kY , for some Y in ∂Br then k ≤ 1.

Then the set of fixed points of Q in B̄r is nonempty.
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3 Main Results

In this section, we examine the solvability of the FSIDE (3). Because of
the continuity of g and f , we apply the operator Iσ on sides of Eq. (3),

y(s) =

n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! sı̇ − g(s, y(s))

+ 1
Γ(σ)

∫ s

0

f(t,y(α(t)))
(s−t)1−σ dt

+ 1
Γ(σ)

∫ s

0

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s−t)1−σ dt, (7)

where

(H1y)(s) =

∫ s

0
k1
(
s, t, y(θ(t))

)
dt,

(H2y)(s) =

∫ s

0
k2
(
s, t, y(µ(t))

)
dW (t).

The Eq. (3) is equivalent to the FSIE (7). This means every solution of
Eq. (7) is also a solution of Eq. (3), and vice versa. Next, we consider
the following conditions for Eq. (7):

H1) g, f ∈ C(Ia×R), F ∈ C(Ia×R×R×R), k1, k2 ∈ C(Ia× Ia×R),
and α, β, θ, µ : Ia → Ia are continuous;

H2) There exist nonnegative constants k, c1, c2, c3, c4, and k < 1 such
that |g(s, u)− g(s, ū)| ≤ k|u− ū|, and

|F (s, u, v, w)− F (s, ū, v̄, w̄)| ≤ c1|u− ū|+ c2|v − v̄|+ c3|w − w̄|;

H3) (Bounded condition) There exists nonnegative r0 such that

sup
{
L+A+ M1aσ

Γ(1+σ) +
M2aσ

Γ(1+σ)

}
≤ r0, (8)
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where

L = sup

{∣∣∣∣ n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! si

∣∣∣∣ : ∀ s ∈ Ia

}
,

A = sup
{
|g(s, u)| : ∀ s ∈ Ia, u ∈ [−r0, r0]

}
,

M1 = sup
{
|f(s, u)| : ∀ s ∈ Ia, u ∈ [−r0, r0]

}
,

M2 = sup
{
|F (s, u, v, w)| : ∀ s ∈ Ia, u ∈ [−r0, r0],

|v| ≤ aA1, |w| ≤ λB
}
,

and

A1 = sup
{
|k1(s, t, u)| : ∀ s, t ∈ Ia, u ∈ [−r0, r0]

}
,

B = sup
{
|k2(s, t, u)| : ∀s, t ∈ Ia, u ∈ [−r0, r0]

}
,

λ = sup
{
|W (s)| : ∀ s ∈ Ia

}
.

Theorem 3.1. By conditions (H1)-(H3) on E = C(Ia), FSIDE. (3) has
at least one solution.

Proof. We define the operator Q : Br0 → C(Ia), as follows

(Qy)(s) =
n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! sı̇ − g(s, y(s))

+ 1
Γ(σ)

∫ s

0

f(t,y(α(t))
(s−t)1−σ dt

+ 1
Γ(σ)

∫ s

0

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s−t)1−σ dt.

We will demonstrate that the operator Q is continuous on the ball Br0 .
Take arbitrary x, y ∈ Br0 and ε > 0 such that ∥x − y∥ ≤ ε, then for



10 A. R. YAGHOOBNIA, M. KAZEMI AND V. N. MISHRA

s ∈ Ia, we get

|(Qy)(s)− (Qx)(s)| ≤ |g(s, x(s))− g(s, y(s))|

+ 1
Γ(σ)

∫ s

0

|f(t,y(α(t))−f(t,x(α(t))|
(s−t)1−σ dt

+ 1
Γ(σ)

∫ s

0

1
(s−t)1−σ

[∣∣∣F (t, y(β(t)), (H1y)(t), (H2y)(t))

− F (t, x(β(t)), (H1x)(t), (H2x)(t))
∣∣∣] dt

≤ k ∥ y − x ∥ + sσ

Γ(1+σ)ω(f, ω(α, ε))

+ 1
Γ(σ)

∫ s

0

1
(s−t)1−σ

[∣∣∣F (t, y(β(t)), (H1y)(t), (H2y)(t))

− F (t, x(β(t)), (H1y)(t), (H2y)(t))
∣∣∣] dt

+ 1
Γ(σ)

∫ s

0

1
(s−t)1−σ

[∣∣∣F (t, x(β(t)), (H1y)(t), (H2y)(t))

− F (t, x(β(t)), (H1x)(t), (H2y)(t))
∣∣∣] dt

+ 1
Γ(σ)

∫ s

0

1
(s−t)1−σ

[∣∣∣F (t, x(β(t)), (H1x)(t), (H2y)(t))

− F (t, x(β(t)), (H1x)(t), (H2x)(t))
∣∣∣] dt

≤ k ∥ y − x ∥ + sσ

Γ(1+σ)ω(f, ω(α, ε)) +
c1sσ

Γ(1+σ) ∥ y − x ∥

+ c2asσ

Γ(1+σ)ω(k1, ε) +
c3λsσ

Γ(1+σ)ω(k2, ε),

where for σ > 0, we define

ω(f, ε) = sup
{
|f(t, y)− f(t, x)| : t ∈ Ia,

y, x ∈ [−r0, r0], ∥y − x∥ ≤ ε
}
,

ω(kı̇, ε) = sup
{
|kı̇(s, t, y)− kı̇(s, t, x)| : s, t ∈ Ia,

y, x ∈ [−r0, r0], ∥y − x∥ ≤ ε
}
, ı̇ = 0, 1.

Since the functions f = f(t, y) and k = k(s, t, y) are uniformly contin-
uous on Ia × R and Ia × Ia × R, we indicate that ω(f, ω(α, ε)) → 0,
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ω(k1, ε) → 0 and ω(k2, ε) → 0 as ε → 0. Consequently, the operator Q
is continuous on Br0 . In the following, we prove the operator Q fulfills
densifying condition in view of µ. To do this, we take arbitrary ε > 0
and assumed that x ∈ Y ⊂ C(Ia) is a bounded set. Here for s1, s2 ∈ Ia
such that s1 ≤ s2 while s2 − s1 ≤ ε, gives

|(Qy)(s2)− (Qy)(s1)| =
∣∣∣∣ n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! sı̇2

− g(s2, y(s2)) +
1

Γ(σ)

∫ s2

0

f(t,y(α(t)))
(s2−t)1−σ dt

+ 1
Γ(σ)

∫ s2

0

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s2−t)1−σ dt

−
n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! sı̇1

+ g(s1, y(s1))− 1
Γ(σ)

∫ s1

0

f(t,y(α(t)))
(s1−t)1−σ dt

− 1
Γ(σ)

∫ s1

0

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s1−t)1−σ dt

∣∣∣∣
≤

∣∣∣∣ n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇!

(
sı̇2 − sı̇1

) ∣∣∣∣+ |g(s1, y(s1))

− g(s2, y(s2))|+ 1
Γ(σ)

∣∣∣∣ ∫ s1

0

f(t,y(α(t)))
(s2−t)1−σ dt

+

∫ s2

s1

f(t,y(α(t)))
(s2−t)1−σ dt+

∫ s1

0

f(t,y(α(t)))
(s1−t)1−σ dt

∣∣∣∣
+ 1

Γ(σ)

∣∣∣∣ ∫ s1

0

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s2−t)1−σ dt

+

∫ s2

s1

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s2−t)1−σ dt

+

∫ s1

0

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s1−t)1−σ dt|

≤ |g(s1, y(s1))− g(s1, y(s2))|+ |g(s1, y(s2))

− g(s2, y(s2))|+ 1
Γ(σ)

∫ s1

0

∣∣∣f(t,y(α(t)))(s2−t)1−σ
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−f(t,y(α(t)))
(s1−t)1−σ

∣∣∣ dt+ 1
Γ(σ)

∫ s2

s1

∣∣∣f(t,y(α(t)))(s2−t)1−σ

∣∣∣ dt
+ 1

Γ(σ)

∫ s1

0

∣∣∣F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s2−t)1−σ

−F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s1−t)1−σ

∣∣∣ dt

+ 1
Γ(σ)

∫ s2

s1

∣∣∣F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s2−t)1−σ

∣∣∣ dt.
For simplicity we use the following notation:

ωg(Ia, ε) = sup
{
|g(s, y)− g(s̄, y)| : |s− s̄| ≤ y ∈ [−r0, r0]

}
,

and using the above relation we get

|(Qy)(s)− (Qx)(s)| ≤ kω(y, ε) + ωg(Ia, ε)

+ M1
Γ(1+σ) {s

σ
1 − sσ2 + (s2 − s1)

σ}+ M1
Γ(1+σ)(s2 − s1)

σ

+ M2
Γ(1+σ) {s

σ
1 − sσ2 + (s2 − s1)

σ}+ M2
Γ(1+σ)(s2 − s1)

σ

≤ kω(x, ε) + ωg(Ia, ε) +
3εσM1
Γ(1+σ) +

3εσM2
Γ(1+σ) .

Taking limit as ε→ 0, we obtain ω(Qy, ε) ≤ kω(y, ε), for y ∈ Y . There-
fore, µ(QY ) ≤ kµ(Y ). Now, we get Q is a condensing mapping with
constant k < 1. It remains to verify condition (P) of Theorem 2.12.
Suppose y ∈ ∂B̄r0 . If Qy = ky then we have kr0 = k∥y∥ = ∥Qy∥ and
by condition (H3), we concluded that

|Qy(s)| =
∣∣∣∣ n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! sı̇ − g(s, y(s))

+ 1
Γ(σ)

∫ s

0

f(t,y(α(t)))
(s−t)1−σ dt

+ 1
Γ(σ)

∫ s

0

F (t,y(β(t)),(H1y)(t),(H2y)(t))
(s−t)1−σ dt

∣∣∣∣ ≤ r0,

hence ∥Qy∥ ≤ r0, which gives k ≤ 1. □
The following corollary which is the main results of Dadsetadi et

al. [14], would be obtained from Theorem 3.1.
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Corollary 3.2 ([14]). Suppose

M1) g ∈ C(Ia × R), f ∈ C(Ia × R), F ∈ C(Ia × R2), k ∈ C(I2a × R)
and, µ : Ia → Ia are continuous;

M2) There exist non negative constants k1, k2, c1, c2, and c3, so that
k1 < 1,

|g(ϑ, ω1)− g(ϑ,ϖ1)| ≤ k1|ω1 −ϖ1|,

and

|F (ϑ, ω1, ω2)− F (ϑ,ϖ1, ϖ2)| ≤ c1|ω1 −ϖ1|+ c2|ω2 −ϖ2|;

M3) ∃δ0 ≥ 0 such that

sup
{
L+A+ M1aσ

Γ(1+σ) +
M2aσ

Γ(1+σ)

}
≤ δ0,

where,

L = sup

{∣∣∣∣ n−1∑
ı̇=0

χ(ı̇)(0)+g(ı̇)(0,χ0)
ı̇! ϑı̇

∣∣∣∣ : ∀ϑ ∈ Ia

}
;

A = sup
{
|g(ϑ, ω1)| : ∀ϑ ∈ Ia, ω1 ∈ [−δ0, δ0]

}
;

M1 = sup
{
|f(ϑ, ω1)| : ∀ϑ ∈ Ia, ω1 ∈ [−δ0, δ0]

}
;

M2 = sup
{
|F (ϑ, ω1, ω2)| : ∀ϑ ∈ Ia, ω1 ∈ [−δ0, δ0], |ω2| ≤ aB

}
;

B = sup
{
|k(ϑ, ℓ, ω1)| : ∀ϑ, ℓ ∈ Ia, ω1 ∈ [−δ0, δ0]

}
.

Then

CDσ
(
y(ϑ) + g(ϑ, y(ϑ)

)
= f(ϑ, y(ϑ))

+ F

(
ϑ, y(ϑ),

∫ ϑ

0
k(ϑ, ℓ)H

(
y
(
µ(ℓ)

))
dℓ

)
, ϑ ∈ Ia, (9)

with the initial conditions

y(ı̇)(0) = yı̇, ı̇ = 0, 1, . . . , n− 1, (10)

has at least a solution in Ia.
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Proof. It is clear that Eq. (9) is a particular case of Eq. (3). Here α(ϑ) =
β(ϑ) = ς(ϑ) = ϑ, k(ϑ, ℓ, y(µ(ℓ))) = k(ϑ, ℓ)H(y(µ(ℓ))). By employing RL
fractional integrating and Lemma 2.3, Eq. (9) changes into

y(s) =
n−1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! ϑı̇ − g(ϑ, y(ϑ))

+ 1
Γ(σ)

∫ ϑ

0

f(ℓ,y(ℓ))
(ϑ−ℓ)1−σ dℓ+ 1

Γ(σ)

∫ ϑ

0

F (ℓ,y(ℓ),(Hy)(ℓ))
(ϑ−ℓ)1−σ dℓ.

The proof is connected to Theorem 3.1, so we can drop these parts. □

Remark 3.3. The above Corollary is the main result of [14], which was
proved here using FPT of Petryshyn simpler and with fewer conditions,
and this is the advantage of using Petryshyn’s theorem.

Corollary 3.4. If g(s, y(s)) = k1 ≡ 0, α(s) = µ(s) = s and F (s, u, v, w) =
w, then Eq. (3) has the following form, which was studied in [24],

CDσ
s y(s) = f(s, y(s)) +

∫ s

0
k2(s, y(t)) dW (t), (11)

with σ ∈ (0, 1) and the initial condition y(0) = y0, where

CDσ
sψ(z) =

1
Γ(1−σ)

∫ s

0

ψ′(z)
(s−z)σ dz, s ∈ [0, a].

It is well-known that Eq. (11) is equivalent to the following FSIE with a
weakly singular kernel of the form

y(s) = y0 +
1

Γ(σ)

∫ s

0

f(ζ,y(ζ))
(s−ζ)1−σ dζ

+ 1
Γ(σ)

∫ s

0

∫ ζ

0

k2(ζ,y(t))
(s−ζ)1−σ dW (t) dζ.

4 Examples

Here, we provide two examples to confirm the efficiency and check the
validity of the main results.
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Example 4.1. Consider following FSIDE on C(Ia), a = 1,

CDσ
(
y(s) + cos(s)√

64+s2
y(s)

)
= e−4s

10+s2
sin

(
1

1+s

)
+ y(1−s)

√
s

7

+ 3s2y(s2)
5+5s2

+ e−s

6+5s

∫ s

0

1
1+s3

[
1 +

∫ t

0

ln(1+|y(ξ)|)√
4+ξ+t

dξ

]
dt

+ 1
5

∫ s

0

e−3st

2+s2+ln(1+t)
sin(y(t)) dW (t), (12)

under the initial conditions y(ı̇)(0) = yı̇, ı̇ = 0, 1 for σ = 5
4 ,

3
2 ,

7
4 . Eq. (12)

is a particular form of Eq. (3) such that n = 2,

g(s, y(s)) = cos(s)√
64+s2

y(s),

f(s, y(α(s))) = e−4s

10+s2
sin

(
1

1+s

)
+ y(1−s)

√
s

7 ,

F (s, u, v, w) = 3s2u
5+5s2

+ e−s

6+5sv +
1
5w,

and

v =

∫ s

0

1
1+s3

[
1 +

∫ t

0

ln(1+|y(ξ)|)√
4+ξ+t

dξ

]
dt,

w =

∫ s

0

e−3st

2+s2+ln(1+t)
sin(y(t)) dW (t).

It can be seen that |g(s, u)− g(s, ū)| ≤ 1
8 |u− ū| and

|F (s, u, v, w)− F (s, ū, v̄, w̄)| ≤ 3
5 |u− ū|+ 1

6 |v − v̄|+ 1
5 |w − w̄|.

Here k = 1
8 < 1, c1 = 3

5 , c2 = 1
6 , c3 = 1

5 . So, the conditions (H1)
and (H2) hold. Moreover, for ∥y∥ ≤ r0, r0 > 0 and y0 = 0, y1 = 1, we
have

|y(s)| =
∣∣∣∣ 1∑
ı̇=0

y(ı̇)(0)+g(ı̇)(0,y0)
ı̇! sı̇ − g(s, y(s))

+ 1
Γ(σ)

∫ s

0

f(t,y(α(t)))
(s−t)σ−1 dt

+ 1
Γ(σ)

∫ s

0

F (t,y(β(t)),y(θ(t)),(Hy)(t))
(s−t)σ−1 dt

∣∣∣∣
≤ 9

8 + 1
8r0 +

1
Γ(σ+1)

(
1
10 + r0

7

)
+ 1

Γ(σ+1)

[
3r0
5 + 1

6

(
r0
2 + 1

)
+ λ

10

]
, ∀ s ∈ Ia.



16 A. R. YAGHOOBNIA, M. KAZEMI AND V. N. MISHRA

Therefore (H3) holds if according to the Eq. (8),

L+A+ M1aσ

Γ(1+σ) +
M2aσ

Γ(1+σ)

≤ 9
8 + 1

8r0 +
1

Γ(σ+1)

(
1
10 + r0

7

)
+ 1

Γ(σ+1)

[
3r0
5

+1
6

(
r0
2 + 1

)
+ λ

10

]
≃


1.790, σ = 5

4 ,

1.701, σ = 3
2 ,

1.613, σ = 7
4 ,

 ≤ r0. (13)

This shows that

r0 ≃


1.215 + 0.088λ, σ = 5

4 ,

1.072 + 0.075λ, σ = 3
2 ,

0.929 + 0.062λ, σ = 7
4 ,

(14)

is a solution of the above inequality. Table 1 shows the numerical results
of Eqs.(13) and (14). Furthermore, Figs. 1a and 1b show M1 and M2,
respectively. One can see the 2D plot of suitable r0 in Fig. 1c, well.

The result is followed from Theorem 3.1. Therefor, assumptions
(H1)-(H3) be fulfilled and Theorem 3.1 indicates the solution of (12) in
C(Ia).

Example 4.2. Consider following FSIDE,

CDσ
(
y(s) + 2+ln(1+|y(s)|)

(2s+3)2

)
= 1

5e
−s + 3 cos(s)y(s3)

4+3s

+ 1
9 sin

(√
π
2 y(

√
s)
)
+ s2

2(1+s2)

∫ s

0

√
se−3t

1+s

[
1
5

+

∫ t

0
ξ
(

|y(ξ)|
1+|y(ξ)| + y(ξ)

)
dξ

]
dt

+ e−s

3+s2

∫ s

0

st cos(sy(
√
t))

2+t2+5s
dW (t), (15)

for y ∈ C(Ia), a = 1 and for σ = 1
5 ,

1
3 ,

1
2 , via condition y(0) = y0 = 0.
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Table 1: Numerical results of A, M1, M2 and suitable r0 of FSIDE (12) for three
different values of σ in Example 4.1.

s A M1 M2 r0 ≥ . . . r0

σ = 5
4

σ = 5
4σ = 5
4

0.00 0.125 0.000 0.000 1.250 1.215 + 0.088λ
0.10 0.124 0.005 0.017 1.271 1.215 + 0.088λ
0.20 0.122 0.011 0.040 1.299 1.215 + 0.088λ
0.30 0.119 0.019 0.068 1.332 1.215 + 0.088λ
0.40 0.115 0.029 0.103 1.372 1.215 + 0.088λ
0.50 0.109 0.041 0.145 1.420 1.215 + 0.088λ
0.60 0.103 0.054 0.196 1.478 1.215 + 0.088λ
0.70 0.095 0.069 0.254 1.544 1.215 + 0.088λ
0.80 0.087 0.087 0.320 1.618 1.215 + 0.088λ
0.90 0.077 0.106 0.392 1.700 1.215 + 0.088λ
1.00 0.067 0.127 0.471 1.790 1.215 + 0.088λ

σ = 3
2

σ = 3
2σ = 3
2

0.00 0.125 0.000 0.000 1.250 1.072 + 0.075λ
0.10 0.124 0.002 0.008 1.260 1.072 + 0.075λ
0.20 0.122 0.007 0.023 1.277 1.072 + 0.075λ
0.30 0.119 0.012 0.043 1.300 1.072 + 0.075λ
0.40 0.115 0.020 0.070 1.329 1.072 + 0.075λ
0.50 0.109 0.029 0.104 1.368 1.072 + 0.075λ
0.60 0.103 0.040 0.147 1.415 1.072 + 0.075λ
0.70 0.095 0.054 0.198 1.472 1.072 + 0.075λ
0.80 0.087 0.070 0.258 1.539 1.072 + 0.075λ
0.90 0.077 0.088 0.326 1.616 1.072 + 0.075λ
1.00 0.067 0.108 0.401 1.701 1.072 + 0.075λ

σ = 7
4

σ = 7
4σ = 7
4

0.00 0.125 0.000 0.000 1.250 0.929 + 0.062λ
0.10 0.124 0.001 0.004 1.254 0.929 + 0.062λ
0.20 0.122 0.004 0.013 1.264 0.929 + 0.062λ
0.30 0.119 0.007 0.026 1.278 0.929 + 0.062λ
0.40 0.115 0.013 0.046 1.299 0.929 + 0.062λ
0.50 0.109 0.020 0.072 1.327 0.929 + 0.062λ
0.60 0.103 0.029 0.107 1.364 0.929 + 0.062λ
0.70 0.095 0.041 0.150 1.411 0.929 + 0.062λ
0.80 0.087 0.055 0.202 1.468 0.929 + 0.062λ
0.90 0.077 0.071 0.262 1.535 0.929 + 0.062λ
1.00 0.067 0.089 0.332 1.613 0.929 + 0.062λ

Here n = 1,

g(s, y(s)) = 2+ln(1+|y(s)|)
(2s+3)2

,
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Figure 1: Graphical representation of M1, M2 and suitable r0 of of FSIDE (12)
for three different values of σ in Example 4.1.

f(s, y(α(s))) = 1
5e

−s + 3 cos(s)y(s3)
4+3s ,

F (s, u, v, w) = 1
9 sin

(√
π
2u

)
+ s2

2(1+s2)
v + e−s

3+s2
w,

and

v =

∫ s

0

√
se−3t

1+s

(
1
5 +

∫ t

0
ξ
[

|y(ξ)|
1+|y(ξ)| + y(ξ)

]
dξ

)
dt,
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w =

∫ s

0

st cos(sy(
√
t))

2+t2+5s
dW (t).

It can be seen that we have |g(s, u)− g(s, ū)| ≤ 1
9 |u− ū| and

|F (s, u, v, w)− F (s, ū, v̄, w̄)| ≤
√
π

18 |u− ū|+ 1
2 |v − v̄|+ 1

3 |w − w̄|.

So, we can choose k = 1
9 < 1, c1 =

√
π

18 , c2 = 1
2 , c3 = 1

3 . It follows that
the conditions (H1) and (H2) hold. Moreover, for ∥y∥ ≤ r0, r0 > 0, we
have

|y(s)| =
∣∣∣∣y(0) + g(0, y0)− g(s, y(s)) + 1

Γ(σ)

∫ s

0

f(t,y(α(t)))
(s−t)1−σ dt

+ 1
Γ(σ)

∫ s

0

F (t,y(β(t)),y(θ(t)),(Hy)(t))
(s−t)1−σ dt

∣∣∣∣
≤ 2

9 + 1
Γ(σ+1)

(
1
5 + r0

4

)
+ 1

Γ(σ+1)

[
1
9 + 1

4

(
1 + r0 +

1
5

)
+ 1

6λ
]
, ∀ s ∈ Ia.

Therefore (H3) holds if according to the Eq. (8),

L+A+ M1aσ

Γ(1+σ) +
M2aσ

Γ(1+σ)

≤ 2
9 + 1

Γ(σ+1)

(
1
5 + r0

4

)
+ 1

Γ(σ+1)

[
1
9 + 1

4

(
1 + r0 +

1
5

)
+ 1

6λ
]

≃


1.128, σ = 1

5 ,

1.151, σ = 1
3 ,

1.158, σ = 1
2 ,

 ≤ r0, (16)

|y(s)| ≤ r0. This shows that

r0 =
2
√
π + 11 + 3λ

9(
√
π − 1)

≃


0.432 + 0.182λ, σ = 1

5 ,

0.466 + 0.187λ, σ = 1
3 ,

0.476 + 0.188λ, σ = 1
2 .

(17)

Table 1 shows the numerical results of Eqs.(16) and (17). Furthermore,
Figs. 2a and 2b show M1 and M2, respectively. One can see the 2D plot
of suitable r0 in Fig. 2c, well. The result is followed from Theorem 3.1.
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Table 2: Numerical results of A, M1, M2 and suitable r0 of FSIDE (15) for three
different values of σ in Example 4.2.

s A M1 M2 r0 ≥ . . . r0

σ = 1
5

σ = 1
5σ = 1
5

0.00 0.222 0.000 0.000 0.444 0.432 + 0.182λ
0.10 0.195 0.601 0.286 1.305 0.432 + 0.182λ
0.20 0.173 0.634 0.315 1.345 0.432 + 0.182λ
0.30 0.154 0.628 0.336 1.340 0.432 + 0.182λ
0.40 0.139 0.603 0.356 1.320 0.432 + 0.182λ
0.50 0.125 0.569 0.377 1.293 0.432 + 0.182λ
0.60 0.113 0.528 0.400 1.263 0.432 + 0.182λ
0.70 0.103 0.482 0.424 1.231 0.432 + 0.182λ
0.80 0.095 0.434 0.448 1.198 0.432 + 0.182λ
0.90 0.087 0.384 0.471 1.163 0.432 + 0.182λ
1.00 0.080 0.332 0.493 1.128 0.432 + 0.182λ

σ = 1
3

σ = 1
3σ = 1
3

0.00 0.222 0.000 0.000 0.444 0.466 + 0.187λ
0.10 0.195 0.455 0.217 1.089 0.466 + 0.187λ
0.20 0.173 0.526 0.262 1.183 0.466 + 0.187λ
0.30 0.154 0.550 0.294 1.220 0.466 + 0.187λ
0.40 0.139 0.549 0.324 1.233 0.466 + 0.187λ
0.50 0.125 0.533 0.354 1.234 0.466 + 0.187λ
0.60 0.113 0.507 0.384 1.227 0.466 + 0.187λ
0.70 0.103 0.473 0.415 1.214 0.466 + 0.187λ
0.80 0.095 0.433 0.447 1.196 0.466 + 0.187λ
0.90 0.087 0.389 0.477 1.175 0.466 + 0.187λ
1.00 0.080 0.342 0.507 1.151 0.466 + 0.187λ

σ = 1
2

σ = 1
2σ = 1
2

0.00 0.222 0.000 0.000 0.444 0.476 + 0.188λ
0.10 0.195 0.312 0.149 0.878 0.476 + 0.188λ
0.20 0.173 0.405 0.202 1.002 0.476 + 0.188λ
0.30 0.154 0.453 0.242 1.072 0.476 + 0.188λ
0.40 0.139 0.475 0.280 1.116 0.476 + 0.188λ
0.50 0.125 0.479 0.317 1.143 0.476 + 0.188λ
0.60 0.113 0.469 0.356 1.160 0.476 + 0.188λ
0.70 0.103 0.449 0.394 1.169 0.476 + 0.188λ
0.80 0.095 0.420 0.434 1.171 0.476 + 0.188λ
0.90 0.087 0.385 0.473 1.167 0.476 + 0.188λ
1.00 0.080 0.344 0.511 1.158 0.476 + 0.188λ
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Figure 2: Graphical representation of M1, M2 and suitable r0 of of FSIDE (15)
for three different values of σ in Example 4.2.

5 Conclusion and Perspective

In this work, Theorem 2.12 and the M.N.C idea were used to analyze
the of solutions some nonlinear functional FSIDE in the Banach algebra
C(Ia). The superiority of Theorem 2.12 compared to other similar FPTs,
such as Darbo and Schauder, is that here the condition that involved
operator maps a closed convex subset onto itself is not needed. Thus
by applying weaker conditions, the method is extended and includes a
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larger range. In fact, Some valuable articles such as [1, 11, 20, 43], can
be generalized or be used with the results of this research.
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