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Abstract. In this article, we describe the notions of generalized ϕ-
contraction mappings and generalized weak ϕ-contraction mappings in
metric and normed interval spaces. We also prove some theorems for
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1 Introduction

For many years, Banach’s contraction principle was the most important
tool to find fixed points. It has been used in various areas of mathemat-
ics, and numerous generalizations and extensions have been derived from
it. The weak contraction principle, which was extended to metric spaces
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by Rhoades [5, 13], is one such generalization of Banach’s contraction
principle. Fréchet [1, 3] was the first person to propose the concept of
a metric space, and many researchers have since extended it to other
spaces, including metric interval spaces. In 2018, Wu [10] presented the
notion of the metric interval space (MIS) and the normed interval space
(NIS) for a collection of closed and bounded intervals I in R, which are
different from customary metric and normed spaces. Continuing Wu’s
research, Ullah and et al. [9] presented the near-coincidence point the-
orems in these spaces via a simulation function. Recently, Sarwar et
al. [8] studied some near-fixed point results in MIS and NIS by using α-
admissibility and the concept of simulation functions. The interval space
I is not a vector space because the difference of each member of I from
itself is not zero. Therefore, the customary normed space (I, ∥·∥) cannot
be considered for the interval space I. For this purpose, NIS has been
introduced based on the null set. According to Banach’s contraction
principle, the fixed point is provided for the mapping T when the space
(I, d) is a metric space, but for some distance function candidates such
as d([k, l] , [u, v]) = |(k+ l)− (u+v)|, the space (I, d) cannot be a metric
space. So, MIS has been presented based on the null set [10]. There is
no additive inverse member for any non-degenerated closed interval in
I. Therefore, I cannot be a linear space. The algebraic structure of I
is named a quasilinear space (QLS) [6, 12]. The QLS was first stated by
Aseev in 1986 [4].
Today, data collection is considered a significant issue for solving practi-
cal problems, but in many situations, it is impossible to do it precisely.
In this condition, instead of using probability theory, we can use bounded
and closed intervals. For example, because it is impossible to measure
the level of liquids precisely due to fluctuations, we can consider that
it is in a bounded closed interval. As another example, due to the in-
tensity of fluctuations in the trading market, the stock price in a short
time interval cannot be recorded as a number. To solve this problem,
we can suppose it in a bounded and closed interval. Therefore, interval
analysis can be used in various issues, including engineering, economics
and social sciences to address problems with uncertainty [11].
The purpose of this article is to provide concepts of generalized ϕ-
contraction mappings and generalized weak ϕ-contraction mappings in
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MIS and NIS and then demonstrate the near-fixed point theorems for
these mappings in interval spaces. Although contraction mappings have
been studied in a number of articles [2, 13] in conventional metric spaces,
these mappings are stated differently and for the first time in MIS and
NIS in this research. Therefore, we state some near-fixed point theo-
rems for generalized ϕ-contraction mappings and generalized weak ϕ-
contraction mappings in these new spaces. We also provide some exam-
ples.
In section 2, we define the interval space and the null set. In section
3, we introduce metric and normed interval spaces and their properties.
In section 4, we state generalized ϕ-contraction and generalized weak
ϕ-contraction mappings in metric and normed interval spaces and prove
the near-fixed point theorems for such mappings. Finally, in section 5,
we give a general conclusion of the article.

2 Preliminaries

Suppose I is the collection of all closed and bounded intervals [k, l] in
R, such that k ≤ l. The addition and scalar multiplication operations
on I are defined as follows:

[k, l]⊕ [u, v] = [k + u, l + v] and a [k, l] =

{
[ak, al] if a ≥ 0
[al, ak] if a < 0.

Note that I is not a customary vector space considering the mentioned
two operations, because there is no additive inverse member for any non-
degenerated closed interval. Clearly, we have [0, 0] ∈ I as a zero member.
However, the subtraction [k, l] ⊖ [k, l] = [k, l] ⊕ [−l,−k] = [k − l, l − k]
does not give a zero element for some [k, l] ∈ I.
The null set is defined by:

Ω =
{
[k, l]⊖ [k, l] : [k, l] ∈ I

}
.

It is clear that

Ω =
{
[−a, a] : a ≥ 0

}
=

{
a [−1, 1] : a ≥ 0

}
.

For more details, see [10].
Because some members of I have not an additive inverse member, I
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cannot be a linear space. The algebraic structure of I is named a quasi-
linear space (QLS) [6]. The QLS was first stated by Aseev in 1986 [4].
An important example of quasilinear spaces is I, the collection of all
closed real intervals, with the inclusion relation ” ⊆ ”, and with the
addition and real-scalar multiplication operations defined as follows:

A+B = {a+ b : a ∈ A, b ∈ B} and λ ·A = {λa : a ∈ A}.

This set is denoted by ΩC(R). For more details, see [6, 12].

Remark 2.1. [10] In any interval space, the following facts are valid:

� For any [k, l] , [u, v] , [m,n] ∈ I, we have

[m,n]⊖ ([k, l]⊕ [u, v]) = [m,n]⊕ (− [k, l])⊕ (− [u, v])

= [m,n]⊖ [k, l]⊖ [u, v] .

� We define [k, l]
Ω
= [u, v] if and only if

∃ ω1, ω2 ∈ Ω such that [k, l]⊕ ω1 = [u, v]⊕ ω2.

Clearly, [k, l] = [u, v] implies [k, l]
Ω
= [u, v] by choosing ω1 = ω2 =

[0, 0] . However, the inverse is not usually true. The following class

based on the relation
Ω
= for any [k, l] ∈ I, is defined by:

〈
[k, l]

〉
=

{
[u, v] ∈ I : [k, l]

Ω
= [u, v]

}
. (1)

〈
I
〉
represents the family of all classes

〈
[k, l]

〉
for [k, l] ∈ I.

Proposition 2.2. [10] The relation
Ω
= is a reflexive, symmetric and

transitive relation. Therefore,
Ω
= will be an equivalence relation.

This proposition shows that the classes (1) provide the equivalence
classes. Moreover, [u, v] ∈

〈
[k, l]

〉
implies that

〈
[k, l]

〉
=

〈
[u, v]

〉
([10]).
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3 Metric and Normed Interval Spaces

Definition 3.1. [10] Suppose that d : I ×I → R+ is a mapping. A pair
(I, d) is named a metric interval space (MIS) if d satisfies the following
three conditions for all [k, l] , [u, v] , [m,n] ∈ I:
(i) d([k, l] , [u, v]) = 0 if and only if [k, l]

Ω
= [u, v]

(ii) d([k, l] , [u, v]) = d([u, v] , [k, l]);
(iii) d([k, l] , [u, v]) ≤ d([k, l] , [m,n]) + d([m,n] , [u, v]).
We say that the null equalities hold for d if it satisfies the following
equalities for any ω1, ω2 ∈ Ω and [k, l] , [u, v] ∈ I:

• d([k, l]⊕ ω1, [u, v]⊕ ω2) = d([k, l] , [u, v]);

• d([k, l]⊕ ω1, [u, v]) = d([k, l] , [u, v]);

• d([k, l] , [u, v]⊕ ω2) = d([k, l] , [u, v]).

Definition 3.2. [10] The sequence
{
[kn, ln]

}∞
n=1

in MIS (I, d) converges
to [k, l] ∈ I if and only if lim

n→∞
d([kn, ln] , [k, l]) = 0. The class

〈
[k, l]

〉
is

named the class limit of
{
[kn, ln]

}∞
n=1

. In addition, the uniqueness of
the class limit in a MIS is easily obtained. see [10] for the definitions of
completeness of space and Cauchyness of sequence in MIS.

Proposition 3.3. [10] If the sequence
{
[kn, ln]

}∞
n=1

exists in I such
that lim

n→∞
d([kn, ln] , [k, l]) = 0, and the null equality holds for d, then

lim
n→∞

d([kn, ln] , [u, v]) = 0 for any [u, v] ∈
〈
[k, l]

〉
.

Example 3.4. [10] Let d : I × I → R+ be defined by d([k, l] , [u, v]) =
|(k + l) − (u + v)|. Then, it is obvious that (I, d) is a complete metric
interval space (CMIS) and the null equality holds for d.

Definition 3.5. [10] For a mapping ∥·∥ : I → R+ that R+ is nonnega-
tive real numbers, we present the following features:
(i) ∥λ [k, l]∥ = |λ| · ∥[k, l]∥, ∀ [k, l] ∈ I and λ ∈ F;
(i◦) ∥λ [k, l]∥ = |λ| · ∥[k, l]∥, ∀ [k, l] ∈ I and λ ∈ F with λ ̸= 0;
(ii) ∥[k, l]⊕ [u, v]∥ ≤ ∥[k, l]∥+ ∥[u, v]∥, ∀ [k, l] , [u, v] ∈ I;
(iii) ∥[k, l]∥ = 0 implies [k, l] ∈ Ω.



6 M. SHARIFI AND S.M.S. MODARRES

� It is said that (I, ∥·∥) is a normed interval space (NIS) if it satisfies
cases (i), (ii) and (iii).

� It is said that the null condition holds for ∥·∥ if item (iii) is changed
to ∥[k, l]∥ = 0 ⇔ [k, l] ∈ Ω.

� It is said that the null equality holds for ∥·∥ if ∥[k, l]⊕ω∥ = ∥[k, l]∥
for all [k, l] ∈ I and ω ∈ Ω.

A complete normed interval space is named a Banach interval space
(BIS).

Example 3.6. [10] Assume that the mapping ∥·∥ : I → R+ is defined
by ∥[k, l]∥ = |k + l|. Then, it is evident that (I, ∥·∥) is a BIS, and the
null equality holds for ∥·∥.

For more details about normed interval spaces (NIS), see [10].

Remark 3.7. Every normed interval space (NIS) may not be a metric
interval space (MIS).

Example 3.8. Suppose that a nonnegative real-valued function ∥·∥ :
I → R+ is defined by ∥ [k, l] ∥ = |k| + |l|. Then (I, ∥ · ∥) satisfies all
the conditions of a NIS, but it cannot be considered a MIS. Because
condition (i) of Definition 3.1 does not hold. Now we check this claim.

Assume that [k, l]
Ω
= [u, v]. Then [k, l] ⊕ ω1 = [u, v] ⊕ ω2, where ω1 =

[−a1, a1] ∈ Ω and ω2 = [−a2, a2] ∈ Ω with a1, a2 ≥ 0. So, we have
[k − a1, l + a1] = [u− a2, v + a2]. Therefore, k−a1 = u−a2 and l+a1 =
v + a2, i.e., k = a1 − a2 + u and l = a2 − a1 + v. Thus we obtain

d([k, l] , [u, v]) = ∥[k, l]⊖ [u, v]∥ = ∥[k, l]⊕ [−v,−u]∥ = ∥[k − v, l − u]∥
= |k − v|+ |l − u| = |k − v|+ |a2 − a1 + v − u|
= |k − v|+ | − (a1 − a2 + u− v)|
= |k − v|+ |a1 − a2 + u− v| = |k − v|+ |k − v| = 2|k − v|,

where k is not necessarily equal to v. Therefore, we have d([k, l] , [u, v]) ̸=
0. For example, consider [−1, 1]

Ω
= [−2, 2]. So, we have d([−1, 1] , [−2, 2]) =

| − 1− 2|+ |1 + 2| = 6 ̸= 0.
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4 Near-Fixed Point Results

Definition 4.1. [10] A point [k, l] ∈ I is named a near-fixed point for

a self-mapping T : I → I if T [k, l]
Ω
= [k, l] .

We have T [k, l]
Ω
= [k, l] if and only if there exist [−b1, b1] , [−b2, b2] ∈

Ω where b1, b2 ∈ R+ so that at least one of the following equalities holds:

� T [k, l]⊕ [−b1, b1] = [k, l] ;

� T [k, l] = [k, l]⊕ [−b1, b1];

� T [k, l]⊕ [−b1, b1] = [k, l]⊕ [−b2, b2].

Definition 4.2. [7] A point [k, l] ∈ I is a common near-fixed point for

functions T, S : I → I if T [k, l]
Ω
= S [k, l]

Ω
= [k, l] .

Example 4.3. Assume that T, S : I → I are defined by

T [k, l] = [k − 3, l + 3] and S [k, l] = [k − 4, l + 4] .

We indicate that [k, l] is a common near-fixed point of T and S. For

ω1 = [0, 0] ∈ Ω and ω2 = [−3, 3] ∈ Ω, we have T [k, l]
Ω
= [k, l], i.e.,

[k − 3, l + 3]
Ω
= [k, l] ⇐⇒ [k − 3, l + 3]⊕ [0, 0] = [k, l]⊕ [−3, 3]

⇐⇒ [k − 3, l + 3] = [k − 3, l + 3] .

Similarly, for ω1 = [0, 0] ∈ Ω and ω2 = [−4, 4] ∈ Ω, we obtain S [k, l]
Ω
=

[k, l]. According to Proposition 2.2, we have T [k, l]
Ω
= S [k, l]. Hence,

T [k, l]
Ω
= S [k, l]

Ω
= [k, l].

Now, we state several new definitions in MIS and NIS as follows.

Definition 4.4. A mapping T : (I, d) → (I, d) is said to be a weak
ϕ-contraction on I if for all [k, l] , [u, v] ∈ I,

d(T [k, l] , T [u, v]) ≤ d([k, l] , [u, v])− ϕ
(
d([k, l] , [u, v])

)
,

where a function ϕ : [0,∞) → [0,∞) is continuous and non-decreasing
with ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = 0.
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Definition 4.5. Suppose that (I, d) is a MIS. A pair of mappings S, T :
(I, d) → (I, d) is called generalized weak ϕ-contractions on I if for all
[k, l] , [u, v] ∈ I,

d(T [k, l] , S [u, v]) ≤M([k, l] , [u, v])− ϕ
(
M([k, l] , [u, v])

)
, (2)

where a function ϕ : [0,∞) → [0,∞) is continuous and non-decreasing
with ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = 0, and

M([k, l] , [u, v]) = max
{
d([k, l] , [u, v]), d([k, l] , T [k, l]), d([u, v] , S [u, v]),

d([k, l] , S [u, v]) + d([u, v] , T [k, l])

2

}
.

Theorem 4.6. Let the pair of mappings T, S : (I, d) → (I, d) be gener-
alized weak ϕ-contractions on I in CMIS (I, d) such that the null equality
holds for d. Then T and S have a common near-fixed point [k, l] ∈ I
satisfying T [k, l]

Ω
= [k, l]

Ω
= S [k, l] . Moreover, a unique equivalence class〈

[k, l]
〉
exists for T and S such that if [k, l] and

[
k̄, l̄

]
are the common

near-fixed points of T and S, then [k, l]
Ω
=

[
k̄, l̄

]
. In addition, every point[

k̄, l̄
]
∈
〈
[k, l]

〉
is a common near-fixed point for T and S.

Proof. It is clear that [k, l]
Ω
= [u, v] is a common near-fixed point of T

and S if and only if M
(
[k, l] , [u, v]

)
= 0. Indeed, if [k, l]

Ω
= [u, v] is a

common near-fixed point for S and T , then by using Proposition 2.2, we

have T [k, l]
Ω
= [k, l]

Ω
= S [k, l]

Ω
= T [u, v]

Ω
= [u, v]

Ω
= S [u, v] and

M([k, l] , [u, v]) = max
{
d([k, l] , [u, v]), d([k, l] , T [k, l]), d([u, v] , S [u, v]),

d([k, l] , S [u, v]) + d([u, v] , T [k, l])

2

}
= 0.

Now, suppose that M([k, l] , [u, v]) = 0. Then using d([k, l] , [u, v]) ≤
M([k, l] , [u, v]), d([k, l] , T [k, l]) ≤M([k, l] , [u, v]) and d([u, v] , S [u, v]) ≤
M([k, l] , [u, v]) and making use of Proposition 2.2, we have

T [k, l]
Ω
= [k, l]

Ω
= S [k, l]

Ω
= T [u, v]

Ω
= [u, v]

Ω
= S [u, v] .

Let [k0, l0] ∈ I. Then, inductively select a sequence
{
[kn, ln]

}∞
n=1

in I
such that

[k2n+2, l2n+2] = T [k2n+1, l2n+1] and [k2n+1, l2n+1] = S [k2n, l2n] ,
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for all n ≥ 0. According to the above content, note that if [kn+1, ln+1] =
[kn, ln] for any n ≥ 0, then S and T have a common near-fixed point.
Thus, assume that d([kn+1, ln+1] , [kn, ln]) ̸= 0 for all n ≥ 0. If n ∈ N is
an odd number, by using (2) and the triangle inequality, we have

d([kn+1, ln+1] , [kn, ln]) = d(T [kn, ln] , S [kn−1, ln−1])

≤M([kn, ln] , [kn−1, ln−1])− ϕ
(
M([kn, ln] , [kn−1, ln−1])

)
≤M([kn, ln] , [kn−1, ln−1])

= max
{
d([kn, ln] , [kn−1, ln−1]), d([kn, ln] , [kn+1, ln+1]),

d([kn−1, ln−1] , [kn, ln]),
d([kn, ln] , [kn, ln]) + d([kn−1, ln−1] , [kn+1, ln+1])

2

}
≤ max

{
d([kn, ln] , [kn−1, ln−1]), d([kn, ln] , [kn+1, ln+1]),

d([kn−1, ln−1] , [kn, ln]) + d([kn, ln] , [kn+1, ln+1])

2

}
≤ max

{
d([kn, ln] , [kn−1, ln−1]), d([kn, ln] , [kn+1, ln+1])

}
, (3)

where

d([kn−1, ln−1] , [kn+1, ln+1])

≤ d([kn−1, ln−1] , [kn, ln]) + d([kn, ln] , [kn+1, ln+1])

≤ 2max
{
d([kn, ln] , [kn−1, ln−1]), d([kn, ln] , [kn+1, ln+1])

}
.

Note that if

max
{
d([kn, ln] , [kn−1, ln−1]), d([kn, ln] , [kn+1, ln+1])

}
= d([kn, ln] , [kn+1, ln+1]),

then

d([kn+1, ln+1] , [kn, ln])

≤ d([kn+1, ln+1] , [kn, ln])− ϕ
(
d([kn+1, ln+1] , [kn, ln])

)
,

which is a contradiction. So, from (3), we have d([kn+1, ln+1] , [kn, ln]) ≤
d([kn, ln] , [kn−1, ln−1]). Similarly, if n ∈ N is an even number, we also
obtain d([kn+1, ln+1] , [kn, ln]) ≤ d([kn, ln] , [kn−1, ln−1]).
Hence, d([kn+1, ln+1] , [kn, ln]) ≤ d([kn, ln] , [kn−1, ln−1]) for all n ≥ 0.
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Thus,
{
d([kn, ln] , [kn−1, ln−1])

}
is a nonnegative, decreasing and bounded

below sequence. Therefore, it converges to L where L ≥ 0. Suppose that
L > 0. Hence from (3), we have

d([kn+1, ln+1] , [kn, ln]) ≤M([kn, ln] , [kn−1, ln−1]) ≤ d([kn, ln] , [kn−1, ln−1]).

Taking n→ ∞ in the above inequality, we obtain

lim
n→∞

M([kn, ln] , [kn−1, ln−1]) = L. (4)

By using (2), we have

d([kn+1, ln+1] , [kn, ln]) ≤M([kn, ln] , [kn−1, ln−1])

− ϕ
(
M([kn, ln] , [kn−1, ln−1])

)
.

Therefore, taking n → ∞ in the above inequality and using (4), we
obtain

L ≤ L− ϕ(L).

Thus ϕ(L) ≤ 0, which contradicts L > 0 and ϕ(t) > 0 for t > 0. So
L = 0, i.e.,

lim
n→∞

d
(
[kn, ln] , [kn−1, ln−1]

)
= 0. (5)

Now, we indicate that
{
[kn, ln]

}∞
n=1

is a Cauchy sequence in MIS (I, d).
Due to (5), it is adequate to demonstrate that

{
[k2n, l2n]

}∞
n=1

is a
Cauchy sequence in MIS (I, d). Suppose this is not true, so there is
an ε > 0 that we can detect two sequences of positive integers {2m(h)}
and {2n(h)} with 2n(h) > 2m(h) > h such that

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h), l2n(h)

] )
≥ ε and

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h)−2, l2n(h)−2

] )
< ε,

for all positive integers h. Therefore, we have

ε ≤d
( [
k2m(h), l2m(h)

]
,
[
k2n(h), l2n(h)

] )
≤d

( [
k2m(h), l2m(h)

]
,
[
k2n(h)−2, l2n(h)−2

] )
+ d

( [
k2n(h)−2, l2n(h)−2

]
,
[
k2n(h)−1, l2n(h)−1

] )
+ d

( [
k2n(h)−1, l2n(h)−1

]
,
[
k2n(h), l2n(h)

] )
<ε+ d

( [
k2n(h)−2, l2n(h)−2

]
,
[
k2n(h)−1, l2n(h)−1

] )
+ d

( [
k2n(h)−1, l2n(h)−1

]
,
[
k2n(h), l2n(h)

] )
.
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Taking h→ ∞ in the above inequality and making use of (5), we have

lim
h→∞

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h), l2n(h)

] )
= ε. (6)

Also,

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h), l2n(h)

] )
≤ d

( [
k2m(h), l2m(h)

]
,
[
k2m(h)+1, l2m(h)+1

] )
+ d

( [
k2m(h)+1, l2m(h)+1

]
,
[
k2n(h)+1, l2n(h)+1

] )
+ d

( [
k2n(h)+1, l2n(h)+1

]
,
[
k2n(h), l2n(h)

] )
, (7)

and

d
( [
k2m(h)+1, l2m(h)+1

]
,
[
k2n(h)+1, l2n(h)+1

] )
≤ d

( [
k2m(h)+1, l2m(h)+1

]
,
[
k2m(h), l2m(h)

] )
+ d

( [
k2m(h), l2m(h)

]
,
[
k2n(h), l2n(h)

] )
+ d

( [
k2n(h), l2n(h)

]
,
[
k2n(h)+1, l2n(h)+1

] )
. (8)

Taking h→ ∞ in the inequalities (7)-(8) and using (5)-(6), we obtain

lim
h→∞

d
( [
k2m(h)+1, l2m(h)+1

]
,
[
k2n(h)+1, l2n(h)+1

] )
= ε. (9)

Moreover,

d
( [
k2n(h)+2, l2n(h)+2

]
,
[
k2m(h)+1, l2m(h)+1

] )
≤ d

( [
k2n(h)+2, l2n(h)+2

]
,
[
k2n(h)+1, l2n(h)+1

] )
+ d

( [
k2n(h)+1, l2n(h)+1

]
,
[
k2m(h)+1, l2m(h)+1

] )
,

(10)

and

d
( [
k2n(h)+1, l2n(h)+1

]
,
[
k2m(h)+1, l2m(h)+1

] )
≤ d

( [
k2n(h)+1, l2n(h)+1

]
,
[
k2n(h)+2, l2n(h)+2

] )
+ d

( [
k2n(h)+2, l2n(h)+2

]
,
[
k2m(h)+1, l2m(h)+1

] )
.

(11)
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Also,

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h)+2, l2n(h)+2

] )
≤ d

( [
k2m(h), l2m(h)

]
,
[
k2m(h)+1, l2m(h)+1

] )
+ d

( [
k2m(h)+1, l2m(h)+1

]
,
[
k2n(h)+1, l2n(h)+1

] )
+ d

( [
k2n(h)+1, l2n(h)+1

]
,
[
k2n(h)+2, l2n(h)+2

] )
, (12)

and

d
( [
k2m(h)+1, l2m(h)+1

]
,
[
k2n(h)+1, l2n(h)+1

] )
≤ d

( [
k2m(h)+1, l2m(h)+1

]
,
[
k2m(h), l2m(h)

] )
+ d

( [
k2m(h), l2m(h)

]
,
[
k2n(h)+2, l2n(h)+2

] )
+ d

( [
k2n(h)+2, l2n(h)+2

]
,
[
k2n(h)+1, l2n(h)+1

] )
. (13)

Furthermore,

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h)+1, l2n(h)+1

] )
≤ d

( [
k2m(h), l2m(h)

]
,
[
k2n(h), l2n(h)

] )
+ d

( [
k2n(h), l2n(h)

]
,
[
k2n(h)+1, l2n(h)+1

] )
, (14)

and

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h), l2n(h)

] )
≤ d

( [
k2m(h), l2m(h)

]
,
[
k2n(h)+1, l2n(h)+1

] )
+ d

( [
k2n(h)+1, l2n(h)+1

]
,
[
k2n(h), l2n(h)

] )
. (15)

Letting h → ∞ in the inequalities (10)-(15) and using (5)-(6) and (9),
we have

lim
h→∞

d
( [
k2n(h)+2, l2n(h)+2

]
,
[
k2m(h)+1, l2m(h)+1

] )
= ε, (16)

lim
h→∞

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h)+2, l2n(h)+2

] )
= ε, (17)

lim
h→∞

d
( [
k2m(h), l2m(h)

]
,
[
k2n(h)+1, l2n(h)+1

] )
= ε. (18)
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By putting [k, l] =
[
k2n(h)+1, l2n(h)+1

]
and [u, v] =

[
k2m(h), l2m(h)

]
in (2),

we obtain

d
( [
k2n(h)+2, l2n(h)+2

]
,
[
k2m(h)+1, l2m(h)+1

] )
= d

(
T
[
k2n(h)+1, l2n(h)+1

]
, S

[
k2m(h), l2m(h)

] )
≤ max

{
d
( [
k2n(h)+1, l2n(h)+1

]
,
[
k2m(h), l2m(h)

] )
,

d
( [
k2n(h)+1, l2n(h)+1

]
,
[
k2n(h)+2, l2n(h)+2

] )
,

d
( [
k2m(h), l2m(h)

]
,
[
k2m(h)+1, l2m(h)+1

] )
,

1

2

[
d
( [
k2n(h)+1, l2n(h)+1

]
,
[
k2m(h)+1, l2m(h)+1

] )
+ d

( [
k2m(h), l2m(h)

]
,
[
k2n(h)+2, l2n(h)+2

] )]}
− ϕ

(
max

{
d
( [
k2n(h)+1, l2n(h)+1

]
,
[
k2m(h), l2m(h)

] )
,

d
( [
k2n(h)+1, l2n(h)+1

]
,
[
k2n(h)+2, l2n(h)+2

] )
,

d
( [
k2m(h), l2m(h)

]
,
[
k2m(h)+1, l2m(h)+1

] )
1

2

[
d
( [
k2n(h)+1, l2n(h)+1

]
,
[
k2m(h)+1, l2m(h)+1

] )
+ d

( [
k2m(h), l2m(h)

]
,
[
k2n(h)+2, l2n(h)+2

] )]}
.

Taking h → ∞ in the above inequality, making use of (5), (9) and
(16)-(18) and using the continuity of ϕ, we have

ε ≤ ε− ϕ(ε),

which contradicts ε > 0. Thus,
{
[k2n, l2n]

}∞
n=1

is a Cauchy sequence in

MIS (I, d). Hence according to (5),
{
[kn, ln]

}∞
n=1

is a Cauchy sequence
in MIS (I, d). Therefore, due to the completeness of I, there is [k, l] ∈ I
such that

d([kn, ln] , [k, l]) → 0. (19)

Now, we prove that each point
[
k̄, l̄

]
∈
〈
[k, l]

〉
is a common near-fixed

point for T and S. Due to
[
k̄, l̄

]
∈
〈
[k, l]

〉
, we have[

k̄, l̄
]
⊕ ω1 = [k, l]⊕ ω2 for some ω1, ω2 ∈ Ω. (20)
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Since the null equality holds for d, then according to (19), (20) and
Proposition 3.3, we have

lim
n→∞

d([kn, ln] ,
[
k̄, l̄

]
) = 0, for any

[
k̄, l̄

]
∈
〈
[k, l]

〉
. (21)

Therefore, using (2) and the triangle inequality, we obtain

d(
[
k̄, l̄

]
, S

[
k̄, l̄

]
) ≤ d(

[
k̄, l̄

]
, [k2n, l2n]) + d([k2n, l2n] , S

[
k̄, l̄

]
)

= d(
[
k̄, l̄

]
, [k2n, l2n]) + d(T [k2n−1, l2n−1] , S

[
k̄, l̄

]
)

= d(
[
k̄, l̄

]
, [k2n, l2n]) +M([k2n−1, l2n−1] ,

[
k̄, l̄

]
)

− ϕ
(
M([k2n−1, l2n−1] ,

[
k̄, l̄

]
)
)
, (22)

where

M([k2n−1, l2n−1] ,
[
k̄, l̄

]
)

= max
{
d([k2n−1, l2n−1] ,

[
k̄, l̄

]
), d([k2n−1, l2n−1] , T [k2n−1, l2n−1]),

d(
[
k̄, l̄

]
, S

[
k̄, l̄

]
),
d([k2n−1, l2n−1] , S

[
k̄, l̄

]
) + d(

[
k̄, l̄

]
, T [k2n−1, l2n−1])

2

}
≤ max

{
d([k2n−1, l2n−1] ,

[
k̄, l̄

]
),

d([k2n−1, l2n−1] , [k2n, l2n]), d(
[
k̄, l̄

]
, S

[
k̄, l̄

]
),

d([k2n−1, l2n−1] ,
[
k̄, l̄

]
) + d(

[
k̄, l̄

]
, S

[
k̄, l̄

]
) + d(

[
k̄, l̄

]
, [k2n, l2n])

2

})
.

(23)

On the other hand, we have

d(
[
k̄, l̄

]
, S

[
k̄, l̄

]
) ≤M([k2n−1, l2n−1] ,

[
k̄, l̄

]
). (24)

Letting n → ∞ in the inequalities (23)-(24) and using (5) and (21), we
have

lim
n→∞

M([k2n−1, l2n−1] ,
[
k̄, l̄

]
) = d(

[
k̄, l̄

]
, S

[
k̄, l̄

]
). (25)

Taking n → ∞ in (22) and using (21), (25) and the continuity of ϕ, we
have

d(
[
k̄, l̄

]
, S

[
k̄, l̄

]
) ≤ d(

[
k̄, l̄

]
, S

[
k̄, l̄

]
)− ϕ

(
d(
[
k̄, l̄

]
, S

[
k̄, l̄

]
)
)
,



GENERALIZED WEAK ϕ-CONTRACTIONS IN METRIC ... 15

which implies that ϕ
(
d(
[
k̄, l̄

]
, S

[
k̄, l̄

]
)
)
≤ 0. Hence, d(

[
k̄, l̄

]
, S

[
k̄, l̄

]
) =

0. Thus S
[
k̄, l̄

] Ω
=

[
k̄, l̄

]
for any point

[
k̄, l̄

]
∈
〈
[k, l]

〉
. Similarly, T

[
k̄, l̄

] Ω
=[

k̄, l̄
]
for any point

[
k̄, l̄

]
∈

〈
[k, l]

〉
. Hence due to Proposition 2.2, we

have
[
k̄, l̄

] Ω
= T

[
k̄, l̄

] Ω
= S

[
k̄, l̄

]
for any point

[
k̄, l̄

]
∈
〈
[k, l]

〉
.

Now, suppose that there is another common near-fixed point [ũ, ṽ] for

S and T such that [ũ, ṽ] /∈
〈
[k, l]

〉
, i.e., [ũ, ṽ]

Ω
= T [ũ, ṽ]

Ω
= S [ũ, ṽ],

[k, l]
Ω
= T [k, l]

Ω
= S [k, l] and [k, l]

Ω
̸= [ũ, ṽ]. Then

[k, l]⊕ ω1 = T [k, l]⊕ ω2 and [ũ, ṽ]⊕ ω3 = T [ũ, ṽ]⊕ ω4

[ũ, ṽ]⊕ ω5 = S [ũ, ṽ]⊕ ω6 and [k, l]⊕ ω7 = S [k, l]⊕ ω8 (26)

for some ωi ∈ Ω, i = 1, . . . , 8. Using (2), (26) and the null equality, we
have

d([k, l] , [ũ, ṽ]) = d([k, l]⊕ ω1, [ũ, ṽ]⊕ ω5) = d(T [k, l]⊕ ω2, S [ũ, ṽ]⊕ ω6)

= d(T [k, l] , S [ũ, ṽ])

≤M
(
[k, l] , [ũ, ṽ]

)
− ϕ

(
M

(
[k, l] , [ũ, ṽ]

))
, (27)

where

M([k, l] , [ũ, ṽ]) =max
{
d([k, l] , [ũ, ṽ]), d([k, l] , T [k, l]), d([ũ, ṽ] , S [ũ, ṽ]),

d([k, l] , S [ũ, ṽ]) + d([ũ, ṽ] , T [k, l])

2

}
= d([k, l] , [ũ, ṽ]).

(28)

Note that according to the null equality, we have

d([k, l] , S [ũ, ṽ]) = d([k, l] , S [ũ, ṽ]⊕ ω6) = d([k, l] , [ũ, ṽ]⊕ ω5)

= d([k, l] , [ũ, ṽ]),

d([ũ, ṽ] , T [k, l]) = d([ũ, ṽ] , T [k, l]⊕ ω2) = d([ũ, ṽ] , [k, l]⊕ ω1)

= d([ũ, ṽ] , [k, l]).

Therefore, from (27) and (28), we obtain

d([k, l] , [ũ, ṽ]) ≤ d([k, l] , [ũ, ṽ])− ϕ
(
d([k, l] , [ũ, ṽ])

)
,
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which implies that ϕ
(
d([k, l] , [ũ, ṽ])

)
≤ 0. Hence d([k, l] , [ũ, ṽ]) = 0, i.e.,

[k, l]
Ω
= [ũ, ṽ] , which contradicts [ũ, ṽ] /∈

〈
[k, l]

〉
. Thus, any [ũ, ṽ] /∈〈

[k, l]
〉
cannot be a common near-fixed point for T and S. In fact, if

[ũ, ṽ] is a common near-fixed point of T and S, then [ũ, ṽ] ∈
〈
[k, l]

〉
.

□

Corollary 4.7. Let the mapping T : (I, d) → (I, d) be a weak ϕ-
contraction (by Definition 4.4) on I in CMIS (I, d) such that the null
equality holds for d. Then T has a near-fixed point [k, l] ∈ I satisfy-

ing T [k, l]
Ω
= [k, l] . Moreover, a unique equivalence class

〈
[k, l]

〉
exists

for T such that if [k, l] and
[
k̄, l̄

]
are the near-fixed points of T , then

[k, l]
Ω
=

[
k̄, l̄

]
.

Example 4.8. Let T, S : I → I and ϕ : [0,∞) → [0,∞) in CMIS (I, d)
be defined by T [k, l] =

[
−1 + 3

8k, 1 +
3
8 l
]
, S [k, l] =

[
−2 + 3

8k, 2 +
3
8 l
]

and ϕ(t) =
t

8
, respectively. Define d : I × I → R+ by d([k, l] , [u, v]) =

|(k + l)− (u+ v)| for all [k, l] , [u, v] ∈ I. Then by (2), we have

d
(
T [k, l] , S [u, v]

)
= d

([
−1 +

3

8
k, 1 +

3

8
l

]
,

[
−2 +

3

8
u, 2 +

3

8
v

])
=

3

8

∣∣(k + l)− (u+ v)
∣∣ ≤ 7

8

∣∣(k + l)− (u+ v)
∣∣ = 7

8
d([k, l] , [u, v])

≤ 7

8
M([k, l] , [u, v]) =M([k, l] , [u, v])− 1

8
M([k, l] , [u, v])

=M([k, l] , [u, v])− ϕ
(
M([k, l] , [u, v])

)
.

Thus, this example satisfies all conditions of Theorem 4.6. Hence, T and
S have a unique equivalence class of common near-fixed points

〈
[−1, 1]

〉
in I.
Definition 4.9. A pair of mappings S, T : (I, ∥·∥) → (I, ∥·∥) is named
generalized weak ϕ-contractions on I if it satisfies the following condition
for all [k, l] , [u, v] ∈ I:

∥T [k, l]⊖ S [u, v]∥ ≤M
(
[k, l] , [u, v]

)
− ϕ

(
M

(
[k, l] , [u, v]

))
, (29)

where

M([k, l] , [u, v]) = max
{
∥[k, l]⊖ [u, v]∥, ∥[k, l]⊖ T [k, l]∥, ∥[u, v]⊖ S [u, v]∥,
∥[k, l]⊖ S [u, v]∥+ ∥[u, v]⊖ T [k, l]∥

2

}
,
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and a function ϕ : [0,∞) → [0,∞) is continuous and non-decreasing
with ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = 0.

Corollary 4.10. Let the pair of mappings T, S : (I, ∥·∥) → (I, ∥·∥) be
generalized weak ϕ-contractions on I in BIS (I, ∥·∥) such that the null
equality and null condition hold for ∥·∥. Then T and S have a common

near-fixed point [k, l] ∈ I satisfying T [k, l]
Ω
= [k, l]

Ω
= S [k, l] . Moreover,

a unique equivalence class
〈
[k, l]

〉
exists for T and S such that if

[
k̄, l̄

]
is another common near-fixed point of T and S, then

〈
[k, l]

〉
=

〈 [
k̄, l̄

] 〉
.

Example 4.11. Suppose that T, S : I → I and ϕ : [0,∞) → [0,∞)
in BIS (I, ∥·∥) are defined by T [k, l] =

[
−1 + 2

9k, 1 +
2
9 l
]
, S [k, l] =[

−2 + 2
9k, 2 +

2
9 l
]
and ϕ(t) =

t

9
, respectively. Define ∥·∥ : I → R+

by ∥[k, l]∥ = |k + l|. Note that for all [k, l] , [u, v] ∈ I, we have

∥[k, l]⊖ [u, v]∥ = ∥[k, l]⊕ [−v,−u]∥ = ∥[k − v, l − u]∥
= |(k − v) + (l − u)| = |(k + l)− (u+ v)|.

Then for all [k, l] , [u, v] ∈ I by (29), we have

∥T [k, l]⊖ S [u, v]∥ =

∥∥∥∥ [−1 +
2k

9
, 1 +

2l

9

]
⊖
[
−2 +

2u

9
, 2 +

2v

9

] ∥∥∥∥
=

2

9

∣∣(k + l)− (u+ v)
∣∣ ≤ 8

9

∣∣(k + l)− (u+ v)
∣∣ = 8

9
∥[k, l]⊖ [u, v]∥

≤ 8

9
M([k, l] , [u, v]) =M([k, l] , [u, v])− 1

9
M([k, l] , [u, v])

=M([k, l] , [u, v])− ϕ
(
M([k, l] , [u, v])

)
.

Thus, this example satisfies all conditions of Corollary 4.10. Hence,
T and S have a unique equivalence class of common near-fixed points〈
[−2, 2]

〉
in I.

Theorem 4.12. Suppose that (I, d) is a CMIS and the null equality
holds for d. Assume that T, S : (I, d) → (I, d) are self-mappings of I
such that for all [k, l] , [u, v] ∈ I,

d(S [k, l] , T [u, v]) ≤M([k, l] , [u, v])− ϕ
(
M([k, l] , [u, v])

)
, (30)
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where a function ϕ : [0,∞) → [0,∞) is continuous and nondecreasing
with the property ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = 0, and

M([k, l] , [u, v]) =αd([k, l] , [u, v]) + β
[
d([k, l] , S [k, l]) + d([u, v] , T [u, v])

]
+ γ

[
d([k, l] , T [u, v]) + d([u, v] , S [k, l])

]
, (31)

with α, β > 0, γ ≥ 0 and α + 2β + 2γ ≤ 1. Then a common near-fixed

point [k, l] ∈ I exists for T and S satisfying T [k, l]
Ω
= [k, l]

Ω
= S [k, l] .

Moreover, a unique equivalence class
〈
[k, l]

〉
exists for T and S such that

if
[
k̄, l̄

]
is another common near-fixed point of T and S, then

〈
[k, l]

〉
=〈 [

k̄, l̄
] 〉

and [k, l]
Ω
=

[
k̄, l̄

]
. In addition, any near-fixed point of T is a

near-fixed point of S and conversely.

Proof. It is clear that [k, l]
Ω
= [u, v] is a common near-fixed point of T

and S if and only if M
(
[k, l] , [u, v]

)
= 0. Indeed if [k, l]

Ω
= [u, v] is a

common near-fixed point of S and T , then by using Proposition 2.2, we

have T [k, l]
Ω
= [k, l]

Ω
= S [k, l]

Ω
= T [u, v]

Ω
= [u, v]

Ω
= S [u, v] and

M
(
[k, l] , [u, v]

)
=αd([k, l] , [u, v]) + β

[
d([k, l] , S [k, l]) + d([u, v] , T [u, v])

]
+ γ

[
d([k, l] , T [u, v]) + d([u, v] , S [k, l])

]
= 0

Note that according to the null equality, we have

d([u, v] , S [k, l]) = d([k, l] , S [k, l]) and d([k, l] , T [u, v]) = d([u, v] , T [u, v]).

Now, suppose that M([k, l] , [u, v]) = 0. Then, due to (31) and α, β > 0,
we have d([k, l] , [u, v]) = 0, d([k, l] , T [k, l]) = 0 and d([u, v] , S [u, v])

]
=

0, i.e.,

T [k, l]
Ω
= [k, l]

Ω
= S [k, l]

Ω
= T [u, v]

Ω
= [u, v]

Ω
= S [u, v] .

Let [k0, l0] ∈ I be arbitrary. Then, inductively select a sequence
{
[kn, ln]

}∞
n=1

in I such that

[k2n+2, l2n+2] = T [k2n+1, l2n+1] and [k2n+1, l2n+1] = S [k2n, l2n] ,

for all n ≥ 0. According to the above content, note that if [kn+1, ln+1] =
[kn, ln] for any n ≥ 0, then S and T have a common near-fixed point.
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Thus, assume that d([kn+1, ln+1] , [kn, ln]) ̸= 0 for all n ≥ 0. Hence, we
have

M
(
[kn, ln] , [kn+1, ln+1]

)
> 0, (32)

for all n ∈ N. Therefore, from (30), we have

d
(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
= d(S [k2n, l2n] , T [k2n+1, l2n+1])

≤M
(
[k2n, l2n] , [k2n+1, l2n+1]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
,

(33)

where due to (31), we obtain

M
(
[k2n, l2n] , [k2n+1, l2n+1]

)
= αd

(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ β

[
d
(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)]
+ γ

[
d
(
[k2n, l2n] , [k2n+2, l2n+2]

)
+ d

(
[k2n+1, l2n+1] , [k2n+1, l2n+1]

)]
.

Since

d( [k2n, l2n] , [k2n+2, l2n+2])

≤ d([k2n, l2n] , [k2n+1, l2n+1]) + d([k2n+1, l2n+1] , [k2n+2, l2n+2]),

it results that

M
(
[k2n, l2n] , [k2n+1, l2n+1]

)
≤ αd

(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ β

[
d
(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)]
+ γ

[
d
(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)]
= (α+ β + γ)d

(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ (β + γ)d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
. (34)

Suppose that

d
(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
> d

(
[k2n, l2n] , [k2n+1, l2n+1]

)
,



20 M. SHARIFI AND S.M.S. MODARRES

for some n ∈ N. Then from (33) and (34), we obtain

d
(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
≤M

(
[k2n, l2n] , [k2n+1, l2n+1]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
= (α+ β + γ)d

(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ (β + γ)d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
≤ (α+ 2β + 2γ)d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
≤ d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
(since (α+ 2β + 2γ) ≤ 1),

which results that ϕ
(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
≤ 0. Thus we have

M
(
[k2n, l2n] , [k2n+1, l2n+1]

)
= 0, which is a contradiction according to

(32). Hence, d
(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
≤ d

(
[k2n, l2n] , [k2n+1, l2n+1]

)
for all n ∈ N. Similarly, we also obtain d

(
[k2n+2, l2n+2] , [k2n+3, l2n+3]

)
≤

d
(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
for all n ∈ N. So,

{
d([kn, ln] , [kn+1, ln+1])

}
is a monotone decreasing sequence of non-negative real numbers. There-
fore, there is an r ≥ 0 such that

lim
n→∞

d([kn, ln] , [kn+1, ln+1]) = r. (35)

Assume that r > 0. Thus, taking n→ ∞ in (34), we have

lim
n→∞

M
(
[k2n, l2n] , [k2n+1, l2n+1]

)
≤ (α+ 2β + 2γ)r. (36)

Therefore, according to the above facts and (33)-(34), we obtain

d
(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
≤M

(
[k2n, l2n] , [k2n+1, l2n+1]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
= (α+ β + γ)d

(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ (β + γ)d

(
[k2n+1, l2n+1] , [k2n+2, l2n+2]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
≤ (α+ 2β + 2γ)d

(
[k2n, l2n] , [k2n+1, l2n+1]

)
− ϕ

(
M

(
[k2n, l2n] , [k2n+1, l2n+1]

))
, (37)
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Taking n → ∞ in the inequality (37) and making use of (35) and the
continuity of ϕ, we have

r ≤ (α+ 2β + 2γ)r − ϕ
(
lim
n→∞

M
(
[k2n, l2n] , [k2n+1, l2n+1]

))
,

since α+ 2β + 2γ ≤ 1, it implies that

r ≤ r − ϕ
(
lim
n→∞

M
(
[k2n, l2n] , [k2n+1, l2n+1]

))
,

which implies that ϕ
(
lim
n→∞

M
(
[k2n, l2n] , [k2n+1, l2n+1]

))
≤ 0. Therefore,

by the property of ϕ, we have lim
n→∞

M
(
[k2n, l2n] , [k2n+1, l2n+1]

)
= 0.

Which is a contradiction, since r, α > 0 and from (32) and (36), we have
0 < lim

n→∞
M

(
[k2n, l2n] , [k2n+1, l2n+1]

)
≤ (α+ 2β + 2γ)r. Thus

lim
n→∞

d([kn, ln] , [kn+1, ln+1]) = 0. (38)

To show that
{
[kn, ln]

}∞
n=1

is a Cauchy sequence, we can proceed similar

to the proof of Theorem 4.6. So,
{
[kn, ln]

}∞
n=1

is a Cauchy sequence in
MIS (I, d). Therefore, due to the completeness of the I, there is [k, l] ∈ I
such that

d([kn, ln] , [k, l]) → 0. (39)

Now, we prove that any point
[
k̄, l̄

]
∈

〈
[k, l]

〉
is a common near-fixed

point for T and S. For this purpose, suppose that d
( [
k̄, l̄

]
, T

[
k̄, l̄

] )
> 0.

Due to
[
k̄, l̄

]
∈
〈
[k, l]

〉
, we have[

k̄, l̄
]
⊕ ω1 = [k, l]⊕ ω2, for some ω1, ω2 ∈ Ω. (40)

Since the null equality holds for d, according to (39), (40) and Proposi-
tion 3.3, we have

lim
n→∞

d([kn, ln] ,
[
k̄, l̄

]
) = 0, for any

[
k̄, l̄

]
∈
〈
[k, l]

〉
. (41)

Therefore, by setting [k, l] = [k2n, l2n] and [u, v] =
[
k̄, l̄

]
in (30) and

using the null equality and the triangle inequality, we obtain

d
( [
k̄, l̄

]
, T

[
k̄, l̄

] )
≤ d

( [
k̄, l̄

]
, [k2n+1, l2n+1]

)
+ d

(
[k2n+1, l2n+1] , T

[
k̄, l̄

] )
= d

( [
k̄, l̄

]
, [k2n+1, l2n+1]

)
+ d

(
S [k2n, l2n] , T

[
k̄, l̄

] )
≤ d

( [
k̄, l̄

]
, [k2n+1, l2n+1]

)
+M

(
[k2n, l2n] ,

[
k̄, l̄

] )
− ϕ

(
M

(
[k2n, l2n] ,

[
k̄, l̄

] ))
, (42)
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where according to (31), we have

M
(
[k2n, l2n] ,

[
k̄, l̄

] )
= αd

(
[k2n, l2n] ,

[
k̄, l̄

] )
+ β

[
d
(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ d

( [
k̄, l̄

]
, T

[
k̄, l̄

] )]
+ γ

[
d
(
[k2n, l2n] , T

[
k̄, l̄

] )
+ d

( [
k̄, l̄

]
, [k2n+1, l2n+1]

)]
≤ αd

(
[k2n, l2n] ,

[
k̄, l̄

] )
+ β

[
d
(
[k2n, l2n] , [k2n+1, l2n+1]

)
+ d

( [
k̄, l̄

]
, T

[
k̄, l̄

] )]
+ γ

[
d
(
[k2n, l2n] ,

[
k̄, l̄

] )
+ d

( [
k̄, l̄

]
, T

[
k̄, l̄

] )
+ d

( [
k̄, l̄

]
, [k2n+1, l2n+1]

)]
.

Taking n→ ∞ in the above inequality and using (38) and (41), we have

lim
n→∞

M
(
[kn, ln] ,

[
k̄, l̄

] )
≤ (β + γ)d(

[
k̄, l̄

]
, T

[
k̄, l̄

]
). (43)

Letting n→ ∞ in (42), making use of the continuity of ϕ and using (41)
and (43), we obtain

d(
[
k̄, l̄

]
, T

[
k̄, l̄

]
) ≤ (β+γ)d(

[
k̄, l̄

]
, T

[
k̄, l̄

]
)−ϕ

(
lim
n→∞

M
(
[kn, ln] ,

[
k̄, l̄

] ))
,

Due to β + γ ≤ 1, it follows that

d(
[
k̄, l̄

]
, T

[
k̄, l̄

]
) ≤ d(

[
k̄, l̄

]
, T

[
k̄, l̄

]
)− ϕ

(
lim
n→∞

M
(
[kn, ln] ,

[
k̄, l̄

] ))
,

which implies that ϕ
(
lim
n→∞

M
(
[kn, ln] ,

[
k̄, l̄

] ))
≤ 0. So, by the property

of ϕ, we have lim
n→∞

M
(
[kn, ln] ,

[
k̄, l̄

] )
= 0. Which is a contradiction,

since β > 0 and d
( [
k̄, l̄

]
, T

[
k̄, l̄

] )
> 0.

Therefore, d(
[
k̄, l̄

]
, T

[
k̄, l̄

]
) = 0. Thus, T

[
k̄, l̄

] Ω
=

[
k̄, l̄

]
for any point[

k̄, l̄
]
∈

〈
[k, l]

〉
. Similarly, S

[
k̄, l̄

] Ω
=

[
k̄, l̄

]
for any

[
k̄, l̄

]
∈

〈
[k, l]

〉
.

Hence, according to Proposition 2.2, we have T
[
k̄, l̄

] Ω
=

[
k̄, l̄

] Ω
= S

[
k̄, l̄

]
for any point

[
k̄, l̄

]
∈
〈
[k, l]

〉
.

Now, assume that T and S have two common near-fixed points [k, l]

and [ũ, ṽ] such that [k, l]
Ω
̸= [ũ, ṽ], i.e., [ũ, ṽ]

Ω
= T [ũ, ṽ]

Ω
= S [ũ, ṽ], [k, l]

Ω
=

T [k, l]
Ω
= S [k, l] and [ũ, ṽ] /∈

〈
[k, l]

〉
. Then

[ũ, ṽ]⊕ ω1 = T [ũ, ṽ]⊕ ω2 and [k, l]⊕ ω5 = T [k, l]⊕ ω6 (44)

[k, l]⊕ ω3 = S [k, l]⊕ ω4 and [ũ, ṽ]⊕ ω7 = S [ũ, ṽ]⊕ ω8 (45)
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for some ωi ∈ Ω, i = 1, . . . , 8. Note that d([ũ, ṽ] , T [ũ, ṽ]) = 0 and
d([k, l] , S [k, l]) = 0.
Then using (30), (44) and (45) and making use of the null equality and
the triangle inequality, we have

d
(
[k, l] , [ũ, ṽ]

)
= d

(
[k, l]⊕ ω3, [ũ, ṽ]⊕ ω1

)
= d

(
S [k, l]⊕ ω4, T [ũ, ṽ]⊕ ω2

)
= d

(
S [k, l] , T [ũ, ṽ]

)
≤M

(
[k, l] , [ũ, ṽ]

)
− ϕ

(
M

(
[k, l] , [ũ, ṽ]

))
,

where due to (31), we obtain

M([k, l] , [ũ, ṽ]) = αd([k, l] , [ũ, ṽ]) + β
[
d([k, l] , S [k, l]) + d([ũ, ṽ] , T [ũ, ṽ])

]
+ γ

[
d([k, l] , T [ũ, ṽ]) + d([ũ, ṽ] , S [k, l])

]
≤ αd([k, l] , [ũ, ṽ]) + β

[
d([k, l] , S [k, l]) + d([ũ, ṽ] , T [ũ, ṽ])

]
+ γ

[
d([k, l] , [ũ, ṽ]) + d([ũ, ṽ] , T [ũ, ṽ])

+ d([k, l] , [ũ, ṽ]) + d([k, l] , S [k, l])
]

= (α+ 2γ)d([k, l] , [ũ, ṽ]). (46)

Therefore

d
(
[k, l] , [ũ, ṽ]

)
≤ (α+ 2γ)d

(
[k, l] , [ũ, ṽ]

)
− ϕ

(
M([k, l] , [ũ, ṽ])

)
,

Due to α+ 2γ ≤ 1, it follows that

d
(
[k, l] , [ũ, ṽ]

)
≤ d

(
[k, l] , [ũ, ṽ]

)
− ϕ

(
M([k, l] , [ũ, ṽ])

)
,

which implies that ϕ
(
M([k, l] , [ũ, ṽ])

)
≤ 0. So, by the property of ϕ,

we have M([k, l] , [ũ, ṽ]) = 0. Which is a contradiction, since α > 0 and

d([k, l] , [ũ, ṽ]) > 0. Hence d([k, l] , [ũ, ṽ]) = 0, i.e., [k, l]
Ω
= [ũ, ṽ] . Thus,

any [ũ, ṽ] /∈
〈
[k, l]

〉
cannot be a common near-fixed point for S and T .

In fact, if [ũ, ṽ] is another common near-fixed point for T and S, then

[ũ, ṽ] ∈
〈
[k, l]

〉
and [k, l]

Ω
= [ũ, ṽ] .

Now, assume that [k, l] is a near-fixed point of S and [k, l]
Ω
̸= T [k, l].

Then by using (30), (45) and the null equality, we have

d
(
[k, l] , T [k, l]

)
= d

(
[k, l]⊕ ω3, T [k, l]

)
= d

(
S [k, l]⊕ ω4, T [k, l]

)
= d

(
S [k, l] , T [k, l]

)
≤M

(
[k, l] , [k, l]

)
− ϕ

(
M

(
[k, l] , [k, l]

))
,
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where according to (31), we obtain

M([k, l] , [k, l]) = αd([k, l] , [k, l]) + β
[
d([k, l] , S [k, l]) + d([k, l] , T [k, l])

]
+ γ

[
d([k, l] , T [k, l]) + d([k, l] , S [k, l])

]
= (β + γ)d([k, l] , T [k, l]).

Thus

d([k, l] , T [k, l]) ≤ (β + γ)d([k, l] , T [k, l])− ϕ
(
(β + γ)d([k, l] , T [k, l])

)
,

since β + γ ≤ 1, it implies that

d([k, l] , T [k, l]) ≤ d([k, l] , T [k, l])− ϕ
(
(β + γ)d([k, l] , T [k, l])

)
,

which is a contradiction since β > 0 and d([k, l] , T [k, l]) > 0. Hence

d([k, l] , T [k, l]) = 0, i.e., [k, l]
Ω
= T [k, l]. Similarly, any near-fixed point

for T is also a near-fixed point for S. □

Corollary 4.13. Suppose that (I, ∥·∥) is a BIS and the null equality
and null condition hold for ∥·∥. Assume that S, T : (I, ∥·∥) → (I, ∥·∥)
are self-mappings of I such that for all [k, l] , [u, v] ∈ I,

∥S [k, l]⊖ T [u, v]∥ ≤M
(
[k, l] , [u, v]

)
− ϕ

(
M

(
[k, l] , [u, v]

))
,

where a function ϕ : [0,∞) → [0,∞) is continuous and nondecreasing
with the property ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = 0, and

M([k, l] , [u, v]) = α∥[k, l]⊖ [u, v]∥
+ β

[
∥[k, l]⊖ S [k, l]∥+ ∥[u, v]⊖ T [u, v]∥

]
+ γ

[
∥[k, l]⊖ T [u, v]∥+ ∥[u, v]⊖ S [k, l]∥

]
,

with α, β > 0, γ ≥ 0 and α + 2β + 2γ ≤ 1. Then a common near-fixed

point [k, l] ∈ I exists for T and S satisfying T [k, l]
Ω
= [k, l]

Ω
= S [k, l] .

Moreover, a unique equivalence class
〈
[k, l]

〉
exists for T and S such that

if
[
k̄, l̄

]
is another common near-fixed point of T and S, then

〈
[k, l]

〉
=〈 [

k̄, l̄
] 〉

.
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Example 4.14. Let ϕ, ψ : [0,∞) → [0,∞) and S, T : I → I in CMIS

(I, d) be defined by ϕ(t) =
t

4
, S [k, l] =

[
−1 + k

4 , 1 +
l
4

]
and T [k, l] =[

−2 + k
4 , 2 +

l
4

]
, respectively. Define a mapping d : I × I → R+ by

d([k, l] , [u, v]) = |(k + l)− (u+ v)| for all [k, l] , [u, v] ∈ I. Suppose that
α = 1

2 , β = 1
8 and γ = 1

8 . Then by (30), we have

d
(
S [k, l] , T [u, v]

)
= d

([
−1 +

k

4
, 1 +

l

4

]
,
[
−2 +

u

4
, 2 +

v

4

])
=

1

4

∣∣(k + l)− (u+ v)
∣∣ ≤ 3

4

(
α
∣∣(k + l)− (u+ v)

∣∣
+ β

[
3

4

∣∣k + l
∣∣+ 3

4

∣∣u+ v
∣∣]

+ γ

[∣∣(k + l)− 1

4
(u+ v)

∣∣+ ∣∣(u+ v)− 1

4
(k + l)

∣∣])
=

3

4
M

(
[k, l] , [u, v]

)
=M

(
[k, l] , [u, v]

)
− 1

4
M

(
[k, l] , [u, v]

)
=M

(
[k, l] , [u, v]

)
− ϕ

(
M

(
[k, l] , [u, v]

))
.

Thus, this example satisfies all conditions of Theorem 4.12. Hence,
T and S have a unique equivalence class of common near-fixed points〈
[−2, 2]

〉
in I.

5 Conclusion

Today, fixed points are used in various areas of science and are con-
sidered a fascinating research field. In 2018, Wu proposed a concept
of a fixed point called a near-fixed point. He introduced the null set
and presented MIS and NIS [10]. Following the generalizations of Ba-
nach’s contraction principle, we proved near-fixed point theorems for
generalized ϕ-contraction mappings and generalized weak ϕ-contraction
mappings in MIS and NIS. We also provided examples to demonstrate
the correctness of the results.
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